c330376a4d
demonstrate `RHS != Self` use cases for `Add` and `Sub`
2875 lines
81 KiB
Rust
2875 lines
81 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Overloadable operators.
|
|
//!
|
|
//! Implementing these traits allows you to overload certain operators.
|
|
//!
|
|
//! Some of these traits are imported by the prelude, so they are available in
|
|
//! every Rust program. Only operators backed by traits can be overloaded. For
|
|
//! example, the addition operator (`+`) can be overloaded through the `Add`
|
|
//! trait, but since the assignment operator (`=`) has no backing trait, there
|
|
//! is no way of overloading its semantics. Additionally, this module does not
|
|
//! provide any mechanism to create new operators. If traitless overloading or
|
|
//! custom operators are required, you should look toward macros or compiler
|
|
//! plugins to extend Rust's syntax.
|
|
//!
|
|
//! Note that the `&&` and `||` operators short-circuit, i.e. they only
|
|
//! evaluate their second operand if it contributes to the result. Since this
|
|
//! behavior is not enforceable by traits, `&&` and `||` are not supported as
|
|
//! overloadable operators.
|
|
//!
|
|
//! Many of the operators take their operands by value. In non-generic
|
|
//! contexts involving built-in types, this is usually not a problem.
|
|
//! However, using these operators in generic code, requires some
|
|
//! attention if values have to be reused as opposed to letting the operators
|
|
//! consume them. One option is to occasionally use `clone()`.
|
|
//! Another option is to rely on the types involved providing additional
|
|
//! operator implementations for references. For example, for a user-defined
|
|
//! type `T` which is supposed to support addition, it is probably a good
|
|
//! idea to have both `T` and `&T` implement the traits `Add<T>` and `Add<&T>`
|
|
//! so that generic code can be written without unnecessary cloning.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! This example creates a `Point` struct that implements `Add` and `Sub`, and
|
|
//! then demonstrates adding and subtracting two `Point`s.
|
|
//!
|
|
//! ```rust
|
|
//! use std::ops::{Add, Sub};
|
|
//!
|
|
//! #[derive(Debug)]
|
|
//! struct Point {
|
|
//! x: i32,
|
|
//! y: i32,
|
|
//! }
|
|
//!
|
|
//! impl Add for Point {
|
|
//! type Output = Point;
|
|
//!
|
|
//! fn add(self, other: Point) -> Point {
|
|
//! Point {x: self.x + other.x, y: self.y + other.y}
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl Sub for Point {
|
|
//! type Output = Point;
|
|
//!
|
|
//! fn sub(self, other: Point) -> Point {
|
|
//! Point {x: self.x - other.x, y: self.y - other.y}
|
|
//! }
|
|
//! }
|
|
//! fn main() {
|
|
//! println!("{:?}", Point {x: 1, y: 0} + Point {x: 2, y: 3});
|
|
//! println!("{:?}", Point {x: 1, y: 0} - Point {x: 2, y: 3});
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! See the documentation for each trait for an example implementation.
|
|
//!
|
|
//! The [`Fn`], [`FnMut`], and [`FnOnce`] traits are implemented by types that can be
|
|
//! invoked like functions. Note that `Fn` takes `&self`, `FnMut` takes `&mut
|
|
//! self` and `FnOnce` takes `self`. These correspond to the three kinds of
|
|
//! methods that can be invoked on an instance: call-by-reference,
|
|
//! call-by-mutable-reference, and call-by-value. The most common use of these
|
|
//! traits is to act as bounds to higher-level functions that take functions or
|
|
//! closures as arguments.
|
|
//!
|
|
//! [`Fn`]: trait.Fn.html
|
|
//! [`FnMut`]: trait.FnMut.html
|
|
//! [`FnOnce`]: trait.FnOnce.html
|
|
//!
|
|
//! Taking a `Fn` as a parameter:
|
|
//!
|
|
//! ```rust
|
|
//! fn call_with_one<F>(func: F) -> usize
|
|
//! where F: Fn(usize) -> usize
|
|
//! {
|
|
//! func(1)
|
|
//! }
|
|
//!
|
|
//! let double = |x| x * 2;
|
|
//! assert_eq!(call_with_one(double), 2);
|
|
//! ```
|
|
//!
|
|
//! Taking a `FnMut` as a parameter:
|
|
//!
|
|
//! ```rust
|
|
//! fn do_twice<F>(mut func: F)
|
|
//! where F: FnMut()
|
|
//! {
|
|
//! func();
|
|
//! func();
|
|
//! }
|
|
//!
|
|
//! let mut x: usize = 1;
|
|
//! {
|
|
//! let add_two_to_x = || x += 2;
|
|
//! do_twice(add_two_to_x);
|
|
//! }
|
|
//!
|
|
//! assert_eq!(x, 5);
|
|
//! ```
|
|
//!
|
|
//! Taking a `FnOnce` as a parameter:
|
|
//!
|
|
//! ```rust
|
|
//! fn consume_with_relish<F>(func: F)
|
|
//! where F: FnOnce() -> String
|
|
//! {
|
|
//! // `func` consumes its captured variables, so it cannot be run more
|
|
//! // than once
|
|
//! println!("Consumed: {}", func());
|
|
//!
|
|
//! println!("Delicious!");
|
|
//!
|
|
//! // Attempting to invoke `func()` again will throw a `use of moved
|
|
//! // value` error for `func`
|
|
//! }
|
|
//!
|
|
//! let x = String::from("x");
|
|
//! let consume_and_return_x = move || x;
|
|
//! consume_with_relish(consume_and_return_x);
|
|
//!
|
|
//! // `consume_and_return_x` can no longer be invoked at this point
|
|
//! ```
|
|
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
use fmt;
|
|
use marker::Unsize;
|
|
|
|
/// The `Drop` trait is used to run some code when a value goes out of scope.
|
|
/// This is sometimes called a 'destructor'.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `Drop`. The `drop` method is called when `_x`
|
|
/// goes out of scope, and therefore `main` prints `Dropping!`.
|
|
///
|
|
/// ```
|
|
/// struct HasDrop;
|
|
///
|
|
/// impl Drop for HasDrop {
|
|
/// fn drop(&mut self) {
|
|
/// println!("Dropping!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let _x = HasDrop;
|
|
/// }
|
|
/// ```
|
|
#[lang = "drop"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Drop {
|
|
/// A method called when the value goes out of scope.
|
|
///
|
|
/// When this method has been called, `self` has not yet been deallocated.
|
|
/// If it were, `self` would be a dangling reference.
|
|
///
|
|
/// After this function is over, the memory of `self` will be deallocated.
|
|
///
|
|
/// This function cannot be called explicitly. This is compiler error
|
|
/// [0040]. However, the [`std::mem::drop`] function in the prelude can be
|
|
/// used to call the argument's `Drop` implementation.
|
|
///
|
|
/// [0040]: https://doc.rust-lang.org/error-index.html#E0040
|
|
/// [`std::mem::drop`]: https://doc.rust-lang.org/std/mem/fn.drop.html
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Given that a `panic!` will call `drop()` as it unwinds, any `panic!` in
|
|
/// a `drop()` implementation will likely abort.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn drop(&mut self);
|
|
}
|
|
|
|
// implements the unary operator "op &T"
|
|
// based on "op T" where T is expected to be `Copy`able
|
|
macro_rules! forward_ref_unop {
|
|
(impl $imp:ident, $method:ident for $t:ty) => {
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a> $imp for &'a $t {
|
|
type Output = <$t as $imp>::Output;
|
|
|
|
#[inline]
|
|
fn $method(self) -> <$t as $imp>::Output {
|
|
$imp::$method(*self)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// implements binary operators "&T op U", "T op &U", "&T op &U"
|
|
// based on "T op U" where T and U are expected to be `Copy`able
|
|
macro_rules! forward_ref_binop {
|
|
(impl $imp:ident, $method:ident for $t:ty, $u:ty) => {
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a> $imp<$u> for &'a $t {
|
|
type Output = <$t as $imp<$u>>::Output;
|
|
|
|
#[inline]
|
|
fn $method(self, other: $u) -> <$t as $imp<$u>>::Output {
|
|
$imp::$method(*self, other)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a> $imp<&'a $u> for $t {
|
|
type Output = <$t as $imp<$u>>::Output;
|
|
|
|
#[inline]
|
|
fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output {
|
|
$imp::$method(self, *other)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, 'b> $imp<&'a $u> for &'b $t {
|
|
type Output = <$t as $imp<$u>>::Output;
|
|
|
|
#[inline]
|
|
fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output {
|
|
$imp::$method(*self, *other)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The `Add` trait is used to specify the functionality of `+`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// This example creates a `Point` struct that implements the `Add` trait, and
|
|
/// then demonstrates adding two `Point`s.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Add;
|
|
///
|
|
/// #[derive(Debug)]
|
|
/// struct Point {
|
|
/// x: i32,
|
|
/// y: i32,
|
|
/// }
|
|
///
|
|
/// impl Add for Point {
|
|
/// type Output = Point;
|
|
///
|
|
/// fn add(self, other: Point) -> Point {
|
|
/// Point {
|
|
/// x: self.x + other.x,
|
|
/// y: self.y + other.y,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl PartialEq for Point {
|
|
/// fn eq(&self, other: &Self) -> bool {
|
|
/// self.x == other.x && self.y == other.y
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
|
|
/// Point { x: 3, y: 3 });
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Note that `RHS = Self` by default, but this is not mandatory. For example,
|
|
/// [std::time::SystemTime] implements `Add<Duration>`, which permits
|
|
/// operations of the form `SystemTime = SystemTime + Duration`.
|
|
///
|
|
/// [std::time::SystemTime]: ../../std/time/struct.SystemTime.html
|
|
#[lang = "add"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Add<RHS=Self> {
|
|
/// The resulting type after applying the `+` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `+` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn add(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! add_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Add for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn add(self, other: $t) -> $t { self + other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Add, add for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
add_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `Sub` trait is used to specify the functionality of `-`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// This example creates a `Point` struct that implements the `Sub` trait, and
|
|
/// then demonstrates subtracting two `Point`s.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Sub;
|
|
///
|
|
/// #[derive(Debug)]
|
|
/// struct Point {
|
|
/// x: i32,
|
|
/// y: i32,
|
|
/// }
|
|
///
|
|
/// impl Sub for Point {
|
|
/// type Output = Point;
|
|
///
|
|
/// fn sub(self, other: Point) -> Point {
|
|
/// Point {
|
|
/// x: self.x - other.x,
|
|
/// y: self.y - other.y,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl PartialEq for Point {
|
|
/// fn eq(&self, other: &Self) -> bool {
|
|
/// self.x == other.x && self.y == other.y
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 },
|
|
/// Point { x: 1, y: 0 });
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Note that `RHS = Self` by default, but this is not mandatory. For example,
|
|
/// [std::time::SystemTime] implements `Sub<Duration>`, which permits
|
|
/// operations of the form `SystemTime = SystemTime - Duration`.
|
|
///
|
|
/// [std::time::SystemTime]: ../../std/time/struct.SystemTime.html
|
|
#[lang = "sub"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Sub<RHS=Self> {
|
|
/// The resulting type after applying the `-` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `-` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn sub(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! sub_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Sub for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn sub(self, other: $t) -> $t { self - other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Sub, sub for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
sub_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `Mul` trait is used to specify the functionality of `*`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Implementing a `Mul`tipliable rational number struct:
|
|
///
|
|
/// ```
|
|
/// use std::ops::Mul;
|
|
///
|
|
/// // The uniqueness of rational numbers in lowest terms is a consequence of
|
|
/// // the fundamental theorem of arithmetic.
|
|
/// #[derive(Eq)]
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct Rational {
|
|
/// nominator: usize,
|
|
/// denominator: usize,
|
|
/// }
|
|
///
|
|
/// impl Rational {
|
|
/// fn new(nominator: usize, denominator: usize) -> Self {
|
|
/// if denominator == 0 {
|
|
/// panic!("Zero is an invalid denominator!");
|
|
/// }
|
|
///
|
|
/// // Reduce to lowest terms by dividing by the greatest common
|
|
/// // divisor.
|
|
/// let gcd = gcd(nominator, denominator);
|
|
/// Rational {
|
|
/// nominator: nominator / gcd,
|
|
/// denominator: denominator / gcd,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Mul for Rational {
|
|
/// // The multiplication of rational numbers is a closed operation.
|
|
/// type Output = Self;
|
|
///
|
|
/// fn mul(self, rhs: Self) -> Self {
|
|
/// let nominator = self.nominator * rhs.nominator;
|
|
/// let denominator = self.denominator * rhs.denominator;
|
|
/// Rational::new(nominator, denominator)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Euclid's two-thousand-year-old algorithm for finding the greatest common
|
|
/// // divisor.
|
|
/// fn gcd(x: usize, y: usize) -> usize {
|
|
/// let mut x = x;
|
|
/// let mut y = y;
|
|
/// while y != 0 {
|
|
/// let t = y;
|
|
/// y = x % y;
|
|
/// x = t;
|
|
/// }
|
|
/// x
|
|
/// }
|
|
///
|
|
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
|
|
/// assert_eq!(Rational::new(2, 3) * Rational::new(3, 4),
|
|
/// Rational::new(1, 2));
|
|
/// ```
|
|
///
|
|
/// Note that `RHS = Self` by default, but this is not mandatory. Here is an
|
|
/// implementation which enables multiplication of vectors by scalars, as is
|
|
/// done in linear algebra.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Mul;
|
|
///
|
|
/// struct Scalar {value: usize};
|
|
///
|
|
/// #[derive(Debug)]
|
|
/// struct Vector {value: Vec<usize>};
|
|
///
|
|
/// impl Mul<Vector> for Scalar {
|
|
/// type Output = Vector;
|
|
///
|
|
/// fn mul(self, rhs: Vector) -> Vector {
|
|
/// Vector {value: rhs.value.iter().map(|v| self.value * v).collect()}
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl PartialEq<Vector> for Vector {
|
|
/// fn eq(&self, other: &Self) -> bool {
|
|
/// self.value == other.value
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let scalar = Scalar{value: 3};
|
|
/// let vector = Vector{value: vec![2, 4, 6]};
|
|
/// assert_eq!(scalar * vector, Vector{value: vec![6, 12, 18]});
|
|
/// ```
|
|
#[lang = "mul"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Mul<RHS=Self> {
|
|
/// The resulting type after applying the `*` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `*` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn mul(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! mul_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Mul for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn mul(self, other: $t) -> $t { self * other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Mul, mul for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
mul_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `Div` trait is used to specify the functionality of `/`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Implementing a `Div`idable rational number struct:
|
|
///
|
|
/// ```
|
|
/// use std::ops::Div;
|
|
///
|
|
/// // The uniqueness of rational numbers in lowest terms is a consequence of
|
|
/// // the fundamental theorem of arithmetic.
|
|
/// #[derive(Eq)]
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct Rational {
|
|
/// nominator: usize,
|
|
/// denominator: usize,
|
|
/// }
|
|
///
|
|
/// impl Rational {
|
|
/// fn new(nominator: usize, denominator: usize) -> Self {
|
|
/// if denominator == 0 {
|
|
/// panic!("Zero is an invalid denominator!");
|
|
/// }
|
|
///
|
|
/// // Reduce to lowest terms by dividing by the greatest common
|
|
/// // divisor.
|
|
/// let gcd = gcd(nominator, denominator);
|
|
/// Rational {
|
|
/// nominator: nominator / gcd,
|
|
/// denominator: denominator / gcd,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl Div for Rational {
|
|
/// // The division of rational numbers is a closed operation.
|
|
/// type Output = Self;
|
|
///
|
|
/// fn div(self, rhs: Self) -> Self {
|
|
/// if rhs.nominator == 0 {
|
|
/// panic!("Cannot divide by zero-valued `Rational`!");
|
|
/// }
|
|
///
|
|
/// let nominator = self.nominator * rhs.denominator;
|
|
/// let denominator = self.denominator * rhs.nominator;
|
|
/// Rational::new(nominator, denominator)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Euclid's two-thousand-year-old algorithm for finding the greatest common
|
|
/// // divisor.
|
|
/// fn gcd(x: usize, y: usize) -> usize {
|
|
/// let mut x = x;
|
|
/// let mut y = y;
|
|
/// while y != 0 {
|
|
/// let t = y;
|
|
/// y = x % y;
|
|
/// x = t;
|
|
/// }
|
|
/// x
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
|
|
/// assert_eq!(Rational::new(1, 2) / Rational::new(3, 4),
|
|
/// Rational::new(2, 3));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Note that `RHS = Self` by default, but this is not mandatory. Here is an
|
|
/// implementation which enables division of vectors by scalars, as is done in
|
|
/// linear algebra.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Div;
|
|
///
|
|
/// struct Scalar {value: f32};
|
|
///
|
|
/// #[derive(Debug)]
|
|
/// struct Vector {value: Vec<f32>};
|
|
///
|
|
/// impl Div<Scalar> for Vector {
|
|
/// type Output = Vector;
|
|
///
|
|
/// fn div(self, rhs: Scalar) -> Vector {
|
|
/// Vector {value: self.value.iter().map(|v| v / rhs.value).collect()}
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl PartialEq<Vector> for Vector {
|
|
/// fn eq(&self, other: &Self) -> bool {
|
|
/// self.value == other.value
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let scalar = Scalar{value: 2f32};
|
|
/// let vector = Vector{value: vec![2f32, 4f32, 6f32]};
|
|
/// assert_eq!(vector / scalar, Vector{value: vec![1f32, 2f32, 3f32]});
|
|
/// ```
|
|
#[lang = "div"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Div<RHS=Self> {
|
|
/// The resulting type after applying the `/` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `/` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn div(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! div_impl_integer {
|
|
($($t:ty)*) => ($(
|
|
/// This operation rounds towards zero, truncating any
|
|
/// fractional part of the exact result.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Div for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn div(self, other: $t) -> $t { self / other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Div, div for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
div_impl_integer! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
macro_rules! div_impl_float {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Div for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn div(self, other: $t) -> $t { self / other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Div, div for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
div_impl_float! { f32 f64 }
|
|
|
|
/// The `Rem` trait is used to specify the functionality of `%`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// This example implements `Rem` on a `SplitSlice` object. After `Rem` is
|
|
/// implemented, one can use the `%` operator to find out what the remaining
|
|
/// elements of the slice would be after splitting it into equal slices of a
|
|
/// given length.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Rem;
|
|
///
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct SplitSlice<'a, T: 'a> {
|
|
/// slice: &'a [T],
|
|
/// }
|
|
///
|
|
/// impl<'a, T> Rem<usize> for SplitSlice<'a, T> {
|
|
/// type Output = SplitSlice<'a, T>;
|
|
///
|
|
/// fn rem(self, modulus: usize) -> Self {
|
|
/// let len = self.slice.len();
|
|
/// let rem = len % modulus;
|
|
/// let start = len - rem;
|
|
/// SplitSlice {slice: &self.slice[start..]}
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // If we were to divide &[0, 1, 2, 3, 4, 5, 6, 7] into slices of size 3,
|
|
/// // the remainder would be &[6, 7]
|
|
/// assert_eq!(SplitSlice { slice: &[0, 1, 2, 3, 4, 5, 6, 7] } % 3,
|
|
/// SplitSlice { slice: &[6, 7] });
|
|
/// ```
|
|
#[lang = "rem"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Rem<RHS=Self> {
|
|
/// The resulting type after applying the `%` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output = Self;
|
|
|
|
/// The method for the `%` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn rem(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! rem_impl_integer {
|
|
($($t:ty)*) => ($(
|
|
/// This operation satisfies `n % d == n - (n / d) * d`. The
|
|
/// result has the same sign as the left operand.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Rem for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn rem(self, other: $t) -> $t { self % other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Rem, rem for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
rem_impl_integer! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
macro_rules! rem_impl_float {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Rem for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn rem(self, other: $t) -> $t { self % other }
|
|
}
|
|
|
|
forward_ref_binop! { impl Rem, rem for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
rem_impl_float! { f32 f64 }
|
|
|
|
/// The `Neg` trait is used to specify the functionality of unary `-`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// An implementation of `Neg` for `Sign`, which allows the use of `-` to
|
|
/// negate its value.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Neg;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// enum Sign {
|
|
/// Negative,
|
|
/// Zero,
|
|
/// Positive,
|
|
/// }
|
|
///
|
|
/// impl Neg for Sign {
|
|
/// type Output = Sign;
|
|
///
|
|
/// fn neg(self) -> Sign {
|
|
/// match self {
|
|
/// Sign::Negative => Sign::Positive,
|
|
/// Sign::Zero => Sign::Zero,
|
|
/// Sign::Positive => Sign::Negative,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // a negative positive is a negative
|
|
/// assert_eq!(-Sign::Positive, Sign::Negative);
|
|
/// // a double negative is a positive
|
|
/// assert_eq!(-Sign::Negative, Sign::Positive);
|
|
/// // zero is its own negation
|
|
/// assert_eq!(-Sign::Zero, Sign::Zero);
|
|
/// ```
|
|
#[lang = "neg"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Neg {
|
|
/// The resulting type after applying the `-` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the unary `-` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn neg(self) -> Self::Output;
|
|
}
|
|
|
|
|
|
|
|
macro_rules! neg_impl_core {
|
|
($id:ident => $body:expr, $($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Neg for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn neg(self) -> $t { let $id = self; $body }
|
|
}
|
|
|
|
forward_ref_unop! { impl Neg, neg for $t }
|
|
)*)
|
|
}
|
|
|
|
macro_rules! neg_impl_numeric {
|
|
($($t:ty)*) => { neg_impl_core!{ x => -x, $($t)*} }
|
|
}
|
|
|
|
macro_rules! neg_impl_unsigned {
|
|
($($t:ty)*) => {
|
|
neg_impl_core!{ x => {
|
|
!x.wrapping_add(1)
|
|
}, $($t)*} }
|
|
}
|
|
|
|
// neg_impl_unsigned! { usize u8 u16 u32 u64 }
|
|
neg_impl_numeric! { isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `Not` trait is used to specify the functionality of unary `!`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// An implementation of `Not` for `Answer`, which enables the use of `!` to
|
|
/// invert its value.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Not;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// enum Answer {
|
|
/// Yes,
|
|
/// No,
|
|
/// }
|
|
///
|
|
/// impl Not for Answer {
|
|
/// type Output = Answer;
|
|
///
|
|
/// fn not(self) -> Answer {
|
|
/// match self {
|
|
/// Answer::Yes => Answer::No,
|
|
/// Answer::No => Answer::Yes
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// assert_eq!(!Answer::Yes, Answer::No);
|
|
/// assert_eq!(!Answer::No, Answer::Yes);
|
|
/// ```
|
|
#[lang = "not"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Not {
|
|
/// The resulting type after applying the `!` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the unary `!` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn not(self) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! not_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Not for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn not(self) -> $t { !self }
|
|
}
|
|
|
|
forward_ref_unop! { impl Not, not for $t }
|
|
)*)
|
|
}
|
|
|
|
not_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `BitAnd` trait is used to specify the functionality of `&`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In this example, the `&` operator is lifted to a trivial `Scalar` type.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitAnd;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct Scalar(bool);
|
|
///
|
|
/// impl BitAnd for Scalar {
|
|
/// type Output = Self;
|
|
///
|
|
/// // rhs is the "right-hand side" of the expression `a & b`
|
|
/// fn bitand(self, rhs: Self) -> Self {
|
|
/// Scalar(self.0 & rhs.0)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(Scalar(true) & Scalar(true), Scalar(true));
|
|
/// assert_eq!(Scalar(true) & Scalar(false), Scalar(false));
|
|
/// assert_eq!(Scalar(false) & Scalar(true), Scalar(false));
|
|
/// assert_eq!(Scalar(false) & Scalar(false), Scalar(false));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In this example, the `BitAnd` trait is implemented for a `BooleanVector`
|
|
/// struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitAnd;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct BooleanVector(Vec<bool>);
|
|
///
|
|
/// impl BitAnd for BooleanVector {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn bitand(self, BooleanVector(rhs): Self) -> Self {
|
|
/// let BooleanVector(lhs) = self;
|
|
/// assert_eq!(lhs.len(), rhs.len());
|
|
/// BooleanVector(lhs.iter().zip(rhs.iter()).map(|(x, y)| *x && *y).collect())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let bv1 = BooleanVector(vec![true, true, false, false]);
|
|
/// let bv2 = BooleanVector(vec![true, false, true, false]);
|
|
/// let expected = BooleanVector(vec![true, false, false, false]);
|
|
/// assert_eq!(bv1 & bv2, expected);
|
|
/// }
|
|
/// ```
|
|
#[lang = "bitand"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait BitAnd<RHS=Self> {
|
|
/// The resulting type after applying the `&` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `&` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn bitand(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! bitand_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl BitAnd for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn bitand(self, rhs: $t) -> $t { self & rhs }
|
|
}
|
|
|
|
forward_ref_binop! { impl BitAnd, bitand for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
bitand_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `BitOr` trait is used to specify the functionality of `|`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In this example, the `|` operator is lifted to a trivial `Scalar` type.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitOr;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct Scalar(bool);
|
|
///
|
|
/// impl BitOr for Scalar {
|
|
/// type Output = Self;
|
|
///
|
|
/// // rhs is the "right-hand side" of the expression `a | b`
|
|
/// fn bitor(self, rhs: Self) -> Self {
|
|
/// Scalar(self.0 | rhs.0)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(Scalar(true) | Scalar(true), Scalar(true));
|
|
/// assert_eq!(Scalar(true) | Scalar(false), Scalar(true));
|
|
/// assert_eq!(Scalar(false) | Scalar(true), Scalar(true));
|
|
/// assert_eq!(Scalar(false) | Scalar(false), Scalar(false));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In this example, the `BitOr` trait is implemented for a `BooleanVector`
|
|
/// struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitOr;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct BooleanVector(Vec<bool>);
|
|
///
|
|
/// impl BitOr for BooleanVector {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn bitor(self, BooleanVector(rhs): Self) -> Self {
|
|
/// let BooleanVector(lhs) = self;
|
|
/// assert_eq!(lhs.len(), rhs.len());
|
|
/// BooleanVector(lhs.iter().zip(rhs.iter()).map(|(x, y)| *x || *y).collect())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let bv1 = BooleanVector(vec![true, true, false, false]);
|
|
/// let bv2 = BooleanVector(vec![true, false, true, false]);
|
|
/// let expected = BooleanVector(vec![true, true, true, false]);
|
|
/// assert_eq!(bv1 | bv2, expected);
|
|
/// }
|
|
/// ```
|
|
#[lang = "bitor"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait BitOr<RHS=Self> {
|
|
/// The resulting type after applying the `|` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `|` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn bitor(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! bitor_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl BitOr for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn bitor(self, rhs: $t) -> $t { self | rhs }
|
|
}
|
|
|
|
forward_ref_binop! { impl BitOr, bitor for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
bitor_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `BitXor` trait is used to specify the functionality of `^`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In this example, the `^` operator is lifted to a trivial `Scalar` type.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitXor;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct Scalar(bool);
|
|
///
|
|
/// impl BitXor for Scalar {
|
|
/// type Output = Self;
|
|
///
|
|
/// // rhs is the "right-hand side" of the expression `a ^ b`
|
|
/// fn bitxor(self, rhs: Self) -> Self {
|
|
/// Scalar(self.0 ^ rhs.0)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(Scalar(true) ^ Scalar(true), Scalar(false));
|
|
/// assert_eq!(Scalar(true) ^ Scalar(false), Scalar(true));
|
|
/// assert_eq!(Scalar(false) ^ Scalar(true), Scalar(true));
|
|
/// assert_eq!(Scalar(false) ^ Scalar(false), Scalar(false));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In this example, the `BitXor` trait is implemented for a `BooleanVector`
|
|
/// struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitXor;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct BooleanVector(Vec<bool>);
|
|
///
|
|
/// impl BitXor for BooleanVector {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn bitxor(self, BooleanVector(rhs): Self) -> Self {
|
|
/// let BooleanVector(lhs) = self;
|
|
/// assert_eq!(lhs.len(), rhs.len());
|
|
/// BooleanVector(lhs.iter()
|
|
/// .zip(rhs.iter())
|
|
/// .map(|(x, y)| (*x || *y) && !(*x && *y))
|
|
/// .collect())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let bv1 = BooleanVector(vec![true, true, false, false]);
|
|
/// let bv2 = BooleanVector(vec![true, false, true, false]);
|
|
/// let expected = BooleanVector(vec![false, true, true, false]);
|
|
/// assert_eq!(bv1 ^ bv2, expected);
|
|
/// }
|
|
/// ```
|
|
#[lang = "bitxor"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait BitXor<RHS=Self> {
|
|
/// The resulting type after applying the `^` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `^` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn bitxor(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! bitxor_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl BitXor for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
fn bitxor(self, other: $t) -> $t { self ^ other }
|
|
}
|
|
|
|
forward_ref_binop! { impl BitXor, bitxor for $t, $t }
|
|
)*)
|
|
}
|
|
|
|
bitxor_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `Shl` trait is used to specify the functionality of `<<`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// An implementation of `Shl` that lifts the `<<` operation on integers to a
|
|
/// `Scalar` struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Shl;
|
|
///
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct Scalar(usize);
|
|
///
|
|
/// impl Shl<Scalar> for Scalar {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn shl(self, Scalar(rhs): Self) -> Scalar {
|
|
/// let Scalar(lhs) = self;
|
|
/// Scalar(lhs << rhs)
|
|
/// }
|
|
/// }
|
|
/// fn main() {
|
|
/// assert_eq!(Scalar(4) << Scalar(2), Scalar(16));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// An implementation of `Shl` that spins a vector leftward by a given amount.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Shl;
|
|
///
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct SpinVector<T: Clone> {
|
|
/// vec: Vec<T>,
|
|
/// }
|
|
///
|
|
/// impl<T: Clone> Shl<usize> for SpinVector<T> {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn shl(self, rhs: usize) -> SpinVector<T> {
|
|
/// // rotate the vector by `rhs` places
|
|
/// let (a, b) = self.vec.split_at(rhs);
|
|
/// let mut spun_vector: Vec<T> = vec![];
|
|
/// spun_vector.extend_from_slice(b);
|
|
/// spun_vector.extend_from_slice(a);
|
|
/// SpinVector { vec: spun_vector }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(SpinVector { vec: vec![0, 1, 2, 3, 4] } << 2,
|
|
/// SpinVector { vec: vec![2, 3, 4, 0, 1] });
|
|
/// }
|
|
/// ```
|
|
#[lang = "shl"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Shl<RHS> {
|
|
/// The resulting type after applying the `<<` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `<<` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn shl(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! shl_impl {
|
|
($t:ty, $f:ty) => (
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Shl<$f> for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn shl(self, other: $f) -> $t {
|
|
self << other
|
|
}
|
|
}
|
|
|
|
forward_ref_binop! { impl Shl, shl for $t, $f }
|
|
)
|
|
}
|
|
|
|
macro_rules! shl_impl_all {
|
|
($($t:ty)*) => ($(
|
|
shl_impl! { $t, u8 }
|
|
shl_impl! { $t, u16 }
|
|
shl_impl! { $t, u32 }
|
|
shl_impl! { $t, u64 }
|
|
shl_impl! { $t, usize }
|
|
|
|
shl_impl! { $t, i8 }
|
|
shl_impl! { $t, i16 }
|
|
shl_impl! { $t, i32 }
|
|
shl_impl! { $t, i64 }
|
|
shl_impl! { $t, isize }
|
|
)*)
|
|
}
|
|
|
|
shl_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
|
|
|
|
/// The `Shr` trait is used to specify the functionality of `>>`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// An implementation of `Shr` that lifts the `>>` operation on integers to a
|
|
/// `Scalar` struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Shr;
|
|
///
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct Scalar(usize);
|
|
///
|
|
/// impl Shr<Scalar> for Scalar {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn shr(self, Scalar(rhs): Self) -> Scalar {
|
|
/// let Scalar(lhs) = self;
|
|
/// Scalar(lhs >> rhs)
|
|
/// }
|
|
/// }
|
|
/// fn main() {
|
|
/// assert_eq!(Scalar(16) >> Scalar(2), Scalar(4));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// An implementation of `Shr` that spins a vector rightward by a given amount.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Shr;
|
|
///
|
|
/// #[derive(PartialEq, Debug)]
|
|
/// struct SpinVector<T: Clone> {
|
|
/// vec: Vec<T>,
|
|
/// }
|
|
///
|
|
/// impl<T: Clone> Shr<usize> for SpinVector<T> {
|
|
/// type Output = Self;
|
|
///
|
|
/// fn shr(self, rhs: usize) -> SpinVector<T> {
|
|
/// // rotate the vector by `rhs` places
|
|
/// let (a, b) = self.vec.split_at(self.vec.len() - rhs);
|
|
/// let mut spun_vector: Vec<T> = vec![];
|
|
/// spun_vector.extend_from_slice(b);
|
|
/// spun_vector.extend_from_slice(a);
|
|
/// SpinVector { vec: spun_vector }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// assert_eq!(SpinVector { vec: vec![0, 1, 2, 3, 4] } >> 2,
|
|
/// SpinVector { vec: vec![3, 4, 0, 1, 2] });
|
|
/// }
|
|
/// ```
|
|
#[lang = "shr"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Shr<RHS> {
|
|
/// The resulting type after applying the `>>` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output;
|
|
|
|
/// The method for the `>>` operator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn shr(self, rhs: RHS) -> Self::Output;
|
|
}
|
|
|
|
macro_rules! shr_impl {
|
|
($t:ty, $f:ty) => (
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Shr<$f> for $t {
|
|
type Output = $t;
|
|
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn shr(self, other: $f) -> $t {
|
|
self >> other
|
|
}
|
|
}
|
|
|
|
forward_ref_binop! { impl Shr, shr for $t, $f }
|
|
)
|
|
}
|
|
|
|
macro_rules! shr_impl_all {
|
|
($($t:ty)*) => ($(
|
|
shr_impl! { $t, u8 }
|
|
shr_impl! { $t, u16 }
|
|
shr_impl! { $t, u32 }
|
|
shr_impl! { $t, u64 }
|
|
shr_impl! { $t, usize }
|
|
|
|
shr_impl! { $t, i8 }
|
|
shr_impl! { $t, i16 }
|
|
shr_impl! { $t, i32 }
|
|
shr_impl! { $t, i64 }
|
|
shr_impl! { $t, isize }
|
|
)*)
|
|
}
|
|
|
|
shr_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
|
|
|
|
/// The `AddAssign` trait is used to specify the functionality of `+=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// This example creates a `Point` struct that implements the `AddAssign`
|
|
/// trait, and then demonstrates add-assigning to a mutable `Point`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::AddAssign;
|
|
///
|
|
/// #[derive(Debug)]
|
|
/// struct Point {
|
|
/// x: i32,
|
|
/// y: i32,
|
|
/// }
|
|
///
|
|
/// impl AddAssign for Point {
|
|
/// fn add_assign(&mut self, other: Point) {
|
|
/// *self = Point {
|
|
/// x: self.x + other.x,
|
|
/// y: self.y + other.y,
|
|
/// };
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl PartialEq for Point {
|
|
/// fn eq(&self, other: &Self) -> bool {
|
|
/// self.x == other.x && self.y == other.y
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let mut point = Point { x: 1, y: 0 };
|
|
/// point += Point { x: 2, y: 3 };
|
|
/// assert_eq!(point, Point { x: 3, y: 3 });
|
|
/// ```
|
|
#[lang = "add_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait AddAssign<Rhs=Self> {
|
|
/// The method for the `+=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn add_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! add_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl AddAssign for $t {
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn add_assign(&mut self, other: $t) { *self += other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
add_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `SubAssign` trait is used to specify the functionality of `-=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// This example creates a `Point` struct that implements the `SubAssign`
|
|
/// trait, and then demonstrates sub-assigning to a mutable `Point`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::SubAssign;
|
|
///
|
|
/// #[derive(Debug)]
|
|
/// struct Point {
|
|
/// x: i32,
|
|
/// y: i32,
|
|
/// }
|
|
///
|
|
/// impl SubAssign for Point {
|
|
/// fn sub_assign(&mut self, other: Point) {
|
|
/// *self = Point {
|
|
/// x: self.x - other.x,
|
|
/// y: self.y - other.y,
|
|
/// };
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl PartialEq for Point {
|
|
/// fn eq(&self, other: &Self) -> bool {
|
|
/// self.x == other.x && self.y == other.y
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let mut point = Point { x: 3, y: 3 };
|
|
/// point -= Point { x: 2, y: 3 };
|
|
/// assert_eq!(point, Point {x: 1, y: 0});
|
|
/// ```
|
|
#[lang = "sub_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait SubAssign<Rhs=Self> {
|
|
/// The method for the `-=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn sub_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! sub_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl SubAssign for $t {
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn sub_assign(&mut self, other: $t) { *self -= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
sub_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `MulAssign` trait is used to specify the functionality of `*=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `MulAssign`. When `Foo *= Foo` happens, it ends up
|
|
/// calling `mul_assign`, and therefore, `main` prints `Multiplying!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::MulAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl MulAssign for Foo {
|
|
/// fn mul_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Multiplying!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo *= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "mul_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait MulAssign<Rhs=Self> {
|
|
/// The method for the `*=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn mul_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! mul_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl MulAssign for $t {
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn mul_assign(&mut self, other: $t) { *self *= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
mul_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `DivAssign` trait is used to specify the functionality of `/=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `DivAssign`. When `Foo /= Foo` happens, it ends up
|
|
/// calling `div_assign`, and therefore, `main` prints `Dividing!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::DivAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl DivAssign for Foo {
|
|
/// fn div_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Dividing!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo /= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "div_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait DivAssign<Rhs=Self> {
|
|
/// The method for the `/=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn div_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! div_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl DivAssign for $t {
|
|
#[inline]
|
|
fn div_assign(&mut self, other: $t) { *self /= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
div_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `RemAssign` trait is used to specify the functionality of `%=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `RemAssign`. When `Foo %= Foo` happens, it ends up
|
|
/// calling `rem_assign`, and therefore, `main` prints `Remainder-ing!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::RemAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl RemAssign for Foo {
|
|
/// fn rem_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Remainder-ing!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo %= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "rem_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait RemAssign<Rhs=Self> {
|
|
/// The method for the `%=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn rem_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! rem_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl RemAssign for $t {
|
|
#[inline]
|
|
fn rem_assign(&mut self, other: $t) { *self %= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
rem_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
|
|
|
|
/// The `BitAndAssign` trait is used to specify the functionality of `&=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// In this example, the `&=` operator is lifted to a trivial `Scalar` type.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitAndAssign;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct Scalar(bool);
|
|
///
|
|
/// impl BitAndAssign for Scalar {
|
|
/// // rhs is the "right-hand side" of the expression `a &= b`
|
|
/// fn bitand_assign(&mut self, rhs: Self) {
|
|
/// *self = Scalar(self.0 & rhs.0)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let mut scalar = Scalar(true);
|
|
/// scalar &= Scalar(true);
|
|
/// assert_eq!(scalar, Scalar(true));
|
|
///
|
|
/// let mut scalar = Scalar(true);
|
|
/// scalar &= Scalar(false);
|
|
/// assert_eq!(scalar, Scalar(false));
|
|
///
|
|
/// let mut scalar = Scalar(false);
|
|
/// scalar &= Scalar(true);
|
|
/// assert_eq!(scalar, Scalar(false));
|
|
///
|
|
/// let mut scalar = Scalar(false);
|
|
/// scalar &= Scalar(false);
|
|
/// assert_eq!(scalar, Scalar(false));
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In this example, the `BitAndAssign` trait is implemented for a
|
|
/// `BooleanVector` struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitAndAssign;
|
|
///
|
|
/// #[derive(Debug, PartialEq)]
|
|
/// struct BooleanVector(Vec<bool>);
|
|
///
|
|
/// impl BitAndAssign for BooleanVector {
|
|
/// // rhs is the "right-hand side" of the expression `a &= b`
|
|
/// fn bitand_assign(&mut self, rhs: Self) {
|
|
/// assert_eq!(self.0.len(), rhs.0.len());
|
|
/// *self = BooleanVector(self.0
|
|
/// .iter()
|
|
/// .zip(rhs.0.iter())
|
|
/// .map(|(x, y)| *x && *y)
|
|
/// .collect());
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let mut bv = BooleanVector(vec![true, true, false, false]);
|
|
/// bv &= BooleanVector(vec![true, false, true, false]);
|
|
/// let expected = BooleanVector(vec![true, false, false, false]);
|
|
/// assert_eq!(bv, expected);
|
|
/// }
|
|
/// ```
|
|
#[lang = "bitand_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait BitAndAssign<Rhs=Self> {
|
|
/// The method for the `&` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn bitand_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! bitand_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl BitAndAssign for $t {
|
|
#[inline]
|
|
fn bitand_assign(&mut self, other: $t) { *self &= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
bitand_assign_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `BitOrAssign` trait is used to specify the functionality of `|=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `BitOrAssign`. When `Foo |= Foo` happens, it ends up
|
|
/// calling `bitor_assign`, and therefore, `main` prints `Bitwise Or-ing!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitOrAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl BitOrAssign for Foo {
|
|
/// fn bitor_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Bitwise Or-ing!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo |= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "bitor_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait BitOrAssign<Rhs=Self> {
|
|
/// The method for the `|=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn bitor_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! bitor_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl BitOrAssign for $t {
|
|
#[inline]
|
|
fn bitor_assign(&mut self, other: $t) { *self |= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
bitor_assign_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `BitXorAssign` trait is used to specify the functionality of `^=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `BitXorAssign`. When `Foo ^= Foo` happens, it ends up
|
|
/// calling `bitxor_assign`, and therefore, `main` prints `Bitwise Xor-ing!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::BitXorAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl BitXorAssign for Foo {
|
|
/// fn bitxor_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Bitwise Xor-ing!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo ^= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "bitxor_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait BitXorAssign<Rhs=Self> {
|
|
/// The method for the `^=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn bitxor_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! bitxor_assign_impl {
|
|
($($t:ty)+) => ($(
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl BitXorAssign for $t {
|
|
#[inline]
|
|
fn bitxor_assign(&mut self, other: $t) { *self ^= other }
|
|
}
|
|
)+)
|
|
}
|
|
|
|
bitxor_assign_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
|
|
|
|
/// The `ShlAssign` trait is used to specify the functionality of `<<=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `ShlAssign`. When `Foo <<= Foo` happens, it ends up
|
|
/// calling `shl_assign`, and therefore, `main` prints `Shifting left!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::ShlAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl ShlAssign<Foo> for Foo {
|
|
/// fn shl_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Shifting left!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo <<= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "shl_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait ShlAssign<Rhs> {
|
|
/// The method for the `<<=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn shl_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! shl_assign_impl {
|
|
($t:ty, $f:ty) => (
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl ShlAssign<$f> for $t {
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn shl_assign(&mut self, other: $f) {
|
|
*self <<= other
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
macro_rules! shl_assign_impl_all {
|
|
($($t:ty)*) => ($(
|
|
shl_assign_impl! { $t, u8 }
|
|
shl_assign_impl! { $t, u16 }
|
|
shl_assign_impl! { $t, u32 }
|
|
shl_assign_impl! { $t, u64 }
|
|
shl_assign_impl! { $t, usize }
|
|
|
|
shl_assign_impl! { $t, i8 }
|
|
shl_assign_impl! { $t, i16 }
|
|
shl_assign_impl! { $t, i32 }
|
|
shl_assign_impl! { $t, i64 }
|
|
shl_assign_impl! { $t, isize }
|
|
)*)
|
|
}
|
|
|
|
shl_assign_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
|
|
|
|
/// The `ShrAssign` trait is used to specify the functionality of `>>=`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `ShrAssign`. When `Foo >>= Foo` happens, it ends up
|
|
/// calling `shr_assign`, and therefore, `main` prints `Shifting right!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::ShrAssign;
|
|
///
|
|
/// struct Foo;
|
|
///
|
|
/// impl ShrAssign<Foo> for Foo {
|
|
/// fn shr_assign(&mut self, _rhs: Foo) {
|
|
/// println!("Shifting right!");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// # #[allow(unused_assignments)]
|
|
/// fn main() {
|
|
/// let mut foo = Foo;
|
|
/// foo >>= Foo;
|
|
/// }
|
|
/// ```
|
|
#[lang = "shr_assign"]
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
pub trait ShrAssign<Rhs=Self> {
|
|
/// The method for the `>>=` operator
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
fn shr_assign(&mut self, Rhs);
|
|
}
|
|
|
|
macro_rules! shr_assign_impl {
|
|
($t:ty, $f:ty) => (
|
|
#[stable(feature = "op_assign_traits", since = "1.8.0")]
|
|
impl ShrAssign<$f> for $t {
|
|
#[inline]
|
|
#[rustc_inherit_overflow_checks]
|
|
fn shr_assign(&mut self, other: $f) {
|
|
*self >>= other
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
macro_rules! shr_assign_impl_all {
|
|
($($t:ty)*) => ($(
|
|
shr_assign_impl! { $t, u8 }
|
|
shr_assign_impl! { $t, u16 }
|
|
shr_assign_impl! { $t, u32 }
|
|
shr_assign_impl! { $t, u64 }
|
|
shr_assign_impl! { $t, usize }
|
|
|
|
shr_assign_impl! { $t, i8 }
|
|
shr_assign_impl! { $t, i16 }
|
|
shr_assign_impl! { $t, i32 }
|
|
shr_assign_impl! { $t, i64 }
|
|
shr_assign_impl! { $t, isize }
|
|
)*)
|
|
}
|
|
|
|
shr_assign_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
|
|
|
|
/// The `Index` trait is used to specify the functionality of indexing operations
|
|
/// like `arr[idx]` when used in an immutable context.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// This example implements `Index` on a read-only `NucleotideCount` container,
|
|
/// enabling individual counts to be retrieved with index syntax.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Index;
|
|
///
|
|
/// enum Nucleotide {
|
|
/// A,
|
|
/// C,
|
|
/// G,
|
|
/// T,
|
|
/// }
|
|
///
|
|
/// struct NucleotideCount {
|
|
/// a: usize,
|
|
/// c: usize,
|
|
/// g: usize,
|
|
/// t: usize,
|
|
/// }
|
|
///
|
|
/// impl Index<Nucleotide> for NucleotideCount {
|
|
/// type Output = usize;
|
|
///
|
|
/// fn index(&self, nucleotide: Nucleotide) -> &usize {
|
|
/// match nucleotide {
|
|
/// Nucleotide::A => &self.a,
|
|
/// Nucleotide::C => &self.c,
|
|
/// Nucleotide::G => &self.g,
|
|
/// Nucleotide::T => &self.t,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let nucleotide_count = NucleotideCount {a: 14, c: 9, g: 10, t: 12};
|
|
/// assert_eq!(nucleotide_count[Nucleotide::A], 14);
|
|
/// assert_eq!(nucleotide_count[Nucleotide::C], 9);
|
|
/// assert_eq!(nucleotide_count[Nucleotide::G], 10);
|
|
/// assert_eq!(nucleotide_count[Nucleotide::T], 12);
|
|
/// ```
|
|
#[lang = "index"]
|
|
#[rustc_on_unimplemented = "the type `{Self}` cannot be indexed by `{Idx}`"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Index<Idx: ?Sized> {
|
|
/// The returned type after indexing
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Output: ?Sized;
|
|
|
|
/// The method for the indexing (`Foo[Bar]`) operation
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn index(&self, index: Idx) -> &Self::Output;
|
|
}
|
|
|
|
/// The `IndexMut` trait is used to specify the functionality of indexing
|
|
/// operations like `arr[idx]`, when used in a mutable context.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A trivial implementation of `IndexMut`. When `Foo[Bar]` happens, it ends up
|
|
/// calling `index_mut`, and therefore, `main` prints `Indexing!`.
|
|
///
|
|
/// ```
|
|
/// use std::ops::{Index, IndexMut};
|
|
///
|
|
/// #[derive(Copy, Clone)]
|
|
/// struct Foo;
|
|
/// struct Bar;
|
|
///
|
|
/// impl Index<Bar> for Foo {
|
|
/// type Output = Foo;
|
|
///
|
|
/// fn index<'a>(&'a self, _index: Bar) -> &'a Foo {
|
|
/// self
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl IndexMut<Bar> for Foo {
|
|
/// fn index_mut<'a>(&'a mut self, _index: Bar) -> &'a mut Foo {
|
|
/// println!("Indexing!");
|
|
/// self
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// &mut Foo[Bar];
|
|
/// }
|
|
/// ```
|
|
#[lang = "index_mut"]
|
|
#[rustc_on_unimplemented = "the type `{Self}` cannot be mutably indexed by `{Idx}`"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait IndexMut<Idx: ?Sized>: Index<Idx> {
|
|
/// The method for the indexing (`Foo[Bar]`) operation
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn index_mut(&mut self, index: Idx) -> &mut Self::Output;
|
|
}
|
|
|
|
/// An unbounded range. Use `..` (two dots) for its shorthand.
|
|
///
|
|
/// Its primary use case is slicing index. It cannot serve as an iterator
|
|
/// because it doesn't have a starting point.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// The `..` syntax is a `RangeFull`:
|
|
///
|
|
/// ```
|
|
/// assert_eq!((..), std::ops::RangeFull);
|
|
/// ```
|
|
///
|
|
/// It does not have an `IntoIterator` implementation, so you can't use it in a
|
|
/// `for` loop directly. This won't compile:
|
|
///
|
|
/// ```ignore
|
|
/// for i in .. {
|
|
/// // ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Used as a slicing index, `RangeFull` produces the full array as a slice.
|
|
///
|
|
/// ```
|
|
/// let arr = [0, 1, 2, 3];
|
|
/// assert_eq!(arr[ .. ], [0,1,2,3]); // RangeFull
|
|
/// assert_eq!(arr[ ..3], [0,1,2 ]);
|
|
/// assert_eq!(arr[1.. ], [ 1,2,3]);
|
|
/// assert_eq!(arr[1..3], [ 1,2 ]);
|
|
/// ```
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct RangeFull;
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl fmt::Debug for RangeFull {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(fmt, "..")
|
|
}
|
|
}
|
|
|
|
/// A (half-open) range which is bounded at both ends: { x | start <= x < end }.
|
|
/// Use `start..end` (two dots) for its shorthand.
|
|
///
|
|
/// See the [`contains()`](#method.contains) method for its characterization.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// fn main() {
|
|
/// assert_eq!((3..5), std::ops::Range{ start: 3, end: 5 });
|
|
/// assert_eq!(3+4+5, (3..6).sum());
|
|
///
|
|
/// let arr = [0, 1, 2, 3];
|
|
/// assert_eq!(arr[ .. ], [0,1,2,3]);
|
|
/// assert_eq!(arr[ ..3], [0,1,2 ]);
|
|
/// assert_eq!(arr[1.. ], [ 1,2,3]);
|
|
/// assert_eq!(arr[1..3], [ 1,2 ]); // Range
|
|
/// }
|
|
/// ```
|
|
#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Range<Idx> {
|
|
/// The lower bound of the range (inclusive).
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub start: Idx,
|
|
/// The upper bound of the range (exclusive).
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub end: Idx,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<Idx: fmt::Debug> fmt::Debug for Range<Idx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(fmt, "{:?}..{:?}", self.start, self.end)
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_contains", reason = "recently added as per RFC", issue = "32311")]
|
|
impl<Idx: PartialOrd<Idx>> Range<Idx> {
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(range_contains)]
|
|
/// fn main() {
|
|
/// assert!( ! (3..5).contains(2));
|
|
/// assert!( (3..5).contains(3));
|
|
/// assert!( (3..5).contains(4));
|
|
/// assert!( ! (3..5).contains(5));
|
|
///
|
|
/// assert!( ! (3..3).contains(3));
|
|
/// assert!( ! (3..2).contains(3));
|
|
/// }
|
|
/// ```
|
|
pub fn contains(&self, item: Idx) -> bool {
|
|
(self.start <= item) && (item < self.end)
|
|
}
|
|
}
|
|
|
|
/// A range which is only bounded below: { x | start <= x }.
|
|
/// Use `start..` for its shorthand.
|
|
///
|
|
/// See the [`contains()`](#method.contains) method for its characterization.
|
|
///
|
|
/// Note: Currently, no overflow checking is done for the iterator
|
|
/// implementation; if you use an integer range and the integer overflows, it
|
|
/// might panic in debug mode or create an endless loop in release mode. This
|
|
/// overflow behavior might change in the future.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// fn main() {
|
|
/// assert_eq!((2..), std::ops::RangeFrom{ start: 2 });
|
|
/// assert_eq!(2+3+4, (2..).take(3).sum());
|
|
///
|
|
/// let arr = [0, 1, 2, 3];
|
|
/// assert_eq!(arr[ .. ], [0,1,2,3]);
|
|
/// assert_eq!(arr[ ..3], [0,1,2 ]);
|
|
/// assert_eq!(arr[1.. ], [ 1,2,3]); // RangeFrom
|
|
/// assert_eq!(arr[1..3], [ 1,2 ]);
|
|
/// }
|
|
/// ```
|
|
#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct RangeFrom<Idx> {
|
|
/// The lower bound of the range (inclusive).
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub start: Idx,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<Idx: fmt::Debug> fmt::Debug for RangeFrom<Idx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(fmt, "{:?}..", self.start)
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_contains", reason = "recently added as per RFC", issue = "32311")]
|
|
impl<Idx: PartialOrd<Idx>> RangeFrom<Idx> {
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(range_contains)]
|
|
/// fn main() {
|
|
/// assert!( ! (3..).contains(2));
|
|
/// assert!( (3..).contains(3));
|
|
/// assert!( (3..).contains(1_000_000_000));
|
|
/// }
|
|
/// ```
|
|
pub fn contains(&self, item: Idx) -> bool {
|
|
(self.start <= item)
|
|
}
|
|
}
|
|
|
|
/// A range which is only bounded above: { x | x < end }.
|
|
/// Use `..end` (two dots) for its shorthand.
|
|
///
|
|
/// See the [`contains()`](#method.contains) method for its characterization.
|
|
///
|
|
/// It cannot serve as an iterator because it doesn't have a starting point.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// The `..{integer}` syntax is a `RangeTo`:
|
|
///
|
|
/// ```
|
|
/// assert_eq!((..5), std::ops::RangeTo{ end: 5 });
|
|
/// ```
|
|
///
|
|
/// It does not have an `IntoIterator` implementation, so you can't use it in a
|
|
/// `for` loop directly. This won't compile:
|
|
///
|
|
/// ```ignore
|
|
/// for i in ..5 {
|
|
/// // ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// When used as a slicing index, `RangeTo` produces a slice of all array
|
|
/// elements before the index indicated by `end`.
|
|
///
|
|
/// ```
|
|
/// let arr = [0, 1, 2, 3];
|
|
/// assert_eq!(arr[ .. ], [0,1,2,3]);
|
|
/// assert_eq!(arr[ ..3], [0,1,2 ]); // RangeTo
|
|
/// assert_eq!(arr[1.. ], [ 1,2,3]);
|
|
/// assert_eq!(arr[1..3], [ 1,2 ]);
|
|
/// ```
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct RangeTo<Idx> {
|
|
/// The upper bound of the range (exclusive).
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub end: Idx,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<Idx: fmt::Debug> fmt::Debug for RangeTo<Idx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(fmt, "..{:?}", self.end)
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_contains", reason = "recently added as per RFC", issue = "32311")]
|
|
impl<Idx: PartialOrd<Idx>> RangeTo<Idx> {
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(range_contains)]
|
|
/// fn main() {
|
|
/// assert!( (..5).contains(-1_000_000_000));
|
|
/// assert!( (..5).contains(4));
|
|
/// assert!( ! (..5).contains(5));
|
|
/// }
|
|
/// ```
|
|
pub fn contains(&self, item: Idx) -> bool {
|
|
(item < self.end)
|
|
}
|
|
}
|
|
|
|
/// An inclusive range which is bounded at both ends: { x | start <= x <= end }.
|
|
/// Use `start...end` (three dots) for its shorthand.
|
|
///
|
|
/// See the [`contains()`](#method.contains) method for its characterization.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(inclusive_range,inclusive_range_syntax)]
|
|
/// fn main() {
|
|
/// assert_eq!((3...5), std::ops::RangeInclusive::NonEmpty{ start: 3, end: 5 });
|
|
/// assert_eq!(3+4+5, (3...5).sum());
|
|
///
|
|
/// let arr = [0, 1, 2, 3];
|
|
/// assert_eq!(arr[ ...2], [0,1,2 ]);
|
|
/// assert_eq!(arr[1...2], [ 1,2 ]); // RangeInclusive
|
|
/// }
|
|
/// ```
|
|
#[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186
|
|
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
|
|
pub enum RangeInclusive<Idx> {
|
|
/// Empty range (iteration has finished)
|
|
#[unstable(feature = "inclusive_range",
|
|
reason = "recently added, follows RFC",
|
|
issue = "28237")]
|
|
Empty {
|
|
/// The point at which iteration finished
|
|
#[unstable(feature = "inclusive_range",
|
|
reason = "recently added, follows RFC",
|
|
issue = "28237")]
|
|
at: Idx
|
|
},
|
|
/// Non-empty range (iteration will yield value(s))
|
|
#[unstable(feature = "inclusive_range",
|
|
reason = "recently added, follows RFC",
|
|
issue = "28237")]
|
|
NonEmpty {
|
|
/// The lower bound of the range (inclusive).
|
|
#[unstable(feature = "inclusive_range",
|
|
reason = "recently added, follows RFC",
|
|
issue = "28237")]
|
|
start: Idx,
|
|
/// The upper bound of the range (inclusive).
|
|
#[unstable(feature = "inclusive_range",
|
|
reason = "recently added, follows RFC",
|
|
issue = "28237")]
|
|
end: Idx,
|
|
},
|
|
}
|
|
|
|
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
|
|
impl<Idx: fmt::Debug> fmt::Debug for RangeInclusive<Idx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
use self::RangeInclusive::*;
|
|
|
|
match *self {
|
|
Empty { ref at } => write!(fmt, "[empty range @ {:?}]", at),
|
|
NonEmpty { ref start, ref end } => write!(fmt, "{:?}...{:?}", start, end),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_contains", reason = "recently added as per RFC", issue = "32311")]
|
|
impl<Idx: PartialOrd<Idx>> RangeInclusive<Idx> {
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(range_contains,inclusive_range_syntax)]
|
|
/// fn main() {
|
|
/// assert!( ! (3...5).contains(2));
|
|
/// assert!( (3...5).contains(3));
|
|
/// assert!( (3...5).contains(4));
|
|
/// assert!( (3...5).contains(5));
|
|
/// assert!( ! (3...5).contains(6));
|
|
///
|
|
/// assert!( (3...3).contains(3));
|
|
/// assert!( ! (3...2).contains(3));
|
|
/// }
|
|
/// ```
|
|
pub fn contains(&self, item: Idx) -> bool {
|
|
if let &RangeInclusive::NonEmpty{ref start, ref end} = self {
|
|
(*start <= item) && (item <= *end)
|
|
} else { false }
|
|
}
|
|
}
|
|
|
|
/// An inclusive range which is only bounded above: { x | x <= end }.
|
|
/// Use `...end` (three dots) for its shorthand.
|
|
///
|
|
/// See the [`contains()`](#method.contains) method for its characterization.
|
|
///
|
|
/// It cannot serve as an iterator because it doesn't have a starting point.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// The `...{integer}` syntax is a `RangeToInclusive`:
|
|
///
|
|
/// ```
|
|
/// #![feature(inclusive_range,inclusive_range_syntax)]
|
|
/// assert_eq!((...5), std::ops::RangeToInclusive{ end: 5 });
|
|
/// ```
|
|
///
|
|
/// It does not have an `IntoIterator` implementation, so you can't use it in a
|
|
/// `for` loop directly. This won't compile:
|
|
///
|
|
/// ```ignore
|
|
/// for i in ...5 {
|
|
/// // ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// When used as a slicing index, `RangeToInclusive` produces a slice of all
|
|
/// array elements up to and including the index indicated by `end`.
|
|
///
|
|
/// ```
|
|
/// #![feature(inclusive_range_syntax)]
|
|
/// let arr = [0, 1, 2, 3];
|
|
/// assert_eq!(arr[ ...2], [0,1,2 ]); // RangeToInclusive
|
|
/// assert_eq!(arr[1...2], [ 1,2 ]);
|
|
/// ```
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
|
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
|
|
pub struct RangeToInclusive<Idx> {
|
|
/// The upper bound of the range (inclusive)
|
|
#[unstable(feature = "inclusive_range",
|
|
reason = "recently added, follows RFC",
|
|
issue = "28237")]
|
|
pub end: Idx,
|
|
}
|
|
|
|
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
|
|
impl<Idx: fmt::Debug> fmt::Debug for RangeToInclusive<Idx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(fmt, "...{:?}", self.end)
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_contains", reason = "recently added as per RFC", issue = "32311")]
|
|
impl<Idx: PartialOrd<Idx>> RangeToInclusive<Idx> {
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(range_contains,inclusive_range_syntax)]
|
|
/// fn main() {
|
|
/// assert!( (...5).contains(-1_000_000_000));
|
|
/// assert!( (...5).contains(5));
|
|
/// assert!( ! (...5).contains(6));
|
|
/// }
|
|
/// ```
|
|
pub fn contains(&self, item: Idx) -> bool {
|
|
(item <= self.end)
|
|
}
|
|
}
|
|
|
|
// RangeToInclusive<Idx> cannot impl From<RangeTo<Idx>>
|
|
// because underflow would be possible with (..0).into()
|
|
|
|
/// The `Deref` trait is used to specify the functionality of dereferencing
|
|
/// operations, like `*v`.
|
|
///
|
|
/// `Deref` also enables ['`Deref` coercions'][coercions].
|
|
///
|
|
/// [coercions]: ../../book/deref-coercions.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A struct with a single field which is accessible via dereferencing the
|
|
/// struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::Deref;
|
|
///
|
|
/// struct DerefExample<T> {
|
|
/// value: T
|
|
/// }
|
|
///
|
|
/// impl<T> Deref for DerefExample<T> {
|
|
/// type Target = T;
|
|
///
|
|
/// fn deref(&self) -> &T {
|
|
/// &self.value
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let x = DerefExample { value: 'a' };
|
|
/// assert_eq!('a', *x);
|
|
/// }
|
|
/// ```
|
|
#[lang = "deref"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Deref {
|
|
/// The resulting type after dereferencing
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Target: ?Sized;
|
|
|
|
/// The method called to dereference a value
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn deref(&self) -> &Self::Target;
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T: ?Sized> Deref for &'a T {
|
|
type Target = T;
|
|
|
|
fn deref(&self) -> &T { *self }
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T: ?Sized> Deref for &'a mut T {
|
|
type Target = T;
|
|
|
|
fn deref(&self) -> &T { *self }
|
|
}
|
|
|
|
/// The `DerefMut` trait is used to specify the functionality of dereferencing
|
|
/// mutably like `*v = 1;`
|
|
///
|
|
/// `DerefMut` also enables ['`Deref` coercions'][coercions].
|
|
///
|
|
/// [coercions]: ../../book/deref-coercions.html
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// A struct with a single field which is modifiable via dereferencing the
|
|
/// struct.
|
|
///
|
|
/// ```
|
|
/// use std::ops::{Deref, DerefMut};
|
|
///
|
|
/// struct DerefMutExample<T> {
|
|
/// value: T
|
|
/// }
|
|
///
|
|
/// impl<T> Deref for DerefMutExample<T> {
|
|
/// type Target = T;
|
|
///
|
|
/// fn deref<'a>(&'a self) -> &'a T {
|
|
/// &self.value
|
|
/// }
|
|
/// }
|
|
///
|
|
/// impl<T> DerefMut for DerefMutExample<T> {
|
|
/// fn deref_mut<'a>(&'a mut self) -> &'a mut T {
|
|
/// &mut self.value
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let mut x = DerefMutExample { value: 'a' };
|
|
/// *x = 'b';
|
|
/// assert_eq!('b', *x);
|
|
/// }
|
|
/// ```
|
|
#[lang = "deref_mut"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait DerefMut: Deref {
|
|
/// The method called to mutably dereference a value
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn deref_mut(&mut self) -> &mut Self::Target;
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, T: ?Sized> DerefMut for &'a mut T {
|
|
fn deref_mut(&mut self) -> &mut T { *self }
|
|
}
|
|
|
|
/// A version of the call operator that takes an immutable receiver.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Closures automatically implement this trait, which allows them to be
|
|
/// invoked. Note, however, that `Fn` takes an immutable reference to any
|
|
/// captured variables. To take a mutable capture, implement [`FnMut`], and to
|
|
/// consume the capture, implement [`FnOnce`].
|
|
///
|
|
/// [`FnMut`]: trait.FnMut.html
|
|
/// [`FnOnce`]: trait.FnOnce.html
|
|
///
|
|
/// ```
|
|
/// let square = |x| x * x;
|
|
/// assert_eq!(square(5), 25);
|
|
/// ```
|
|
///
|
|
/// Closures can also be passed to higher-level functions through a `Fn`
|
|
/// parameter (or a `FnMut` or `FnOnce` parameter, which are supertraits of
|
|
/// `Fn`).
|
|
///
|
|
/// ```
|
|
/// fn call_with_one<F>(func: F) -> usize
|
|
/// where F: Fn(usize) -> usize {
|
|
/// func(1)
|
|
/// }
|
|
///
|
|
/// let double = |x| x * 2;
|
|
/// assert_eq!(call_with_one(double), 2);
|
|
/// ```
|
|
#[lang = "fn"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_paren_sugar]
|
|
#[fundamental] // so that regex can rely that `&str: !FnMut`
|
|
pub trait Fn<Args> : FnMut<Args> {
|
|
/// This is called when the call operator is used.
|
|
#[unstable(feature = "fn_traits", issue = "29625")]
|
|
extern "rust-call" fn call(&self, args: Args) -> Self::Output;
|
|
}
|
|
|
|
/// A version of the call operator that takes a mutable receiver.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Closures that mutably capture variables automatically implement this trait,
|
|
/// which allows them to be invoked.
|
|
///
|
|
/// ```
|
|
/// let mut x = 5;
|
|
/// {
|
|
/// let mut square_x = || x *= x;
|
|
/// square_x();
|
|
/// }
|
|
/// assert_eq!(x, 25);
|
|
/// ```
|
|
///
|
|
/// Closures can also be passed to higher-level functions through a `FnMut`
|
|
/// parameter (or a `FnOnce` parameter, which is a supertrait of `FnMut`).
|
|
///
|
|
/// ```
|
|
/// fn do_twice<F>(mut func: F)
|
|
/// where F: FnMut()
|
|
/// {
|
|
/// func();
|
|
/// func();
|
|
/// }
|
|
///
|
|
/// let mut x: usize = 1;
|
|
/// {
|
|
/// let add_two_to_x = || x += 2;
|
|
/// do_twice(add_two_to_x);
|
|
/// }
|
|
///
|
|
/// assert_eq!(x, 5);
|
|
/// ```
|
|
#[lang = "fn_mut"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_paren_sugar]
|
|
#[fundamental] // so that regex can rely that `&str: !FnMut`
|
|
pub trait FnMut<Args> : FnOnce<Args> {
|
|
/// This is called when the call operator is used.
|
|
#[unstable(feature = "fn_traits", issue = "29625")]
|
|
extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output;
|
|
}
|
|
|
|
/// A version of the call operator that takes a by-value receiver.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// By-value closures automatically implement this trait, which allows them to
|
|
/// be invoked.
|
|
///
|
|
/// ```
|
|
/// let x = 5;
|
|
/// let square_x = move || x * x;
|
|
/// assert_eq!(square_x(), 25);
|
|
/// ```
|
|
///
|
|
/// By-value Closures can also be passed to higher-level functions through a
|
|
/// `FnOnce` parameter.
|
|
///
|
|
/// ```
|
|
/// fn consume_with_relish<F>(func: F)
|
|
/// where F: FnOnce() -> String
|
|
/// {
|
|
/// // `func` consumes its captured variables, so it cannot be run more
|
|
/// // than once
|
|
/// println!("Consumed: {}", func());
|
|
///
|
|
/// println!("Delicious!");
|
|
///
|
|
/// // Attempting to invoke `func()` again will throw a `use of moved
|
|
/// // value` error for `func`
|
|
/// }
|
|
///
|
|
/// let x = String::from("x");
|
|
/// let consume_and_return_x = move || x;
|
|
/// consume_with_relish(consume_and_return_x);
|
|
///
|
|
/// // `consume_and_return_x` can no longer be invoked at this point
|
|
/// ```
|
|
#[lang = "fn_once"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_paren_sugar]
|
|
#[fundamental] // so that regex can rely that `&str: !FnMut`
|
|
pub trait FnOnce<Args> {
|
|
/// The returned type after the call operator is used.
|
|
#[stable(feature = "fn_once_output", since = "1.12.0")]
|
|
type Output;
|
|
|
|
/// This is called when the call operator is used.
|
|
#[unstable(feature = "fn_traits", issue = "29625")]
|
|
extern "rust-call" fn call_once(self, args: Args) -> Self::Output;
|
|
}
|
|
|
|
mod impls {
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a,A,F:?Sized> Fn<A> for &'a F
|
|
where F : Fn<A>
|
|
{
|
|
extern "rust-call" fn call(&self, args: A) -> F::Output {
|
|
(**self).call(args)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a,A,F:?Sized> FnMut<A> for &'a F
|
|
where F : Fn<A>
|
|
{
|
|
extern "rust-call" fn call_mut(&mut self, args: A) -> F::Output {
|
|
(**self).call(args)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a,A,F:?Sized> FnOnce<A> for &'a F
|
|
where F : Fn<A>
|
|
{
|
|
type Output = F::Output;
|
|
|
|
extern "rust-call" fn call_once(self, args: A) -> F::Output {
|
|
(*self).call(args)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a,A,F:?Sized> FnMut<A> for &'a mut F
|
|
where F : FnMut<A>
|
|
{
|
|
extern "rust-call" fn call_mut(&mut self, args: A) -> F::Output {
|
|
(*self).call_mut(args)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a,A,F:?Sized> FnOnce<A> for &'a mut F
|
|
where F : FnMut<A>
|
|
{
|
|
type Output = F::Output;
|
|
extern "rust-call" fn call_once(mut self, args: A) -> F::Output {
|
|
(*self).call_mut(args)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Trait that indicates that this is a pointer or a wrapper for one,
|
|
/// where unsizing can be performed on the pointee.
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
#[lang="coerce_unsized"]
|
|
pub trait CoerceUnsized<T> {
|
|
// Empty.
|
|
}
|
|
|
|
// &mut T -> &mut U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<&'a mut U> for &'a mut T {}
|
|
// &mut T -> &U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<'a, 'b: 'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b mut T {}
|
|
// &mut T -> *mut U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for &'a mut T {}
|
|
// &mut T -> *const U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for &'a mut T {}
|
|
|
|
// &T -> &U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<'a, 'b: 'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b T {}
|
|
// &T -> *const U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<'a, T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for &'a T {}
|
|
|
|
// *mut T -> *mut U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for *mut T {}
|
|
// *mut T -> *const U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for *mut T {}
|
|
|
|
// *const T -> *const U
|
|
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
|
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<*const U> for *const T {}
|
|
|
|
/// Both `in (PLACE) EXPR` and `box EXPR` desugar into expressions
|
|
/// that allocate an intermediate "place" that holds uninitialized
|
|
/// state. The desugaring evaluates EXPR, and writes the result at
|
|
/// the address returned by the `pointer` method of this trait.
|
|
///
|
|
/// A `Place` can be thought of as a special representation for a
|
|
/// hypothetical `&uninit` reference (which Rust cannot currently
|
|
/// express directly). That is, it represents a pointer to
|
|
/// uninitialized storage.
|
|
///
|
|
/// The client is responsible for two steps: First, initializing the
|
|
/// payload (it can access its address via `pointer`). Second,
|
|
/// converting the agent to an instance of the owning pointer, via the
|
|
/// appropriate `finalize` method (see the `InPlace`.
|
|
///
|
|
/// If evaluating EXPR fails, then the destructor for the
|
|
/// implementation of Place to clean up any intermediate state
|
|
/// (e.g. deallocate box storage, pop a stack, etc).
|
|
#[unstable(feature = "placement_new_protocol", issue = "27779")]
|
|
pub trait Place<Data: ?Sized> {
|
|
/// Returns the address where the input value will be written.
|
|
/// Note that the data at this address is generally uninitialized,
|
|
/// and thus one should use `ptr::write` for initializing it.
|
|
fn pointer(&mut self) -> *mut Data;
|
|
}
|
|
|
|
/// Interface to implementations of `in (PLACE) EXPR`.
|
|
///
|
|
/// `in (PLACE) EXPR` effectively desugars into:
|
|
///
|
|
/// ```rust,ignore
|
|
/// let p = PLACE;
|
|
/// let mut place = Placer::make_place(p);
|
|
/// let raw_place = Place::pointer(&mut place);
|
|
/// let value = EXPR;
|
|
/// unsafe {
|
|
/// std::ptr::write(raw_place, value);
|
|
/// InPlace::finalize(place)
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// The type of `in (PLACE) EXPR` is derived from the type of `PLACE`;
|
|
/// if the type of `PLACE` is `P`, then the final type of the whole
|
|
/// expression is `P::Place::Owner` (see the `InPlace` and `Boxed`
|
|
/// traits).
|
|
///
|
|
/// Values for types implementing this trait usually are transient
|
|
/// intermediate values (e.g. the return value of `Vec::emplace_back`)
|
|
/// or `Copy`, since the `make_place` method takes `self` by value.
|
|
#[unstable(feature = "placement_new_protocol", issue = "27779")]
|
|
pub trait Placer<Data: ?Sized> {
|
|
/// `Place` is the intermedate agent guarding the
|
|
/// uninitialized state for `Data`.
|
|
type Place: InPlace<Data>;
|
|
|
|
/// Creates a fresh place from `self`.
|
|
fn make_place(self) -> Self::Place;
|
|
}
|
|
|
|
/// Specialization of `Place` trait supporting `in (PLACE) EXPR`.
|
|
#[unstable(feature = "placement_new_protocol", issue = "27779")]
|
|
pub trait InPlace<Data: ?Sized>: Place<Data> {
|
|
/// `Owner` is the type of the end value of `in (PLACE) EXPR`
|
|
///
|
|
/// Note that when `in (PLACE) EXPR` is solely used for
|
|
/// side-effecting an existing data-structure,
|
|
/// e.g. `Vec::emplace_back`, then `Owner` need not carry any
|
|
/// information at all (e.g. it can be the unit type `()` in that
|
|
/// case).
|
|
type Owner;
|
|
|
|
/// Converts self into the final value, shifting
|
|
/// deallocation/cleanup responsibilities (if any remain), over to
|
|
/// the returned instance of `Owner` and forgetting self.
|
|
unsafe fn finalize(self) -> Self::Owner;
|
|
}
|
|
|
|
/// Core trait for the `box EXPR` form.
|
|
///
|
|
/// `box EXPR` effectively desugars into:
|
|
///
|
|
/// ```rust,ignore
|
|
/// let mut place = BoxPlace::make_place();
|
|
/// let raw_place = Place::pointer(&mut place);
|
|
/// let value = EXPR;
|
|
/// unsafe {
|
|
/// ::std::ptr::write(raw_place, value);
|
|
/// Boxed::finalize(place)
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// The type of `box EXPR` is supplied from its surrounding
|
|
/// context; in the above expansion, the result type `T` is used
|
|
/// to determine which implementation of `Boxed` to use, and that
|
|
/// `<T as Boxed>` in turn dictates determines which
|
|
/// implementation of `BoxPlace` to use, namely:
|
|
/// `<<T as Boxed>::Place as BoxPlace>`.
|
|
#[unstable(feature = "placement_new_protocol", issue = "27779")]
|
|
pub trait Boxed {
|
|
/// The kind of data that is stored in this kind of box.
|
|
type Data; /* (`Data` unused b/c cannot yet express below bound.) */
|
|
/// The place that will negotiate the storage of the data.
|
|
type Place: BoxPlace<Self::Data>;
|
|
|
|
/// Converts filled place into final owning value, shifting
|
|
/// deallocation/cleanup responsibilities (if any remain), over to
|
|
/// returned instance of `Self` and forgetting `filled`.
|
|
unsafe fn finalize(filled: Self::Place) -> Self;
|
|
}
|
|
|
|
/// Specialization of `Place` trait supporting `box EXPR`.
|
|
#[unstable(feature = "placement_new_protocol", issue = "27779")]
|
|
pub trait BoxPlace<Data: ?Sized> : Place<Data> {
|
|
/// Creates a globally fresh place.
|
|
fn make_place() -> Self;
|
|
}
|
|
|
|
/// A trait for types which have success and error states and are meant to work
|
|
/// with the question mark operator.
|
|
/// When the `?` operator is used with a value, whether the value is in the
|
|
/// success or error state is determined by calling `translate`.
|
|
///
|
|
/// This trait is **very** experimental, it will probably be iterated on heavily
|
|
/// before it is stabilised. Implementors should expect change. Users of `?`
|
|
/// should not rely on any implementations of `Carrier` other than `Result`,
|
|
/// i.e., you should not expect `?` to continue to work with `Option`, etc.
|
|
#[unstable(feature = "question_mark_carrier", issue = "31436")]
|
|
pub trait Carrier {
|
|
/// The type of the value when computation succeeds.
|
|
type Success;
|
|
/// The type of the value when computation errors out.
|
|
type Error;
|
|
|
|
/// Create a `Carrier` from a success value.
|
|
fn from_success(Self::Success) -> Self;
|
|
|
|
/// Create a `Carrier` from an error value.
|
|
fn from_error(Self::Error) -> Self;
|
|
|
|
/// Translate this `Carrier` to another implementation of `Carrier` with the
|
|
/// same associated types.
|
|
fn translate<T>(self) -> T where T: Carrier<Success=Self::Success, Error=Self::Error>;
|
|
}
|
|
|
|
#[unstable(feature = "question_mark_carrier", issue = "31436")]
|
|
impl<U, V> Carrier for Result<U, V> {
|
|
type Success = U;
|
|
type Error = V;
|
|
|
|
fn from_success(u: U) -> Result<U, V> {
|
|
Ok(u)
|
|
}
|
|
|
|
fn from_error(e: V) -> Result<U, V> {
|
|
Err(e)
|
|
}
|
|
|
|
fn translate<T>(self) -> T
|
|
where T: Carrier<Success=U, Error=V>
|
|
{
|
|
match self {
|
|
Ok(u) => T::from_success(u),
|
|
Err(e) => T::from_error(e),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct _DummyErrorType;
|
|
|
|
impl Carrier for _DummyErrorType {
|
|
type Success = ();
|
|
type Error = ();
|
|
|
|
fn from_success(_: ()) -> _DummyErrorType {
|
|
_DummyErrorType
|
|
}
|
|
|
|
fn from_error(_: ()) -> _DummyErrorType {
|
|
_DummyErrorType
|
|
}
|
|
|
|
fn translate<T>(self) -> T
|
|
where T: Carrier<Success=(), Error=()>
|
|
{
|
|
T::from_success(())
|
|
}
|
|
}
|