rust/src/liballoc/lib.rs

182 lines
5.6 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! # The Rust core allocation and collections library
//!
//! This library provides smart pointers and collections for managing
//! heap-allocated values.
//!
//! This library, like libcore, normally doesnt need to be used directly
//! since its contents are re-exported in the [`std` crate](../std/index.html).
//! Crates that use the `#![no_std]` attribute however will typically
//! not depend on `std`, so theyd use this crate instead.
//!
//! ## Boxed values
//!
//! The [`Box`] type is a smart pointer type. There can only be one owner of a
//! [`Box`], and the owner can decide to mutate the contents, which live on the
//! heap.
//!
//! This type can be sent among threads efficiently as the size of a `Box` value
//! is the same as that of a pointer. Tree-like data structures are often built
//! with boxes because each node often has only one owner, the parent.
//!
//! ## Reference counted pointers
//!
//! The [`Rc`] type is a non-threadsafe reference-counted pointer type intended
//! for sharing memory within a thread. An [`Rc`] pointer wraps a type, `T`, and
//! only allows access to `&T`, a shared reference.
//!
//! This type is useful when inherited mutability (such as using [`Box`]) is too
//! constraining for an application, and is often paired with the [`Cell`] or
//! [`RefCell`] types in order to allow mutation.
//!
//! ## Atomically reference counted pointers
//!
//! The [`Arc`] type is the threadsafe equivalent of the [`Rc`] type. It
//! provides all the same functionality of [`Rc`], except it requires that the
//! contained type `T` is shareable. Additionally, [`Arc<T>`][`Arc`] is itself
//! sendable while [`Rc<T>`][`Rc`] is not.
//!
//! This type allows for shared access to the contained data, and is often
//! paired with synchronization primitives such as mutexes to allow mutation of
//! shared resources.
//!
//! ## Collections
//!
//! Implementations of the most common general purpose data structures are
//! defined in this library. They are re-exported through the
//! [standard collections library](../std/collections/index.html).
//!
//! ## Heap interfaces
//!
//! The [`alloc`](alloc/index.html) module defines the low-level interface to the
//! default global allocator. It is not compatible with the libc allocator API.
//!
//! [`Arc`]: sync/index.html
//! [`Box`]: boxed/index.html
//! [`Cell`]: ../core/cell/index.html
//! [`Rc`]: rc/index.html
//! [`RefCell`]: ../core/cell/index.html
#![allow(unused_attributes)]
#![stable(feature = "alloc", since = "1.36.0")]
#![doc(
html_root_url = "https://doc.rust-lang.org/nightly/",
html_playground_url = "https://play.rust-lang.org/",
issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
test(no_crate_inject, attr(allow(unused_variables), deny(warnings)))
)]
#![no_std]
#![needs_allocator]
#![warn(deprecated_in_future)]
#![warn(missing_docs)]
#![warn(missing_debug_implementations)]
#![deny(intra_doc_link_resolution_failure)] // rustdoc is run without -D warnings
#![allow(explicit_outlives_requirements)]
#![allow(incomplete_features)]
#![cfg_attr(not(test), feature(generator_trait))]
#![cfg_attr(test, feature(test))]
#![feature(allocator_api)]
#![feature(allow_internal_unstable)]
#![feature(arbitrary_self_types)]
#![feature(box_into_raw_non_null)]
#![feature(box_patterns)]
#![feature(box_syntax)]
#![feature(cfg_sanitize)]
#![feature(cfg_target_has_atomic)]
#![feature(coerce_unsized)]
#![feature(const_generic_impls_guard)]
#![feature(const_generics)]
#![feature(const_in_array_repeat_expressions)]
#![feature(const_if_match)]
#![feature(cow_is_borrowed)]
#![feature(dispatch_from_dyn)]
#![feature(core_intrinsics)]
#![feature(container_error_extra)]
#![feature(dropck_eyepatch)]
#![feature(exact_size_is_empty)]
#![feature(fmt_internals)]
#![feature(fn_traits)]
#![feature(fundamental)]
#![feature(internal_uninit_const)]
#![feature(lang_items)]
#![feature(libc)]
#![cfg_attr(not(bootstrap), feature(negative_impls))]
#![feature(new_uninit)]
#![feature(nll)]
#![feature(optin_builtin_traits)]
#![feature(pattern)]
#![feature(ptr_internals)]
#![feature(ptr_offset_from)]
#![feature(rustc_attrs)]
#![feature(receiver_trait)]
#![feature(specialization)]
#![feature(staged_api)]
#![feature(std_internals)]
#![feature(str_internals)]
#![feature(trusted_len)]
#![feature(try_reserve)]
#![feature(unboxed_closures)]
#![feature(unicode_internals)]
#![feature(unsize)]
#![feature(unsized_locals)]
#![feature(allocator_internals)]
#![feature(slice_partition_dedup)]
#![feature(maybe_uninit_extra, maybe_uninit_slice)]
#![feature(alloc_layout_extra)]
#![feature(try_trait)]
#![feature(associated_type_bounds)]
// Allow testing this library
#[cfg(test)]
#[macro_use]
extern crate std;
#[cfg(test)]
extern crate test;
// Module with internal macros used by other modules (needs to be included before other modules).
#[macro_use]
mod macros;
// Heaps provided for low-level allocation strategies
pub mod alloc;
// Primitive types using the heaps above
// Need to conditionally define the mod from `boxed.rs` to avoid
// duplicating the lang-items when building in test cfg; but also need
// to allow code to have `use boxed::Box;` declarations.
#[cfg(not(test))]
pub mod boxed;
#[cfg(test)]
mod boxed {
pub use std::boxed::Box;
}
pub mod borrow;
pub mod collections;
pub mod fmt;
pub mod prelude;
pub mod raw_vec;
pub mod rc;
pub mod slice;
pub mod str;
pub mod string;
#[cfg(target_has_atomic = "ptr")]
pub mod sync;
#[cfg(target_has_atomic = "ptr")]
pub mod task;
#[cfg(test)]
mod tests;
pub mod vec;
#[cfg(not(test))]
mod std {
pub use core::ops; // RangeFull
}
#[doc(hidden)]
#[unstable(feature = "liballoc_internals", issue = "none", reason = "implementation detail")]
pub mod __export {
pub use core::format_args;
}