rust/src/librustc/driver/driver.rs
2014-09-08 09:32:52 +12:00

787 lines
28 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::link;
use back::write;
use driver::session::Session;
use driver::config;
use front;
use lint;
use llvm::{ContextRef, ModuleRef};
use metadata::common::LinkMeta;
use metadata::creader;
use middle::{trans, freevars, stability, kind, ty, typeck, reachable};
use middle::dependency_format;
use middle;
use plugin::load::Plugins;
use plugin::registry::Registry;
use plugin;
use util::common::time;
use util::nodemap::{NodeSet};
use serialize::{json, Encodable};
use std::io;
use std::io::fs;
use syntax::ast;
use syntax::attr;
use syntax::attr::{AttrMetaMethods};
use syntax::diagnostics;
use syntax::parse;
use syntax::parse::token;
use syntax;
pub fn host_triple() -> &'static str {
// Get the host triple out of the build environment. This ensures that our
// idea of the host triple is the same as for the set of libraries we've
// actually built. We can't just take LLVM's host triple because they
// normalize all ix86 architectures to i386.
//
// Instead of grabbing the host triple (for the current host), we grab (at
// compile time) the target triple that this rustc is built with and
// calling that (at runtime) the host triple.
(option_env!("CFG_COMPILER_HOST_TRIPLE")).
expect("CFG_COMPILER_HOST_TRIPLE")
}
pub fn compile_input(sess: Session,
cfg: ast::CrateConfig,
input: &Input,
outdir: &Option<Path>,
output: &Option<Path>,
addl_plugins: Option<Plugins>) {
// We need nested scopes here, because the intermediate results can keep
// large chunks of memory alive and we want to free them as soon as
// possible to keep the peak memory usage low
let (outputs, trans, sess) = {
let (outputs, expanded_crate, ast_map, id) = {
let krate = phase_1_parse_input(&sess, cfg, input);
if stop_after_phase_1(&sess) { return; }
let outputs = build_output_filenames(input,
outdir,
output,
krate.attrs.as_slice(),
&sess);
let id = link::find_crate_name(Some(&sess), krate.attrs.as_slice(),
input);
let (expanded_crate, ast_map)
= match phase_2_configure_and_expand(&sess, krate, id.as_slice(),
addl_plugins) {
None => return,
Some(p) => p,
};
(outputs, expanded_crate, ast_map, id)
};
write_out_deps(&sess, input, &outputs, id.as_slice());
if stop_after_phase_2(&sess) { return; }
let analysis = phase_3_run_analysis_passes(sess, &expanded_crate,
ast_map, id);
phase_save_analysis(&analysis.ty_cx.sess, &expanded_crate, &analysis, outdir);
if stop_after_phase_3(&analysis.ty_cx.sess) { return; }
let (tcx, trans) = phase_4_translate_to_llvm(expanded_crate, analysis);
// Discard interned strings as they are no longer required.
token::get_ident_interner().clear();
(outputs, trans, tcx.sess)
};
phase_5_run_llvm_passes(&sess, &trans, &outputs);
if stop_after_phase_5(&sess) { return; }
phase_6_link_output(&sess, &trans, &outputs);
}
/**
* The name used for source code that doesn't originate in a file
* (e.g. source from stdin or a string)
*/
pub fn anon_src() -> String {
"<anon>".to_string()
}
pub fn source_name(input: &Input) -> String {
match *input {
// FIXME (#9639): This needs to handle non-utf8 paths
FileInput(ref ifile) => ifile.as_str().unwrap().to_string(),
StrInput(_) => anon_src()
}
}
pub enum Input {
/// Load source from file
FileInput(Path),
/// The string is the source
StrInput(String)
}
impl Input {
fn filestem(&self) -> String {
match *self {
FileInput(ref ifile) => ifile.filestem_str().unwrap().to_string(),
StrInput(_) => "rust_out".to_string(),
}
}
}
pub fn phase_1_parse_input(sess: &Session, cfg: ast::CrateConfig, input: &Input)
-> ast::Crate {
let krate = time(sess.time_passes(), "parsing", (), |_| {
match *input {
FileInput(ref file) => {
parse::parse_crate_from_file(&(*file), cfg.clone(), &sess.parse_sess)
}
StrInput(ref src) => {
parse::parse_crate_from_source_str(anon_src().to_string(),
src.to_string(),
cfg.clone(),
&sess.parse_sess)
}
}
});
if sess.opts.debugging_opts & config::AST_JSON_NOEXPAND != 0 {
let mut stdout = io::BufferedWriter::new(io::stdout());
let mut json = json::PrettyEncoder::new(&mut stdout);
// unwrapping so IoError isn't ignored
krate.encode(&mut json).unwrap();
}
if sess.show_span() {
front::show_span::run(sess, &krate);
}
krate
}
// For continuing compilation after a parsed crate has been
// modified
/// Run the "early phases" of the compiler: initial `cfg` processing,
/// loading compiler plugins (including those from `addl_plugins`),
/// syntax expansion, secondary `cfg` expansion, synthesis of a test
/// harness if one is to be provided and injection of a dependency on the
/// standard library and prelude.
///
/// Returns `None` if we're aborting after handling -W help.
pub fn phase_2_configure_and_expand(sess: &Session,
mut krate: ast::Crate,
crate_name: &str,
addl_plugins: Option<Plugins>)
-> Option<(ast::Crate, syntax::ast_map::Map)> {
let time_passes = sess.time_passes();
*sess.crate_types.borrow_mut() =
collect_crate_types(sess, krate.attrs.as_slice());
*sess.crate_metadata.borrow_mut() =
collect_crate_metadata(sess, krate.attrs.as_slice());
time(time_passes, "gated feature checking", (), |_|
front::feature_gate::check_crate(sess, &krate));
krate = time(time_passes, "crate injection", krate, |krate|
front::std_inject::maybe_inject_crates_ref(sess, krate));
// strip before expansion to allow macros to depend on
// configuration variables e.g/ in
//
// #[macro_escape] #[cfg(foo)]
// mod bar { macro_rules! baz!(() => {{}}) }
//
// baz! should not use this definition unless foo is enabled.
krate = time(time_passes, "configuration 1", krate, |krate|
front::config::strip_unconfigured_items(krate));
let mut addl_plugins = Some(addl_plugins);
let Plugins { macros, registrars }
= time(time_passes, "plugin loading", (), |_|
plugin::load::load_plugins(sess, &krate, addl_plugins.take().unwrap()));
let mut registry = Registry::new(&krate);
time(time_passes, "plugin registration", (), |_| {
if sess.features.rustc_diagnostic_macros.get() {
registry.register_macro("__diagnostic_used",
diagnostics::plugin::expand_diagnostic_used);
registry.register_macro("__register_diagnostic",
diagnostics::plugin::expand_register_diagnostic);
registry.register_macro("__build_diagnostic_array",
diagnostics::plugin::expand_build_diagnostic_array);
}
for &registrar in registrars.iter() {
registrar(&mut registry);
}
});
let Registry { syntax_exts, lint_passes, lint_groups, .. } = registry;
{
let mut ls = sess.lint_store.borrow_mut();
for pass in lint_passes.move_iter() {
ls.register_pass(Some(sess), true, pass);
}
for (name, to) in lint_groups.move_iter() {
ls.register_group(Some(sess), true, name, to);
}
}
// Lint plugins are registered; now we can process command line flags.
if sess.opts.describe_lints {
super::describe_lints(&*sess.lint_store.borrow(), true);
return None;
}
sess.lint_store.borrow_mut().process_command_line(sess);
// Abort if there are errors from lint processing or a plugin registrar.
sess.abort_if_errors();
krate = time(time_passes, "expansion", (krate, macros, syntax_exts),
|(krate, macros, syntax_exts)| {
// Windows dlls do not have rpaths, so they don't know how to find their
// dependencies. It's up to us to tell the system where to find all the
// dependent dlls. Note that this uses cfg!(windows) as opposed to
// targ_cfg because syntax extensions are always loaded for the host
// compiler, not for the target.
if cfg!(windows) {
sess.host_filesearch().add_dylib_search_paths();
}
let cfg = syntax::ext::expand::ExpansionConfig {
deriving_hash_type_parameter: sess.features.default_type_params.get(),
crate_name: crate_name.to_string(),
};
syntax::ext::expand::expand_crate(&sess.parse_sess,
cfg,
macros,
syntax_exts,
krate)
}
);
// JBC: make CFG processing part of expansion to avoid this problem:
// strip again, in case expansion added anything with a #[cfg].
krate = time(time_passes, "configuration 2", krate, |krate|
front::config::strip_unconfigured_items(krate));
krate = time(time_passes, "maybe building test harness", krate, |krate|
front::test::modify_for_testing(sess, krate));
krate = time(time_passes, "prelude injection", krate, |krate|
front::std_inject::maybe_inject_prelude(sess, krate));
let (krate, map) = time(time_passes, "assigning node ids and indexing ast", krate, |krate|
front::assign_node_ids_and_map::assign_node_ids_and_map(sess, krate));
if sess.opts.debugging_opts & config::AST_JSON != 0 {
let mut stdout = io::BufferedWriter::new(io::stdout());
let mut json = json::PrettyEncoder::new(&mut stdout);
// unwrapping so IoError isn't ignored
krate.encode(&mut json).unwrap();
}
time(time_passes, "checking that all macro invocations are gone", &krate, |krate|
syntax::ext::expand::check_for_macros(&sess.parse_sess, krate));
Some((krate, map))
}
pub struct CrateAnalysis {
pub exp_map2: middle::resolve::ExportMap2,
pub exported_items: middle::privacy::ExportedItems,
pub public_items: middle::privacy::PublicItems,
pub ty_cx: ty::ctxt,
pub reachable: NodeSet,
pub name: String,
}
/// Run the resolution, typechecking, region checking and other
/// miscellaneous analysis passes on the crate. Return various
/// structures carrying the results of the analysis.
pub fn phase_3_run_analysis_passes(sess: Session,
krate: &ast::Crate,
ast_map: syntax::ast_map::Map,
name: String) -> CrateAnalysis {
let time_passes = sess.time_passes();
time(time_passes, "external crate/lib resolution", (), |_|
creader::read_crates(&sess, krate));
let lang_items = time(time_passes, "language item collection", (), |_|
middle::lang_items::collect_language_items(krate, &sess));
let middle::resolve::CrateMap {
def_map: def_map,
exp_map2: exp_map2,
trait_map: trait_map,
external_exports: external_exports,
last_private_map: last_private_map
} =
time(time_passes, "resolution", (), |_|
middle::resolve::resolve_crate(&sess, &lang_items, krate));
// Discard MTWT tables that aren't required past resolution.
syntax::ext::mtwt::clear_tables();
let named_region_map = time(time_passes, "lifetime resolution", (),
|_| middle::resolve_lifetime::krate(&sess, krate));
time(time_passes, "looking for entry point", (),
|_| middle::entry::find_entry_point(&sess, krate, &ast_map));
sess.plugin_registrar_fn.set(
time(time_passes, "looking for plugin registrar", (), |_|
plugin::build::find_plugin_registrar(
sess.diagnostic(), krate)));
let (freevars, capture_modes) =
time(time_passes, "freevar finding", (), |_|
freevars::annotate_freevars(&def_map, krate));
let region_map = time(time_passes, "region resolution", (), |_|
middle::region::resolve_crate(&sess, krate));
time(time_passes, "loop checking", (), |_|
middle::check_loop::check_crate(&sess, krate));
let stability_index = time(time_passes, "stability index", (), |_|
stability::Index::build(krate));
let ty_cx = ty::mk_ctxt(sess,
def_map,
named_region_map,
ast_map,
freevars,
capture_modes,
region_map,
lang_items,
stability_index);
// passes are timed inside typeck
typeck::check_crate(&ty_cx, trait_map, krate);
time(time_passes, "check static items", (), |_|
middle::check_static::check_crate(&ty_cx, krate));
// These next two const passes can probably be merged
time(time_passes, "const marking", (), |_|
middle::const_eval::process_crate(krate, &ty_cx));
time(time_passes, "const checking", (), |_|
middle::check_const::check_crate(krate, &ty_cx));
let maps = (external_exports, last_private_map);
let (exported_items, public_items) =
time(time_passes, "privacy checking", maps, |(a, b)|
middle::privacy::check_crate(&ty_cx, &exp_map2, a, b, krate));
time(time_passes, "intrinsic checking", (), |_|
middle::intrinsicck::check_crate(&ty_cx, krate));
time(time_passes, "effect checking", (), |_|
middle::effect::check_crate(&ty_cx, krate));
time(time_passes, "match checking", (), |_|
middle::check_match::check_crate(&ty_cx, krate));
time(time_passes, "liveness checking", (), |_|
middle::liveness::check_crate(&ty_cx, krate));
time(time_passes, "borrow checking", (), |_|
middle::borrowck::check_crate(&ty_cx, krate));
time(time_passes, "rvalue checking", (), |_|
middle::check_rvalues::check_crate(&ty_cx, krate));
time(time_passes, "kind checking", (), |_|
kind::check_crate(&ty_cx, krate));
let reachable_map =
time(time_passes, "reachability checking", (), |_|
reachable::find_reachable(&ty_cx, &exported_items));
time(time_passes, "death checking", (), |_| {
middle::dead::check_crate(&ty_cx,
&exported_items,
&reachable_map,
krate)
});
time(time_passes, "lint checking", (), |_|
lint::check_crate(&ty_cx, krate, &exported_items));
CrateAnalysis {
exp_map2: exp_map2,
ty_cx: ty_cx,
exported_items: exported_items,
public_items: public_items,
reachable: reachable_map,
name: name,
}
}
pub fn phase_save_analysis(sess: &Session,
krate: &ast::Crate,
analysis: &CrateAnalysis,
odir: &Option<Path>) {
if (sess.opts.debugging_opts & config::SAVE_ANALYSIS) == 0 {
return;
}
time(sess.time_passes(), "save analysis", krate, |krate|
middle::save::process_crate(sess, krate, analysis, odir));
}
pub struct ModuleTranslation {
pub llcx: ContextRef,
pub llmod: ModuleRef,
}
pub struct CrateTranslation {
pub modules: Vec<ModuleTranslation>,
pub metadata_module: ModuleTranslation,
pub link: LinkMeta,
pub metadata: Vec<u8>,
pub reachable: Vec<String>,
pub crate_formats: dependency_format::Dependencies,
pub no_builtins: bool,
}
/// Run the translation phase to LLVM, after which the AST and analysis can
/// be discarded.
pub fn phase_4_translate_to_llvm(krate: ast::Crate,
analysis: CrateAnalysis) -> (ty::ctxt, CrateTranslation) {
let time_passes = analysis.ty_cx.sess.time_passes();
time(time_passes, "resolving dependency formats", (), |_|
dependency_format::calculate(&analysis.ty_cx));
// Option dance to work around the lack of stack once closures.
time(time_passes, "translation", (krate, analysis), |(krate, analysis)|
trans::base::trans_crate(krate, analysis))
}
/// Run LLVM itself, producing a bitcode file, assembly file or object file
/// as a side effect.
pub fn phase_5_run_llvm_passes(sess: &Session,
trans: &CrateTranslation,
outputs: &OutputFilenames) {
if sess.opts.cg.no_integrated_as {
let output_type = write::OutputTypeAssembly;
time(sess.time_passes(), "LLVM passes", (), |_|
write::run_passes(sess, trans, [output_type], outputs));
write::run_assembler(sess, outputs);
// Remove assembly source, unless --save-temps was specified
if !sess.opts.cg.save_temps {
fs::unlink(&outputs.temp_path(write::OutputTypeAssembly)).unwrap();
}
} else {
time(sess.time_passes(), "LLVM passes", (), |_|
write::run_passes(sess,
trans,
sess.opts.output_types.as_slice(),
outputs));
}
}
/// Run the linker on any artifacts that resulted from the LLVM run.
/// This should produce either a finished executable or library.
pub fn phase_6_link_output(sess: &Session,
trans: &CrateTranslation,
outputs: &OutputFilenames) {
time(sess.time_passes(), "linking", (), |_|
link::link_binary(sess,
trans,
outputs,
trans.link.crate_name.as_slice()));
}
pub fn stop_after_phase_3(sess: &Session) -> bool {
if sess.opts.no_trans {
debug!("invoked with --no-trans, returning early from compile_input");
return true;
}
return false;
}
pub fn stop_after_phase_1(sess: &Session) -> bool {
if sess.opts.parse_only {
debug!("invoked with --parse-only, returning early from compile_input");
return true;
}
if sess.show_span() {
return true;
}
return sess.opts.debugging_opts & config::AST_JSON_NOEXPAND != 0;
}
pub fn stop_after_phase_2(sess: &Session) -> bool {
if sess.opts.no_analysis {
debug!("invoked with --no-analysis, returning early from compile_input");
return true;
}
return sess.opts.debugging_opts & config::AST_JSON != 0;
}
pub fn stop_after_phase_5(sess: &Session) -> bool {
if !sess.opts.output_types.iter().any(|&i| i == write::OutputTypeExe) {
debug!("not building executable, returning early from compile_input");
return true;
}
return false;
}
fn write_out_deps(sess: &Session,
input: &Input,
outputs: &OutputFilenames,
id: &str) {
let mut out_filenames = Vec::new();
for output_type in sess.opts.output_types.iter() {
let file = outputs.path(*output_type);
match *output_type {
write::OutputTypeExe => {
for output in sess.crate_types.borrow().iter() {
let p = link::filename_for_input(sess, *output,
id, &file);
out_filenames.push(p);
}
}
_ => { out_filenames.push(file); }
}
}
// Write out dependency rules to the dep-info file if requested with
// --dep-info
let deps_filename = match sess.opts.write_dependency_info {
// Use filename from --dep-file argument if given
(true, Some(ref filename)) => filename.clone(),
// Use default filename: crate source filename with extension replaced
// by ".d"
(true, None) => match *input {
FileInput(..) => outputs.with_extension("d"),
StrInput(..) => {
sess.warn("can not write --dep-info without a filename \
when compiling stdin.");
return
},
},
_ => return,
};
let result = (|| {
// Build a list of files used to compile the output and
// write Makefile-compatible dependency rules
let files: Vec<String> = sess.codemap().files.borrow()
.iter().filter(|fmap| fmap.is_real_file())
.map(|fmap| fmap.name.to_string())
.collect();
let mut file = try!(io::File::create(&deps_filename));
for path in out_filenames.iter() {
try!(write!(&mut file as &mut Writer,
"{}: {}\n\n", path.display(), files.connect(" ")));
}
Ok(())
})();
match result {
Ok(()) => {}
Err(e) => {
sess.fatal(format!("error writing dependencies to `{}`: {}",
deps_filename.display(), e).as_slice());
}
}
}
pub fn collect_crate_types(session: &Session,
attrs: &[ast::Attribute]) -> Vec<config::CrateType> {
// Unconditionally collect crate types from attributes to make them used
let attr_types: Vec<config::CrateType> = attrs.iter().filter_map(|a| {
if a.check_name("crate_type") {
match a.value_str() {
Some(ref n) if n.equiv(&("rlib")) => {
Some(config::CrateTypeRlib)
}
Some(ref n) if n.equiv(&("dylib")) => {
Some(config::CrateTypeDylib)
}
Some(ref n) if n.equiv(&("lib")) => {
Some(config::default_lib_output())
}
Some(ref n) if n.equiv(&("staticlib")) => {
Some(config::CrateTypeStaticlib)
}
Some(ref n) if n.equiv(&("bin")) => Some(config::CrateTypeExecutable),
Some(_) => {
session.add_lint(lint::builtin::UNKNOWN_CRATE_TYPE,
ast::CRATE_NODE_ID,
a.span,
"invalid `crate_type` \
value".to_string());
None
}
_ => {
session.add_lint(lint::builtin::UNKNOWN_CRATE_TYPE,
ast::CRATE_NODE_ID,
a.span,
"`crate_type` requires a \
value".to_string());
None
}
}
} else {
None
}
}).collect();
// If we're generating a test executable, then ignore all other output
// styles at all other locations
if session.opts.test {
return vec!(config::CrateTypeExecutable)
}
// Only check command line flags if present. If no types are specified by
// command line, then reuse the empty `base` Vec to hold the types that
// will be found in crate attributes.
let mut base = session.opts.crate_types.clone();
if base.len() == 0 {
base.extend(attr_types.move_iter());
if base.len() == 0 {
base.push(link::default_output_for_target(session));
}
base.as_mut_slice().sort();
base.dedup();
}
base.move_iter().filter(|crate_type| {
let res = !link::invalid_output_for_target(session, *crate_type);
if !res {
session.warn(format!("dropping unsupported crate type `{}` \
for target os `{}`",
*crate_type, session.targ_cfg.os).as_slice());
}
res
}).collect()
}
pub fn collect_crate_metadata(session: &Session,
_attrs: &[ast::Attribute]) -> Vec<String> {
session.opts.cg.metadata.clone()
}
#[deriving(Clone)]
pub struct OutputFilenames {
pub out_directory: Path,
pub out_filestem: String,
pub single_output_file: Option<Path>,
extra: String,
}
impl OutputFilenames {
pub fn path(&self, flavor: write::OutputType) -> Path {
match self.single_output_file {
Some(ref path) => return path.clone(),
None => {}
}
self.temp_path(flavor)
}
pub fn temp_path(&self, flavor: write::OutputType) -> Path {
let base = self.out_directory.join(self.filestem());
match flavor {
write::OutputTypeBitcode => base.with_extension("bc"),
write::OutputTypeAssembly => base.with_extension("s"),
write::OutputTypeLlvmAssembly => base.with_extension("ll"),
write::OutputTypeObject => base.with_extension("o"),
write::OutputTypeExe => base,
}
}
pub fn with_extension(&self, extension: &str) -> Path {
self.out_directory.join(self.filestem()).with_extension(extension)
}
fn filestem(&self) -> String {
format!("{}{}", self.out_filestem, self.extra)
}
}
pub fn build_output_filenames(input: &Input,
odir: &Option<Path>,
ofile: &Option<Path>,
attrs: &[ast::Attribute],
sess: &Session)
-> OutputFilenames {
match *ofile {
None => {
// "-" as input file will cause the parser to read from stdin so we
// have to make up a name
// We want to toss everything after the final '.'
let dirpath = match *odir {
Some(ref d) => d.clone(),
None => Path::new(".")
};
// If a crate name is present, we use it as the link name
let stem = sess.opts.crate_name.clone().or_else(|| {
attr::find_crate_name(attrs).map(|n| n.get().to_string())
}).or_else(|| {
// NB: this clause can be removed once #[crate_id] is no longer
// deprecated.
//
// Also note that this will be warned about later so we don't
// warn about it here.
use syntax::crateid::CrateId;
attrs.iter().find(|at| at.check_name("crate_id"))
.and_then(|at| at.value_str())
.and_then(|s| from_str::<CrateId>(s.get()))
.map(|id| id.name)
}).unwrap_or(input.filestem());
OutputFilenames {
out_directory: dirpath,
out_filestem: stem,
single_output_file: None,
extra: sess.opts.cg.extra_filename.clone(),
}
}
Some(ref out_file) => {
let ofile = if sess.opts.output_types.len() > 1 {
sess.warn("ignoring specified output filename because multiple \
outputs were requested");
None
} else {
Some(out_file.clone())
};
if *odir != None {
sess.warn("ignoring --out-dir flag due to -o flag.");
}
OutputFilenames {
out_directory: out_file.dir_path(),
out_filestem: out_file.filestem_str().unwrap().to_string(),
single_output_file: ofile,
extra: sess.opts.cg.extra_filename.clone(),
}
}
}
}