use core::num::dec2flt::rawfp::RawFloat; use core::num::dec2flt::rawfp::{fp_to_float, next_float, prev_float, round_normal}; use core::num::diy_float::Fp; fn integer_decode(f: f64) -> (u64, i16, i8) { RawFloat::integer_decode(f) } #[test] fn fp_to_float_half_to_even() { fn is_normalized(sig: u64) -> bool { // intentionally written without {min,max}_sig() as a sanity check sig >> 52 == 1 && sig >> 53 == 0 } fn conv(sig: u64) -> u64 { // The significands are perfectly in range, so the exponent should not matter let (m1, e1, _) = integer_decode(fp_to_float::(Fp { f: sig, e: 0 })); assert_eq!(e1, 0 + 64 - 53); let (m2, e2, _) = integer_decode(fp_to_float::(Fp { f: sig, e: 55 })); assert_eq!(e2, 55 + 64 - 53); assert_eq!(m2, m1); let (m3, e3, _) = integer_decode(fp_to_float::(Fp { f: sig, e: -78 })); assert_eq!(e3, -78 + 64 - 53); assert_eq!(m3, m2); m3 } let odd = 0x1F_EDCB_A012_345F; let even = odd - 1; assert!(is_normalized(odd)); assert!(is_normalized(even)); assert_eq!(conv(odd << 11), odd); assert_eq!(conv(even << 11), even); assert_eq!(conv(odd << 11 | 1 << 10), odd + 1); assert_eq!(conv(even << 11 | 1 << 10), even); assert_eq!(conv(even << 11 | 1 << 10 | 1), even + 1); assert_eq!(conv(odd << 11 | 1 << 9), odd); assert_eq!(conv(even << 11 | 1 << 9), even); assert_eq!(conv(odd << 11 | 0x7FF), odd + 1); assert_eq!(conv(even << 11 | 0x7FF), even + 1); assert_eq!(conv(odd << 11 | 0x3FF), odd); assert_eq!(conv(even << 11 | 0x3FF), even); } #[test] fn integers_to_f64() { assert_eq!(fp_to_float::(Fp { f: 1, e: 0 }), 1.0); assert_eq!(fp_to_float::(Fp { f: 42, e: 7 }), (42 << 7) as f64); assert_eq!(fp_to_float::(Fp { f: 1 << 20, e: 30 }), (1u64 << 50) as f64); assert_eq!(fp_to_float::(Fp { f: 4, e: -3 }), 0.5); } const SOME_FLOATS: [f64; 9] = [ 0.1f64, 33.568, 42.1e-5, 777.0e9, 1.1111, 0.347997, 9843579834.35892, 12456.0e-150, 54389573.0e-150, ]; #[test] fn human_f64_roundtrip() { for &x in &SOME_FLOATS { let (f, e, _) = integer_decode(x); let fp = Fp { f: f, e: e }; assert_eq!(fp_to_float::(fp), x); } } #[test] fn rounding_overflow() { let x = Fp { f: 0xFF_FF_FF_FF_FF_FF_FF_00u64, e: 42 }; let rounded = round_normal::(x); let adjusted_k = x.e + 64 - 53; assert_eq!(rounded.sig, 1 << 52); assert_eq!(rounded.k, adjusted_k + 1); } #[test] fn prev_float_monotonic() { let mut x = 1.0; for _ in 0..100 { let x1 = prev_float(x); assert!(x1 < x); assert!(x - x1 < 1e-15); x = x1; } } const MIN_SUBNORMAL: f64 = 5e-324; #[test] fn next_float_zero() { let tiny = next_float(0.0); assert_eq!(tiny, MIN_SUBNORMAL); assert!(tiny != 0.0); } #[test] fn next_float_subnormal() { let second = next_float(MIN_SUBNORMAL); // For subnormals, MIN_SUBNORMAL is the ULP assert!(second != MIN_SUBNORMAL); assert!(second > 0.0); assert_eq!(second - MIN_SUBNORMAL, MIN_SUBNORMAL); } #[test] fn next_float_inf() { assert_eq!(next_float(f64::MAX), f64::INFINITY); assert_eq!(next_float(f64::INFINITY), f64::INFINITY); } #[test] fn next_prev_identity() { for &x in &SOME_FLOATS { assert_eq!(prev_float(next_float(x)), x); assert_eq!(prev_float(prev_float(next_float(next_float(x)))), x); assert_eq!(next_float(prev_float(x)), x); assert_eq!(next_float(next_float(prev_float(prev_float(x)))), x); } } #[test] fn next_float_monotonic() { let mut x = 0.49999999999999; assert!(x < 0.5); for _ in 0..200 { let x1 = next_float(x); assert!(x1 > x); assert!(x1 - x < 1e-15, "next_float_monotonic: delta = {:?}", x1 - x); x = x1; } assert!(x > 0.5); } #[test] fn test_f32_integer_decode() { assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1)); assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1)); assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1)); assert_eq!(0f32.integer_decode(), (0, -150, 1)); assert_eq!((-0f32).integer_decode(), (0, -150, -1)); assert_eq!(f32::INFINITY.integer_decode(), (8388608, 105, 1)); assert_eq!(f32::NEG_INFINITY.integer_decode(), (8388608, 105, -1)); // Ignore the "sign" (quiet / signalling flag) of NAN. // It can vary between runtime operations and LLVM folding. let (nan_m, nan_e, _nan_s) = f32::NAN.integer_decode(); assert_eq!((nan_m, nan_e), (12582912, 105)); } #[test] fn test_f64_integer_decode() { assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1)); assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1)); assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1)); assert_eq!(0f64.integer_decode(), (0, -1075, 1)); assert_eq!((-0f64).integer_decode(), (0, -1075, -1)); assert_eq!(f64::INFINITY.integer_decode(), (4503599627370496, 972, 1)); assert_eq!(f64::NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1)); // Ignore the "sign" (quiet / signalling flag) of NAN. // It can vary between runtime operations and LLVM folding. let (nan_m, nan_e, _nan_s) = f64::NAN.integer_decode(); assert_eq!((nan_m, nan_e), (6755399441055744, 972)); }