// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::link; use back::write; use driver::session::Session; use driver::config; use front; use lint; use llvm::{ContextRef, ModuleRef}; use metadata::common::LinkMeta; use metadata::creader; use middle::{trans, freevars, stability, kind, ty, typeck, reachable}; use middle::dependency_format; use middle; use plugin::load::Plugins; use plugin::registry::Registry; use plugin; use util::common::time; use util::nodemap::{NodeSet}; use serialize::{json, Encodable}; use std::io; use std::io::fs; use syntax::ast; use syntax::attr; use syntax::attr::{AttrMetaMethods}; use syntax::diagnostics; use syntax::parse; use syntax::parse::token; use syntax; pub fn host_triple() -> &'static str { // Get the host triple out of the build environment. This ensures that our // idea of the host triple is the same as for the set of libraries we've // actually built. We can't just take LLVM's host triple because they // normalize all ix86 architectures to i386. // // Instead of grabbing the host triple (for the current host), we grab (at // compile time) the target triple that this rustc is built with and // calling that (at runtime) the host triple. (option_env!("CFG_COMPILER_HOST_TRIPLE")). expect("CFG_COMPILER_HOST_TRIPLE") } pub fn compile_input(sess: Session, cfg: ast::CrateConfig, input: &Input, outdir: &Option, output: &Option, addl_plugins: Option) { // We need nested scopes here, because the intermediate results can keep // large chunks of memory alive and we want to free them as soon as // possible to keep the peak memory usage low let (outputs, trans, sess) = { let (outputs, expanded_crate, ast_map, id) = { let krate = phase_1_parse_input(&sess, cfg, input); if stop_after_phase_1(&sess) { return; } let outputs = build_output_filenames(input, outdir, output, krate.attrs.as_slice(), &sess); let id = link::find_crate_name(Some(&sess), krate.attrs.as_slice(), input); let (expanded_crate, ast_map) = match phase_2_configure_and_expand(&sess, krate, id.as_slice(), addl_plugins) { None => return, Some(p) => p, }; (outputs, expanded_crate, ast_map, id) }; write_out_deps(&sess, input, &outputs, id.as_slice()); if stop_after_phase_2(&sess) { return; } let analysis = phase_3_run_analysis_passes(sess, &expanded_crate, ast_map, id); phase_save_analysis(&analysis.ty_cx.sess, &expanded_crate, &analysis, outdir); if stop_after_phase_3(&analysis.ty_cx.sess) { return; } let (tcx, trans) = phase_4_translate_to_llvm(expanded_crate, analysis); // Discard interned strings as they are no longer required. token::get_ident_interner().clear(); (outputs, trans, tcx.sess) }; phase_5_run_llvm_passes(&sess, &trans, &outputs); if stop_after_phase_5(&sess) { return; } phase_6_link_output(&sess, &trans, &outputs); } /** * The name used for source code that doesn't originate in a file * (e.g. source from stdin or a string) */ pub fn anon_src() -> String { "".to_string() } pub fn source_name(input: &Input) -> String { match *input { // FIXME (#9639): This needs to handle non-utf8 paths FileInput(ref ifile) => ifile.as_str().unwrap().to_string(), StrInput(_) => anon_src() } } pub enum Input { /// Load source from file FileInput(Path), /// The string is the source StrInput(String) } impl Input { fn filestem(&self) -> String { match *self { FileInput(ref ifile) => ifile.filestem_str().unwrap().to_string(), StrInput(_) => "rust_out".to_string(), } } } pub fn phase_1_parse_input(sess: &Session, cfg: ast::CrateConfig, input: &Input) -> ast::Crate { let krate = time(sess.time_passes(), "parsing", (), |_| { match *input { FileInput(ref file) => { parse::parse_crate_from_file(&(*file), cfg.clone(), &sess.parse_sess) } StrInput(ref src) => { parse::parse_crate_from_source_str(anon_src().to_string(), src.to_string(), cfg.clone(), &sess.parse_sess) } } }); if sess.opts.debugging_opts & config::AST_JSON_NOEXPAND != 0 { let mut stdout = io::BufferedWriter::new(io::stdout()); let mut json = json::PrettyEncoder::new(&mut stdout); // unwrapping so IoError isn't ignored krate.encode(&mut json).unwrap(); } if sess.show_span() { front::show_span::run(sess, &krate); } krate } // For continuing compilation after a parsed crate has been // modified /// Run the "early phases" of the compiler: initial `cfg` processing, /// loading compiler plugins (including those from `addl_plugins`), /// syntax expansion, secondary `cfg` expansion, synthesis of a test /// harness if one is to be provided and injection of a dependency on the /// standard library and prelude. /// /// Returns `None` if we're aborting after handling -W help. pub fn phase_2_configure_and_expand(sess: &Session, mut krate: ast::Crate, crate_name: &str, addl_plugins: Option) -> Option<(ast::Crate, syntax::ast_map::Map)> { let time_passes = sess.time_passes(); *sess.crate_types.borrow_mut() = collect_crate_types(sess, krate.attrs.as_slice()); *sess.crate_metadata.borrow_mut() = collect_crate_metadata(sess, krate.attrs.as_slice()); time(time_passes, "gated feature checking", (), |_| front::feature_gate::check_crate(sess, &krate)); krate = time(time_passes, "crate injection", krate, |krate| front::std_inject::maybe_inject_crates_ref(sess, krate)); // strip before expansion to allow macros to depend on // configuration variables e.g/ in // // #[macro_escape] #[cfg(foo)] // mod bar { macro_rules! baz!(() => {{}}) } // // baz! should not use this definition unless foo is enabled. krate = time(time_passes, "configuration 1", krate, |krate| front::config::strip_unconfigured_items(krate)); let mut addl_plugins = Some(addl_plugins); let Plugins { macros, registrars } = time(time_passes, "plugin loading", (), |_| plugin::load::load_plugins(sess, &krate, addl_plugins.take().unwrap())); let mut registry = Registry::new(&krate); time(time_passes, "plugin registration", (), |_| { if sess.features.rustc_diagnostic_macros.get() { registry.register_macro("__diagnostic_used", diagnostics::plugin::expand_diagnostic_used); registry.register_macro("__register_diagnostic", diagnostics::plugin::expand_register_diagnostic); registry.register_macro("__build_diagnostic_array", diagnostics::plugin::expand_build_diagnostic_array); } for ®istrar in registrars.iter() { registrar(&mut registry); } }); let Registry { syntax_exts, lint_passes, lint_groups, .. } = registry; { let mut ls = sess.lint_store.borrow_mut(); for pass in lint_passes.move_iter() { ls.register_pass(Some(sess), true, pass); } for (name, to) in lint_groups.move_iter() { ls.register_group(Some(sess), true, name, to); } } // Lint plugins are registered; now we can process command line flags. if sess.opts.describe_lints { super::describe_lints(&*sess.lint_store.borrow(), true); return None; } sess.lint_store.borrow_mut().process_command_line(sess); // Abort if there are errors from lint processing or a plugin registrar. sess.abort_if_errors(); krate = time(time_passes, "expansion", (krate, macros, syntax_exts), |(krate, macros, syntax_exts)| { // Windows dlls do not have rpaths, so they don't know how to find their // dependencies. It's up to us to tell the system where to find all the // dependent dlls. Note that this uses cfg!(windows) as opposed to // targ_cfg because syntax extensions are always loaded for the host // compiler, not for the target. if cfg!(windows) { sess.host_filesearch().add_dylib_search_paths(); } let cfg = syntax::ext::expand::ExpansionConfig { deriving_hash_type_parameter: sess.features.default_type_params.get(), crate_name: crate_name.to_string(), }; syntax::ext::expand::expand_crate(&sess.parse_sess, cfg, macros, syntax_exts, krate) } ); // JBC: make CFG processing part of expansion to avoid this problem: // strip again, in case expansion added anything with a #[cfg]. krate = time(time_passes, "configuration 2", krate, |krate| front::config::strip_unconfigured_items(krate)); krate = time(time_passes, "maybe building test harness", krate, |krate| front::test::modify_for_testing(sess, krate)); krate = time(time_passes, "prelude injection", krate, |krate| front::std_inject::maybe_inject_prelude(sess, krate)); let (krate, map) = time(time_passes, "assigning node ids and indexing ast", krate, |krate| front::assign_node_ids_and_map::assign_node_ids_and_map(sess, krate)); if sess.opts.debugging_opts & config::AST_JSON != 0 { let mut stdout = io::BufferedWriter::new(io::stdout()); let mut json = json::PrettyEncoder::new(&mut stdout); // unwrapping so IoError isn't ignored krate.encode(&mut json).unwrap(); } time(time_passes, "checking that all macro invocations are gone", &krate, |krate| syntax::ext::expand::check_for_macros(&sess.parse_sess, krate)); Some((krate, map)) } pub struct CrateAnalysis { pub exp_map2: middle::resolve::ExportMap2, pub exported_items: middle::privacy::ExportedItems, pub public_items: middle::privacy::PublicItems, pub ty_cx: ty::ctxt, pub reachable: NodeSet, pub name: String, } /// Run the resolution, typechecking, region checking and other /// miscellaneous analysis passes on the crate. Return various /// structures carrying the results of the analysis. pub fn phase_3_run_analysis_passes(sess: Session, krate: &ast::Crate, ast_map: syntax::ast_map::Map, name: String) -> CrateAnalysis { let time_passes = sess.time_passes(); time(time_passes, "external crate/lib resolution", (), |_| creader::read_crates(&sess, krate)); let lang_items = time(time_passes, "language item collection", (), |_| middle::lang_items::collect_language_items(krate, &sess)); let middle::resolve::CrateMap { def_map: def_map, exp_map2: exp_map2, trait_map: trait_map, external_exports: external_exports, last_private_map: last_private_map } = time(time_passes, "resolution", (), |_| middle::resolve::resolve_crate(&sess, &lang_items, krate)); // Discard MTWT tables that aren't required past resolution. syntax::ext::mtwt::clear_tables(); let named_region_map = time(time_passes, "lifetime resolution", (), |_| middle::resolve_lifetime::krate(&sess, krate)); time(time_passes, "looking for entry point", (), |_| middle::entry::find_entry_point(&sess, krate, &ast_map)); sess.plugin_registrar_fn.set( time(time_passes, "looking for plugin registrar", (), |_| plugin::build::find_plugin_registrar( sess.diagnostic(), krate))); let (freevars, capture_modes) = time(time_passes, "freevar finding", (), |_| freevars::annotate_freevars(&def_map, krate)); let region_map = time(time_passes, "region resolution", (), |_| middle::region::resolve_crate(&sess, krate)); time(time_passes, "loop checking", (), |_| middle::check_loop::check_crate(&sess, krate)); let stability_index = time(time_passes, "stability index", (), |_| stability::Index::build(krate)); let ty_cx = ty::mk_ctxt(sess, def_map, named_region_map, ast_map, freevars, capture_modes, region_map, lang_items, stability_index); // passes are timed inside typeck typeck::check_crate(&ty_cx, trait_map, krate); time(time_passes, "check static items", (), |_| middle::check_static::check_crate(&ty_cx, krate)); // These next two const passes can probably be merged time(time_passes, "const marking", (), |_| middle::const_eval::process_crate(krate, &ty_cx)); time(time_passes, "const checking", (), |_| middle::check_const::check_crate(krate, &ty_cx)); let maps = (external_exports, last_private_map); let (exported_items, public_items) = time(time_passes, "privacy checking", maps, |(a, b)| middle::privacy::check_crate(&ty_cx, &exp_map2, a, b, krate)); time(time_passes, "intrinsic checking", (), |_| middle::intrinsicck::check_crate(&ty_cx, krate)); time(time_passes, "effect checking", (), |_| middle::effect::check_crate(&ty_cx, krate)); time(time_passes, "match checking", (), |_| middle::check_match::check_crate(&ty_cx, krate)); time(time_passes, "liveness checking", (), |_| middle::liveness::check_crate(&ty_cx, krate)); time(time_passes, "borrow checking", (), |_| middle::borrowck::check_crate(&ty_cx, krate)); time(time_passes, "rvalue checking", (), |_| middle::check_rvalues::check_crate(&ty_cx, krate)); time(time_passes, "kind checking", (), |_| kind::check_crate(&ty_cx, krate)); let reachable_map = time(time_passes, "reachability checking", (), |_| reachable::find_reachable(&ty_cx, &exported_items)); time(time_passes, "death checking", (), |_| { middle::dead::check_crate(&ty_cx, &exported_items, &reachable_map, krate) }); time(time_passes, "lint checking", (), |_| lint::check_crate(&ty_cx, krate, &exported_items)); CrateAnalysis { exp_map2: exp_map2, ty_cx: ty_cx, exported_items: exported_items, public_items: public_items, reachable: reachable_map, name: name, } } pub fn phase_save_analysis(sess: &Session, krate: &ast::Crate, analysis: &CrateAnalysis, odir: &Option) { if (sess.opts.debugging_opts & config::SAVE_ANALYSIS) == 0 { return; } time(sess.time_passes(), "save analysis", krate, |krate| middle::save::process_crate(sess, krate, analysis, odir)); } pub struct ModuleTranslation { pub llcx: ContextRef, pub llmod: ModuleRef, } pub struct CrateTranslation { pub modules: Vec, pub metadata_module: ModuleTranslation, pub link: LinkMeta, pub metadata: Vec, pub reachable: Vec, pub crate_formats: dependency_format::Dependencies, pub no_builtins: bool, } /// Run the translation phase to LLVM, after which the AST and analysis can /// be discarded. pub fn phase_4_translate_to_llvm(krate: ast::Crate, analysis: CrateAnalysis) -> (ty::ctxt, CrateTranslation) { let time_passes = analysis.ty_cx.sess.time_passes(); time(time_passes, "resolving dependency formats", (), |_| dependency_format::calculate(&analysis.ty_cx)); // Option dance to work around the lack of stack once closures. time(time_passes, "translation", (krate, analysis), |(krate, analysis)| trans::base::trans_crate(krate, analysis)) } /// Run LLVM itself, producing a bitcode file, assembly file or object file /// as a side effect. pub fn phase_5_run_llvm_passes(sess: &Session, trans: &CrateTranslation, outputs: &OutputFilenames) { if sess.opts.cg.no_integrated_as { let output_type = write::OutputTypeAssembly; time(sess.time_passes(), "LLVM passes", (), |_| write::run_passes(sess, trans, [output_type], outputs)); write::run_assembler(sess, outputs); // Remove assembly source, unless --save-temps was specified if !sess.opts.cg.save_temps { fs::unlink(&outputs.temp_path(write::OutputTypeAssembly)).unwrap(); } } else { time(sess.time_passes(), "LLVM passes", (), |_| write::run_passes(sess, trans, sess.opts.output_types.as_slice(), outputs)); } } /// Run the linker on any artifacts that resulted from the LLVM run. /// This should produce either a finished executable or library. pub fn phase_6_link_output(sess: &Session, trans: &CrateTranslation, outputs: &OutputFilenames) { time(sess.time_passes(), "linking", (), |_| link::link_binary(sess, trans, outputs, trans.link.crate_name.as_slice())); } pub fn stop_after_phase_3(sess: &Session) -> bool { if sess.opts.no_trans { debug!("invoked with --no-trans, returning early from compile_input"); return true; } return false; } pub fn stop_after_phase_1(sess: &Session) -> bool { if sess.opts.parse_only { debug!("invoked with --parse-only, returning early from compile_input"); return true; } if sess.show_span() { return true; } return sess.opts.debugging_opts & config::AST_JSON_NOEXPAND != 0; } pub fn stop_after_phase_2(sess: &Session) -> bool { if sess.opts.no_analysis { debug!("invoked with --no-analysis, returning early from compile_input"); return true; } return sess.opts.debugging_opts & config::AST_JSON != 0; } pub fn stop_after_phase_5(sess: &Session) -> bool { if !sess.opts.output_types.iter().any(|&i| i == write::OutputTypeExe) { debug!("not building executable, returning early from compile_input"); return true; } return false; } fn write_out_deps(sess: &Session, input: &Input, outputs: &OutputFilenames, id: &str) { let mut out_filenames = Vec::new(); for output_type in sess.opts.output_types.iter() { let file = outputs.path(*output_type); match *output_type { write::OutputTypeExe => { for output in sess.crate_types.borrow().iter() { let p = link::filename_for_input(sess, *output, id, &file); out_filenames.push(p); } } _ => { out_filenames.push(file); } } } // Write out dependency rules to the dep-info file if requested with // --dep-info let deps_filename = match sess.opts.write_dependency_info { // Use filename from --dep-file argument if given (true, Some(ref filename)) => filename.clone(), // Use default filename: crate source filename with extension replaced // by ".d" (true, None) => match *input { FileInput(..) => outputs.with_extension("d"), StrInput(..) => { sess.warn("can not write --dep-info without a filename \ when compiling stdin."); return }, }, _ => return, }; let result = (|| { // Build a list of files used to compile the output and // write Makefile-compatible dependency rules let files: Vec = sess.codemap().files.borrow() .iter().filter(|fmap| fmap.is_real_file()) .map(|fmap| fmap.name.to_string()) .collect(); let mut file = try!(io::File::create(&deps_filename)); for path in out_filenames.iter() { try!(write!(&mut file as &mut Writer, "{}: {}\n\n", path.display(), files.connect(" "))); } Ok(()) })(); match result { Ok(()) => {} Err(e) => { sess.fatal(format!("error writing dependencies to `{}`: {}", deps_filename.display(), e).as_slice()); } } } pub fn collect_crate_types(session: &Session, attrs: &[ast::Attribute]) -> Vec { // Unconditionally collect crate types from attributes to make them used let attr_types: Vec = attrs.iter().filter_map(|a| { if a.check_name("crate_type") { match a.value_str() { Some(ref n) if n.equiv(&("rlib")) => { Some(config::CrateTypeRlib) } Some(ref n) if n.equiv(&("dylib")) => { Some(config::CrateTypeDylib) } Some(ref n) if n.equiv(&("lib")) => { Some(config::default_lib_output()) } Some(ref n) if n.equiv(&("staticlib")) => { Some(config::CrateTypeStaticlib) } Some(ref n) if n.equiv(&("bin")) => Some(config::CrateTypeExecutable), Some(_) => { session.add_lint(lint::builtin::UNKNOWN_CRATE_TYPE, ast::CRATE_NODE_ID, a.span, "invalid `crate_type` \ value".to_string()); None } _ => { session.add_lint(lint::builtin::UNKNOWN_CRATE_TYPE, ast::CRATE_NODE_ID, a.span, "`crate_type` requires a \ value".to_string()); None } } } else { None } }).collect(); // If we're generating a test executable, then ignore all other output // styles at all other locations if session.opts.test { return vec!(config::CrateTypeExecutable) } // Only check command line flags if present. If no types are specified by // command line, then reuse the empty `base` Vec to hold the types that // will be found in crate attributes. let mut base = session.opts.crate_types.clone(); if base.len() == 0 { base.extend(attr_types.move_iter()); if base.len() == 0 { base.push(link::default_output_for_target(session)); } base.as_mut_slice().sort(); base.dedup(); } base.move_iter().filter(|crate_type| { let res = !link::invalid_output_for_target(session, *crate_type); if !res { session.warn(format!("dropping unsupported crate type `{}` \ for target os `{}`", *crate_type, session.targ_cfg.os).as_slice()); } res }).collect() } pub fn collect_crate_metadata(session: &Session, _attrs: &[ast::Attribute]) -> Vec { session.opts.cg.metadata.clone() } #[deriving(Clone)] pub struct OutputFilenames { pub out_directory: Path, pub out_filestem: String, pub single_output_file: Option, extra: String, } impl OutputFilenames { pub fn path(&self, flavor: write::OutputType) -> Path { match self.single_output_file { Some(ref path) => return path.clone(), None => {} } self.temp_path(flavor) } pub fn temp_path(&self, flavor: write::OutputType) -> Path { let base = self.out_directory.join(self.filestem()); match flavor { write::OutputTypeBitcode => base.with_extension("bc"), write::OutputTypeAssembly => base.with_extension("s"), write::OutputTypeLlvmAssembly => base.with_extension("ll"), write::OutputTypeObject => base.with_extension("o"), write::OutputTypeExe => base, } } pub fn with_extension(&self, extension: &str) -> Path { self.out_directory.join(self.filestem()).with_extension(extension) } fn filestem(&self) -> String { format!("{}{}", self.out_filestem, self.extra) } } pub fn build_output_filenames(input: &Input, odir: &Option, ofile: &Option, attrs: &[ast::Attribute], sess: &Session) -> OutputFilenames { match *ofile { None => { // "-" as input file will cause the parser to read from stdin so we // have to make up a name // We want to toss everything after the final '.' let dirpath = match *odir { Some(ref d) => d.clone(), None => Path::new(".") }; // If a crate name is present, we use it as the link name let stem = sess.opts.crate_name.clone().or_else(|| { attr::find_crate_name(attrs).map(|n| n.get().to_string()) }).or_else(|| { // NB: this clause can be removed once #[crate_id] is no longer // deprecated. // // Also note that this will be warned about later so we don't // warn about it here. use syntax::crateid::CrateId; attrs.iter().find(|at| at.check_name("crate_id")) .and_then(|at| at.value_str()) .and_then(|s| from_str::(s.get())) .map(|id| id.name) }).unwrap_or(input.filestem()); OutputFilenames { out_directory: dirpath, out_filestem: stem, single_output_file: None, extra: sess.opts.cg.extra_filename.clone(), } } Some(ref out_file) => { let ofile = if sess.opts.output_types.len() > 1 { sess.warn("ignoring specified output filename because multiple \ outputs were requested"); None } else { Some(out_file.clone()) }; if *odir != None { sess.warn("ignoring --out-dir flag due to -o flag."); } OutputFilenames { out_directory: out_file.dir_path(), out_filestem: out_file.filestem_str().unwrap().to_string(), single_output_file: ofile, extra: sess.opts.cg.extra_filename.clone(), } } } }