rust/library/core/tests/num/dec2flt/rawfp.rs
Smitty e10555c658 Re-enable all num tests on WASM
This was partially done by #47365, but a few tests
were missed in that PR.
2021-01-15 16:58:44 -05:00

173 lines
5.4 KiB
Rust

use core::num::dec2flt::rawfp::RawFloat;
use core::num::dec2flt::rawfp::{fp_to_float, next_float, prev_float, round_normal};
use core::num::diy_float::Fp;
fn integer_decode(f: f64) -> (u64, i16, i8) {
RawFloat::integer_decode(f)
}
#[test]
fn fp_to_float_half_to_even() {
fn is_normalized(sig: u64) -> bool {
// intentionally written without {min,max}_sig() as a sanity check
sig >> 52 == 1 && sig >> 53 == 0
}
fn conv(sig: u64) -> u64 {
// The significands are perfectly in range, so the exponent should not matter
let (m1, e1, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: 0 }));
assert_eq!(e1, 0 + 64 - 53);
let (m2, e2, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: 55 }));
assert_eq!(e2, 55 + 64 - 53);
assert_eq!(m2, m1);
let (m3, e3, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: -78 }));
assert_eq!(e3, -78 + 64 - 53);
assert_eq!(m3, m2);
m3
}
let odd = 0x1F_EDCB_A012_345F;
let even = odd - 1;
assert!(is_normalized(odd));
assert!(is_normalized(even));
assert_eq!(conv(odd << 11), odd);
assert_eq!(conv(even << 11), even);
assert_eq!(conv(odd << 11 | 1 << 10), odd + 1);
assert_eq!(conv(even << 11 | 1 << 10), even);
assert_eq!(conv(even << 11 | 1 << 10 | 1), even + 1);
assert_eq!(conv(odd << 11 | 1 << 9), odd);
assert_eq!(conv(even << 11 | 1 << 9), even);
assert_eq!(conv(odd << 11 | 0x7FF), odd + 1);
assert_eq!(conv(even << 11 | 0x7FF), even + 1);
assert_eq!(conv(odd << 11 | 0x3FF), odd);
assert_eq!(conv(even << 11 | 0x3FF), even);
}
#[test]
fn integers_to_f64() {
assert_eq!(fp_to_float::<f64>(Fp { f: 1, e: 0 }), 1.0);
assert_eq!(fp_to_float::<f64>(Fp { f: 42, e: 7 }), (42 << 7) as f64);
assert_eq!(fp_to_float::<f64>(Fp { f: 1 << 20, e: 30 }), (1u64 << 50) as f64);
assert_eq!(fp_to_float::<f64>(Fp { f: 4, e: -3 }), 0.5);
}
const SOME_FLOATS: [f64; 9] = [
0.1f64,
33.568,
42.1e-5,
777.0e9,
1.1111,
0.347997,
9843579834.35892,
12456.0e-150,
54389573.0e-150,
];
#[test]
fn human_f64_roundtrip() {
for &x in &SOME_FLOATS {
let (f, e, _) = integer_decode(x);
let fp = Fp { f: f, e: e };
assert_eq!(fp_to_float::<f64>(fp), x);
}
}
#[test]
fn rounding_overflow() {
let x = Fp { f: 0xFF_FF_FF_FF_FF_FF_FF_00u64, e: 42 };
let rounded = round_normal::<f64>(x);
let adjusted_k = x.e + 64 - 53;
assert_eq!(rounded.sig, 1 << 52);
assert_eq!(rounded.k, adjusted_k + 1);
}
#[test]
fn prev_float_monotonic() {
let mut x = 1.0;
for _ in 0..100 {
let x1 = prev_float(x);
assert!(x1 < x);
assert!(x - x1 < 1e-15);
x = x1;
}
}
const MIN_SUBNORMAL: f64 = 5e-324;
#[test]
fn next_float_zero() {
let tiny = next_float(0.0);
assert_eq!(tiny, MIN_SUBNORMAL);
assert!(tiny != 0.0);
}
#[test]
fn next_float_subnormal() {
let second = next_float(MIN_SUBNORMAL);
// For subnormals, MIN_SUBNORMAL is the ULP
assert!(second != MIN_SUBNORMAL);
assert!(second > 0.0);
assert_eq!(second - MIN_SUBNORMAL, MIN_SUBNORMAL);
}
#[test]
fn next_float_inf() {
assert_eq!(next_float(f64::MAX), f64::INFINITY);
assert_eq!(next_float(f64::INFINITY), f64::INFINITY);
}
#[test]
fn next_prev_identity() {
for &x in &SOME_FLOATS {
assert_eq!(prev_float(next_float(x)), x);
assert_eq!(prev_float(prev_float(next_float(next_float(x)))), x);
assert_eq!(next_float(prev_float(x)), x);
assert_eq!(next_float(next_float(prev_float(prev_float(x)))), x);
}
}
#[test]
fn next_float_monotonic() {
let mut x = 0.49999999999999;
assert!(x < 0.5);
for _ in 0..200 {
let x1 = next_float(x);
assert!(x1 > x);
assert!(x1 - x < 1e-15, "next_float_monotonic: delta = {:?}", x1 - x);
x = x1;
}
assert!(x > 0.5);
}
#[test]
fn test_f32_integer_decode() {
assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
assert_eq!(0f32.integer_decode(), (0, -150, 1));
assert_eq!((-0f32).integer_decode(), (0, -150, -1));
assert_eq!(f32::INFINITY.integer_decode(), (8388608, 105, 1));
assert_eq!(f32::NEG_INFINITY.integer_decode(), (8388608, 105, -1));
// Ignore the "sign" (quiet / signalling flag) of NAN.
// It can vary between runtime operations and LLVM folding.
let (nan_m, nan_e, _nan_s) = f32::NAN.integer_decode();
assert_eq!((nan_m, nan_e), (12582912, 105));
}
#[test]
fn test_f64_integer_decode() {
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
assert_eq!(0f64.integer_decode(), (0, -1075, 1));
assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
assert_eq!(f64::INFINITY.integer_decode(), (4503599627370496, 972, 1));
assert_eq!(f64::NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
// Ignore the "sign" (quiet / signalling flag) of NAN.
// It can vary between runtime operations and LLVM folding.
let (nan_m, nan_e, _nan_s) = f64::NAN.integer_decode();
assert_eq!((nan_m, nan_e), (6755399441055744, 972));
}