713 lines
23 KiB
Rust
713 lines
23 KiB
Rust
use clippy_utils::diagnostics::{span_lint, span_lint_and_then};
|
|
use clippy_utils::trait_ref_of_method;
|
|
use itertools::Itertools;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_errors::Applicability;
|
|
use rustc_hir::intravisit::nested_filter::{self as hir_nested_filter, NestedFilter};
|
|
use rustc_hir::intravisit::{
|
|
walk_fn_decl, walk_generic_param, walk_generics, walk_impl_item_ref, walk_item, walk_param_bound,
|
|
walk_poly_trait_ref, walk_trait_ref, walk_ty, Visitor,
|
|
};
|
|
use rustc_hir::FnRetTy::Return;
|
|
use rustc_hir::{
|
|
lang_items, BareFnTy, BodyId, FnDecl, FnSig, GenericArg, GenericBound, GenericParam, GenericParamKind, Generics,
|
|
Impl, ImplItem, ImplItemKind, Item, ItemKind, Lifetime, LifetimeName, LifetimeParamKind, Node, PolyTraitRef,
|
|
PredicateOrigin, TraitFn, TraitItem, TraitItemKind, Ty, TyKind, WherePredicate,
|
|
};
|
|
use rustc_lint::{LateContext, LateLintPass, LintContext};
|
|
use rustc_middle::hir::map::Map;
|
|
use rustc_middle::hir::nested_filter as middle_nested_filter;
|
|
use rustc_middle::lint::in_external_macro;
|
|
use rustc_session::declare_lint_pass;
|
|
use rustc_span::def_id::LocalDefId;
|
|
use rustc_span::symbol::{kw, Ident, Symbol};
|
|
use rustc_span::Span;
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for lifetime annotations which can be removed by
|
|
/// relying on lifetime elision.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// The additional lifetimes make the code look more
|
|
/// complicated, while there is nothing out of the ordinary going on. Removing
|
|
/// them leads to more readable code.
|
|
///
|
|
/// ### Known problems
|
|
/// - We bail out if the function has a `where` clause where lifetimes
|
|
/// are mentioned due to potential false positives.
|
|
///
|
|
/// ### Example
|
|
/// ```no_run
|
|
/// // Unnecessary lifetime annotations
|
|
/// fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 {
|
|
/// x
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Use instead:
|
|
/// ```no_run
|
|
/// fn elided(x: &u8, y: u8) -> &u8 {
|
|
/// x
|
|
/// }
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub NEEDLESS_LIFETIMES,
|
|
complexity,
|
|
"using explicit lifetimes for references in function arguments when elision rules \
|
|
would allow omitting them"
|
|
}
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for lifetimes in generics that are never used
|
|
/// anywhere else.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// The additional lifetimes make the code look more
|
|
/// complicated, while there is nothing out of the ordinary going on. Removing
|
|
/// them leads to more readable code.
|
|
///
|
|
/// ### Example
|
|
/// ```no_run
|
|
/// // unnecessary lifetimes
|
|
/// fn unused_lifetime<'a>(x: u8) {
|
|
/// // ..
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Use instead:
|
|
/// ```no_run
|
|
/// fn no_lifetime(x: u8) {
|
|
/// // ...
|
|
/// }
|
|
/// ```
|
|
#[clippy::version = "pre 1.29.0"]
|
|
pub EXTRA_UNUSED_LIFETIMES,
|
|
complexity,
|
|
"unused lifetimes in function definitions"
|
|
}
|
|
|
|
declare_lint_pass!(Lifetimes => [NEEDLESS_LIFETIMES, EXTRA_UNUSED_LIFETIMES]);
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for Lifetimes {
|
|
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
|
|
if let ItemKind::Fn(ref sig, generics, id) = item.kind {
|
|
check_fn_inner(cx, sig, Some(id), None, generics, item.span, true);
|
|
} else if let ItemKind::Impl(impl_) = item.kind {
|
|
if !item.span.from_expansion() {
|
|
report_extra_impl_lifetimes(cx, impl_);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx ImplItem<'_>) {
|
|
if let ImplItemKind::Fn(ref sig, id) = item.kind {
|
|
let report_extra_lifetimes = trait_ref_of_method(cx, item.owner_id.def_id).is_none();
|
|
check_fn_inner(
|
|
cx,
|
|
sig,
|
|
Some(id),
|
|
None,
|
|
item.generics,
|
|
item.span,
|
|
report_extra_lifetimes,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) {
|
|
if let TraitItemKind::Fn(ref sig, ref body) = item.kind {
|
|
let (body, trait_sig) = match *body {
|
|
TraitFn::Required(sig) => (None, Some(sig)),
|
|
TraitFn::Provided(id) => (Some(id), None),
|
|
};
|
|
check_fn_inner(cx, sig, body, trait_sig, item.generics, item.span, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_fn_inner<'tcx>(
|
|
cx: &LateContext<'tcx>,
|
|
sig: &'tcx FnSig<'_>,
|
|
body: Option<BodyId>,
|
|
trait_sig: Option<&[Ident]>,
|
|
generics: &'tcx Generics<'_>,
|
|
span: Span,
|
|
report_extra_lifetimes: bool,
|
|
) {
|
|
if in_external_macro(cx.sess(), span) || has_where_lifetimes(cx, generics) {
|
|
return;
|
|
}
|
|
|
|
let types = generics
|
|
.params
|
|
.iter()
|
|
.filter(|param| matches!(param.kind, GenericParamKind::Type { .. }));
|
|
|
|
for typ in types {
|
|
if !typ.span.eq_ctxt(span) {
|
|
return;
|
|
}
|
|
|
|
for pred in generics.bounds_for_param(typ.def_id) {
|
|
if pred.origin == PredicateOrigin::WhereClause {
|
|
// has_where_lifetimes checked that this predicate contains no lifetime.
|
|
continue;
|
|
}
|
|
|
|
for bound in pred.bounds {
|
|
let mut visitor = RefVisitor::new(cx);
|
|
walk_param_bound(&mut visitor, bound);
|
|
if visitor.lts.iter().any(|lt| matches!(lt.res, LifetimeName::Param(_))) {
|
|
return;
|
|
}
|
|
if let GenericBound::Trait(ref trait_ref, _) = *bound {
|
|
let params = &trait_ref
|
|
.trait_ref
|
|
.path
|
|
.segments
|
|
.last()
|
|
.expect("a path must have at least one segment")
|
|
.args;
|
|
if let Some(params) = *params {
|
|
let lifetimes = params.args.iter().filter_map(|arg| match arg {
|
|
GenericArg::Lifetime(lt) => Some(lt),
|
|
_ => None,
|
|
});
|
|
for bound in lifetimes {
|
|
if bound.res != LifetimeName::Static && !bound.is_elided() {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Some((elidable_lts, usages)) = could_use_elision(cx, sig.decl, body, trait_sig, generics.params) {
|
|
if usages.iter().any(|usage| !usage.ident.span.eq_ctxt(span)) {
|
|
return;
|
|
}
|
|
|
|
let lts = elidable_lts
|
|
.iter()
|
|
// In principle, the result of the call to `Node::ident` could be `unwrap`ped, as `DefId` should refer to a
|
|
// `Node::GenericParam`.
|
|
.filter_map(|&def_id| cx.tcx.hir_node_by_def_id(def_id).ident())
|
|
.map(|ident| ident.to_string())
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
|
|
span_lint_and_then(
|
|
cx,
|
|
NEEDLESS_LIFETIMES,
|
|
elidable_lts
|
|
.iter()
|
|
.map(|<| cx.tcx.def_span(lt))
|
|
.chain(usages.iter().filter_map(|usage| {
|
|
if let LifetimeName::Param(def_id) = usage.res
|
|
&& elidable_lts.contains(&def_id)
|
|
{
|
|
return Some(usage.ident.span);
|
|
}
|
|
|
|
None
|
|
}))
|
|
.collect_vec(),
|
|
&format!("the following explicit lifetimes could be elided: {lts}"),
|
|
|diag| {
|
|
if sig.header.is_async() {
|
|
// async functions have usages whose spans point at the lifetime declaration which messes up
|
|
// suggestions
|
|
return;
|
|
};
|
|
|
|
if let Some(suggestions) = elision_suggestions(cx, generics, &elidable_lts, &usages) {
|
|
diag.multipart_suggestion("elide the lifetimes", suggestions, Applicability::MachineApplicable);
|
|
}
|
|
},
|
|
);
|
|
}
|
|
|
|
if report_extra_lifetimes {
|
|
self::report_extra_lifetimes(cx, sig.decl, generics);
|
|
}
|
|
}
|
|
|
|
fn elision_suggestions(
|
|
cx: &LateContext<'_>,
|
|
generics: &Generics<'_>,
|
|
elidable_lts: &[LocalDefId],
|
|
usages: &[Lifetime],
|
|
) -> Option<Vec<(Span, String)>> {
|
|
let explicit_params = generics
|
|
.params
|
|
.iter()
|
|
.filter(|param| !param.is_elided_lifetime() && !param.is_impl_trait())
|
|
.collect::<Vec<_>>();
|
|
|
|
let mut suggestions = if elidable_lts.len() == explicit_params.len() {
|
|
// if all the params are elided remove the whole generic block
|
|
//
|
|
// fn x<'a>() {}
|
|
// ^^^^
|
|
vec![(generics.span, String::new())]
|
|
} else {
|
|
elidable_lts
|
|
.iter()
|
|
.map(|&id| {
|
|
let pos = explicit_params.iter().position(|param| param.def_id == id)?;
|
|
let param = explicit_params.get(pos)?;
|
|
|
|
let span = if let Some(next) = explicit_params.get(pos + 1) {
|
|
// fn x<'prev, 'a, 'next>() {}
|
|
// ^^^^
|
|
param.span.until(next.span)
|
|
} else {
|
|
// `pos` should be at least 1 here, because the param in position 0 would either have a `next`
|
|
// param or would have taken the `elidable_lts.len() == explicit_params.len()` branch.
|
|
let prev = explicit_params.get(pos - 1)?;
|
|
|
|
// fn x<'prev, 'a>() {}
|
|
// ^^^^
|
|
param.span.with_lo(prev.span.hi())
|
|
};
|
|
|
|
Some((span, String::new()))
|
|
})
|
|
.collect::<Option<Vec<_>>>()?
|
|
};
|
|
|
|
suggestions.extend(
|
|
usages
|
|
.iter()
|
|
.filter(|usage| named_lifetime(usage).map_or(false, |id| elidable_lts.contains(&id)))
|
|
.map(|usage| {
|
|
match cx.tcx.parent_hir_node(usage.hir_id) {
|
|
Node::Ty(Ty {
|
|
kind: TyKind::Ref(..), ..
|
|
}) => {
|
|
// expand `&'a T` to `&'a T`
|
|
// ^^ ^^^
|
|
let span = cx
|
|
.sess()
|
|
.source_map()
|
|
.span_extend_while(usage.ident.span, |ch| ch.is_ascii_whitespace())
|
|
.unwrap_or(usage.ident.span);
|
|
|
|
(span, String::new())
|
|
},
|
|
// `T<'a>` and `impl Foo + 'a` should be replaced by `'_`
|
|
_ => (usage.ident.span, String::from("'_")),
|
|
}
|
|
}),
|
|
);
|
|
|
|
Some(suggestions)
|
|
}
|
|
|
|
// elision doesn't work for explicit self types, see rust-lang/rust#69064
|
|
fn explicit_self_type<'tcx>(cx: &LateContext<'tcx>, func: &FnDecl<'tcx>, ident: Option<Ident>) -> bool {
|
|
if let Some(ident) = ident
|
|
&& ident.name == kw::SelfLower
|
|
&& !func.implicit_self.has_implicit_self()
|
|
&& let Some(self_ty) = func.inputs.first()
|
|
{
|
|
let mut visitor = RefVisitor::new(cx);
|
|
visitor.visit_ty(self_ty);
|
|
|
|
!visitor.all_lts().is_empty()
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
fn named_lifetime(lt: &Lifetime) -> Option<LocalDefId> {
|
|
match lt.res {
|
|
LifetimeName::Param(id) if !lt.is_anonymous() => Some(id),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn could_use_elision<'tcx>(
|
|
cx: &LateContext<'tcx>,
|
|
func: &'tcx FnDecl<'_>,
|
|
body: Option<BodyId>,
|
|
trait_sig: Option<&[Ident]>,
|
|
named_generics: &'tcx [GenericParam<'_>],
|
|
) -> Option<(Vec<LocalDefId>, Vec<Lifetime>)> {
|
|
// There are two scenarios where elision works:
|
|
// * no output references, all input references have different LT
|
|
// * output references, exactly one input reference with same LT
|
|
// All lifetimes must be unnamed, 'static or defined without bounds on the
|
|
// level of the current item.
|
|
|
|
// check named LTs
|
|
let allowed_lts = allowed_lts_from(named_generics);
|
|
|
|
// these will collect all the lifetimes for references in arg/return types
|
|
let mut input_visitor = RefVisitor::new(cx);
|
|
let mut output_visitor = RefVisitor::new(cx);
|
|
|
|
// extract lifetimes in input argument types
|
|
for arg in func.inputs {
|
|
input_visitor.visit_ty(arg);
|
|
}
|
|
// extract lifetimes in output type
|
|
if let Return(ty) = func.output {
|
|
output_visitor.visit_ty(ty);
|
|
}
|
|
for lt in named_generics {
|
|
input_visitor.visit_generic_param(lt);
|
|
}
|
|
|
|
if input_visitor.abort() || output_visitor.abort() {
|
|
return None;
|
|
}
|
|
|
|
let input_lts = input_visitor.lts;
|
|
let output_lts = output_visitor.lts;
|
|
|
|
if let Some(trait_sig) = trait_sig {
|
|
if explicit_self_type(cx, func, trait_sig.first().copied()) {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
if let Some(body_id) = body {
|
|
let body = cx.tcx.hir().body(body_id);
|
|
|
|
let first_ident = body.params.first().and_then(|param| param.pat.simple_ident());
|
|
if explicit_self_type(cx, func, first_ident) {
|
|
return None;
|
|
}
|
|
|
|
let mut checker = BodyLifetimeChecker {
|
|
lifetimes_used_in_body: false,
|
|
};
|
|
checker.visit_expr(body.value);
|
|
if checker.lifetimes_used_in_body {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// check for lifetimes from higher scopes
|
|
for lt in input_lts.iter().chain(output_lts.iter()) {
|
|
if let Some(id) = named_lifetime(lt)
|
|
&& !allowed_lts.contains(&id)
|
|
{
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// check for higher-ranked trait bounds
|
|
if !input_visitor.nested_elision_site_lts.is_empty() || !output_visitor.nested_elision_site_lts.is_empty() {
|
|
let allowed_lts: FxHashSet<_> = allowed_lts.iter().map(|id| cx.tcx.item_name(id.to_def_id())).collect();
|
|
for lt in input_visitor.nested_elision_site_lts {
|
|
if allowed_lts.contains(<.ident.name) {
|
|
return None;
|
|
}
|
|
}
|
|
for lt in output_visitor.nested_elision_site_lts {
|
|
if allowed_lts.contains(<.ident.name) {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
// A lifetime can be newly elided if:
|
|
// - It occurs only once among the inputs.
|
|
// - If there are multiple input lifetimes, then the newly elided lifetime does not occur among the
|
|
// outputs (because eliding such an lifetime would create an ambiguity).
|
|
let elidable_lts = named_lifetime_occurrences(&input_lts)
|
|
.into_iter()
|
|
.filter_map(|(def_id, occurrences)| {
|
|
if occurrences == 1
|
|
&& (input_lts.len() == 1 || !output_lts.iter().any(|lt| named_lifetime(lt) == Some(def_id)))
|
|
{
|
|
Some(def_id)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
if elidable_lts.is_empty() {
|
|
return None;
|
|
}
|
|
|
|
let usages = itertools::chain(input_lts, output_lts).collect();
|
|
|
|
Some((elidable_lts, usages))
|
|
}
|
|
|
|
fn allowed_lts_from(named_generics: &[GenericParam<'_>]) -> FxHashSet<LocalDefId> {
|
|
named_generics
|
|
.iter()
|
|
.filter_map(|par| {
|
|
if let GenericParamKind::Lifetime { .. } = par.kind {
|
|
Some(par.def_id)
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Number of times each named lifetime occurs in the given slice. Returns a vector to preserve
|
|
/// relative order.
|
|
#[must_use]
|
|
fn named_lifetime_occurrences(lts: &[Lifetime]) -> Vec<(LocalDefId, usize)> {
|
|
let mut occurrences = Vec::new();
|
|
for lt in lts {
|
|
if let Some(curr_def_id) = named_lifetime(lt) {
|
|
if let Some(pair) = occurrences
|
|
.iter_mut()
|
|
.find(|(prev_def_id, _)| *prev_def_id == curr_def_id)
|
|
{
|
|
pair.1 += 1;
|
|
} else {
|
|
occurrences.push((curr_def_id, 1));
|
|
}
|
|
}
|
|
}
|
|
occurrences
|
|
}
|
|
|
|
struct RefVisitor<'a, 'tcx> {
|
|
cx: &'a LateContext<'tcx>,
|
|
lts: Vec<Lifetime>,
|
|
nested_elision_site_lts: Vec<Lifetime>,
|
|
unelided_trait_object_lifetime: bool,
|
|
}
|
|
|
|
impl<'a, 'tcx> RefVisitor<'a, 'tcx> {
|
|
fn new(cx: &'a LateContext<'tcx>) -> Self {
|
|
Self {
|
|
cx,
|
|
lts: Vec::new(),
|
|
nested_elision_site_lts: Vec::new(),
|
|
unelided_trait_object_lifetime: false,
|
|
}
|
|
}
|
|
|
|
fn all_lts(&self) -> Vec<Lifetime> {
|
|
self.lts
|
|
.iter()
|
|
.chain(self.nested_elision_site_lts.iter())
|
|
.copied()
|
|
.collect::<Vec<_>>()
|
|
}
|
|
|
|
fn abort(&self) -> bool {
|
|
self.unelided_trait_object_lifetime
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> Visitor<'tcx> for RefVisitor<'a, 'tcx> {
|
|
// for lifetimes as parameters of generics
|
|
fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) {
|
|
self.lts.push(*lifetime);
|
|
}
|
|
|
|
fn visit_poly_trait_ref(&mut self, poly_tref: &'tcx PolyTraitRef<'tcx>) {
|
|
let trait_ref = &poly_tref.trait_ref;
|
|
if let Some(id) = trait_ref.trait_def_id()
|
|
&& lang_items::FN_TRAITS
|
|
.iter()
|
|
.any(|&item| self.cx.tcx.lang_items().get(item) == Some(id))
|
|
{
|
|
let mut sub_visitor = RefVisitor::new(self.cx);
|
|
sub_visitor.visit_trait_ref(trait_ref);
|
|
self.nested_elision_site_lts.append(&mut sub_visitor.all_lts());
|
|
} else {
|
|
walk_poly_trait_ref(self, poly_tref);
|
|
}
|
|
}
|
|
|
|
fn visit_ty(&mut self, ty: &'tcx Ty<'_>) {
|
|
match ty.kind {
|
|
TyKind::OpaqueDef(item, bounds, _) => {
|
|
let map = self.cx.tcx.hir();
|
|
let item = map.item(item);
|
|
let len = self.lts.len();
|
|
walk_item(self, item);
|
|
self.lts.truncate(len);
|
|
self.lts.extend(bounds.iter().filter_map(|bound| match bound {
|
|
GenericArg::Lifetime(&l) => Some(l),
|
|
_ => None,
|
|
}));
|
|
},
|
|
TyKind::BareFn(&BareFnTy { decl, .. }) => {
|
|
let mut sub_visitor = RefVisitor::new(self.cx);
|
|
sub_visitor.visit_fn_decl(decl);
|
|
self.nested_elision_site_lts.append(&mut sub_visitor.all_lts());
|
|
},
|
|
TyKind::TraitObject(bounds, lt, _) => {
|
|
if !lt.is_elided() {
|
|
self.unelided_trait_object_lifetime = true;
|
|
}
|
|
for bound in bounds {
|
|
self.visit_poly_trait_ref(bound);
|
|
}
|
|
},
|
|
_ => walk_ty(self, ty),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Are any lifetimes mentioned in the `where` clause? If so, we don't try to
|
|
/// reason about elision.
|
|
fn has_where_lifetimes<'tcx>(cx: &LateContext<'tcx>, generics: &'tcx Generics<'_>) -> bool {
|
|
for predicate in generics.predicates {
|
|
match *predicate {
|
|
WherePredicate::RegionPredicate(..) => return true,
|
|
WherePredicate::BoundPredicate(ref pred) => {
|
|
// a predicate like F: Trait or F: for<'a> Trait<'a>
|
|
let mut visitor = RefVisitor::new(cx);
|
|
// walk the type F, it may not contain LT refs
|
|
walk_ty(&mut visitor, pred.bounded_ty);
|
|
if !visitor.all_lts().is_empty() {
|
|
return true;
|
|
}
|
|
// if the bounds define new lifetimes, they are fine to occur
|
|
let allowed_lts = allowed_lts_from(pred.bound_generic_params);
|
|
// now walk the bounds
|
|
for bound in pred.bounds {
|
|
walk_param_bound(&mut visitor, bound);
|
|
}
|
|
// and check that all lifetimes are allowed
|
|
for lt in visitor.all_lts() {
|
|
if let Some(id) = named_lifetime(<)
|
|
&& !allowed_lts.contains(&id)
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
},
|
|
WherePredicate::EqPredicate(ref pred) => {
|
|
let mut visitor = RefVisitor::new(cx);
|
|
walk_ty(&mut visitor, pred.lhs_ty);
|
|
walk_ty(&mut visitor, pred.rhs_ty);
|
|
if !visitor.lts.is_empty() {
|
|
return true;
|
|
}
|
|
},
|
|
}
|
|
}
|
|
false
|
|
}
|
|
|
|
struct LifetimeChecker<'cx, 'tcx, F> {
|
|
cx: &'cx LateContext<'tcx>,
|
|
map: FxHashMap<Symbol, Span>,
|
|
phantom: std::marker::PhantomData<F>,
|
|
}
|
|
|
|
impl<'cx, 'tcx, F> LifetimeChecker<'cx, 'tcx, F> {
|
|
fn new(cx: &'cx LateContext<'tcx>, map: FxHashMap<Symbol, Span>) -> LifetimeChecker<'cx, 'tcx, F> {
|
|
Self {
|
|
cx,
|
|
map,
|
|
phantom: std::marker::PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'cx, 'tcx, F> Visitor<'tcx> for LifetimeChecker<'cx, 'tcx, F>
|
|
where
|
|
F: NestedFilter<'tcx>,
|
|
{
|
|
type Map = Map<'tcx>;
|
|
type NestedFilter = F;
|
|
|
|
// for lifetimes as parameters of generics
|
|
fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) {
|
|
self.map.remove(&lifetime.ident.name);
|
|
}
|
|
|
|
fn visit_generic_param(&mut self, param: &'tcx GenericParam<'_>) {
|
|
// don't actually visit `<'a>` or `<'a: 'b>`
|
|
// we've already visited the `'a` declarations and
|
|
// don't want to spuriously remove them
|
|
// `'b` in `'a: 'b` is useless unless used elsewhere in
|
|
// a non-lifetime bound
|
|
if let GenericParamKind::Type { .. } = param.kind {
|
|
walk_generic_param(self, param);
|
|
}
|
|
}
|
|
|
|
fn nested_visit_map(&mut self) -> Self::Map {
|
|
self.cx.tcx.hir()
|
|
}
|
|
}
|
|
|
|
fn report_extra_lifetimes<'tcx>(cx: &LateContext<'tcx>, func: &'tcx FnDecl<'_>, generics: &'tcx Generics<'_>) {
|
|
let hs = generics
|
|
.params
|
|
.iter()
|
|
.filter_map(|par| match par.kind {
|
|
GenericParamKind::Lifetime {
|
|
kind: LifetimeParamKind::Explicit,
|
|
} => Some((par.name.ident().name, par.span)),
|
|
_ => None,
|
|
})
|
|
.collect();
|
|
let mut checker = LifetimeChecker::<hir_nested_filter::None>::new(cx, hs);
|
|
|
|
walk_generics(&mut checker, generics);
|
|
walk_fn_decl(&mut checker, func);
|
|
|
|
for &v in checker.map.values() {
|
|
span_lint(
|
|
cx,
|
|
EXTRA_UNUSED_LIFETIMES,
|
|
v,
|
|
"this lifetime isn't used in the function definition",
|
|
);
|
|
}
|
|
}
|
|
|
|
fn report_extra_impl_lifetimes<'tcx>(cx: &LateContext<'tcx>, impl_: &'tcx Impl<'_>) {
|
|
let hs = impl_
|
|
.generics
|
|
.params
|
|
.iter()
|
|
.filter_map(|par| match par.kind {
|
|
GenericParamKind::Lifetime {
|
|
kind: LifetimeParamKind::Explicit,
|
|
} => Some((par.name.ident().name, par.span)),
|
|
_ => None,
|
|
})
|
|
.collect();
|
|
let mut checker = LifetimeChecker::<middle_nested_filter::All>::new(cx, hs);
|
|
|
|
walk_generics(&mut checker, impl_.generics);
|
|
if let Some(ref trait_ref) = impl_.of_trait {
|
|
walk_trait_ref(&mut checker, trait_ref);
|
|
}
|
|
walk_ty(&mut checker, impl_.self_ty);
|
|
for item in impl_.items {
|
|
walk_impl_item_ref(&mut checker, item);
|
|
}
|
|
|
|
for &v in checker.map.values() {
|
|
span_lint(cx, EXTRA_UNUSED_LIFETIMES, v, "this lifetime isn't used in the impl");
|
|
}
|
|
}
|
|
|
|
struct BodyLifetimeChecker {
|
|
lifetimes_used_in_body: bool,
|
|
}
|
|
|
|
impl<'tcx> Visitor<'tcx> for BodyLifetimeChecker {
|
|
// for lifetimes as parameters of generics
|
|
fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) {
|
|
if !lifetime.is_anonymous() && lifetime.ident.name != kw::StaticLifetime {
|
|
self.lifetimes_used_in_body = true;
|
|
}
|
|
}
|
|
}
|