use clippy_utils::diagnostics::{span_lint, span_lint_and_then}; use clippy_utils::trait_ref_of_method; use itertools::Itertools; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_errors::Applicability; use rustc_hir::intravisit::nested_filter::{self as hir_nested_filter, NestedFilter}; use rustc_hir::intravisit::{ walk_fn_decl, walk_generic_param, walk_generics, walk_impl_item_ref, walk_item, walk_param_bound, walk_poly_trait_ref, walk_trait_ref, walk_ty, Visitor, }; use rustc_hir::FnRetTy::Return; use rustc_hir::{ lang_items, BareFnTy, BodyId, FnDecl, FnSig, GenericArg, GenericBound, GenericParam, GenericParamKind, Generics, Impl, ImplItem, ImplItemKind, Item, ItemKind, Lifetime, LifetimeName, LifetimeParamKind, Node, PolyTraitRef, PredicateOrigin, TraitFn, TraitItem, TraitItemKind, Ty, TyKind, WherePredicate, }; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::hir::map::Map; use rustc_middle::hir::nested_filter as middle_nested_filter; use rustc_middle::lint::in_external_macro; use rustc_session::declare_lint_pass; use rustc_span::def_id::LocalDefId; use rustc_span::symbol::{kw, Ident, Symbol}; use rustc_span::Span; declare_clippy_lint! { /// ### What it does /// Checks for lifetime annotations which can be removed by /// relying on lifetime elision. /// /// ### Why is this bad? /// The additional lifetimes make the code look more /// complicated, while there is nothing out of the ordinary going on. Removing /// them leads to more readable code. /// /// ### Known problems /// - We bail out if the function has a `where` clause where lifetimes /// are mentioned due to potential false positives. /// /// ### Example /// ```no_run /// // Unnecessary lifetime annotations /// fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 { /// x /// } /// ``` /// /// Use instead: /// ```no_run /// fn elided(x: &u8, y: u8) -> &u8 { /// x /// } /// ``` #[clippy::version = "pre 1.29.0"] pub NEEDLESS_LIFETIMES, complexity, "using explicit lifetimes for references in function arguments when elision rules \ would allow omitting them" } declare_clippy_lint! { /// ### What it does /// Checks for lifetimes in generics that are never used /// anywhere else. /// /// ### Why is this bad? /// The additional lifetimes make the code look more /// complicated, while there is nothing out of the ordinary going on. Removing /// them leads to more readable code. /// /// ### Example /// ```no_run /// // unnecessary lifetimes /// fn unused_lifetime<'a>(x: u8) { /// // .. /// } /// ``` /// /// Use instead: /// ```no_run /// fn no_lifetime(x: u8) { /// // ... /// } /// ``` #[clippy::version = "pre 1.29.0"] pub EXTRA_UNUSED_LIFETIMES, complexity, "unused lifetimes in function definitions" } declare_lint_pass!(Lifetimes => [NEEDLESS_LIFETIMES, EXTRA_UNUSED_LIFETIMES]); impl<'tcx> LateLintPass<'tcx> for Lifetimes { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if let ItemKind::Fn(ref sig, generics, id) = item.kind { check_fn_inner(cx, sig, Some(id), None, generics, item.span, true); } else if let ItemKind::Impl(impl_) = item.kind { if !item.span.from_expansion() { report_extra_impl_lifetimes(cx, impl_); } } } fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx ImplItem<'_>) { if let ImplItemKind::Fn(ref sig, id) = item.kind { let report_extra_lifetimes = trait_ref_of_method(cx, item.owner_id.def_id).is_none(); check_fn_inner( cx, sig, Some(id), None, item.generics, item.span, report_extra_lifetimes, ); } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) { if let TraitItemKind::Fn(ref sig, ref body) = item.kind { let (body, trait_sig) = match *body { TraitFn::Required(sig) => (None, Some(sig)), TraitFn::Provided(id) => (Some(id), None), }; check_fn_inner(cx, sig, body, trait_sig, item.generics, item.span, true); } } } fn check_fn_inner<'tcx>( cx: &LateContext<'tcx>, sig: &'tcx FnSig<'_>, body: Option, trait_sig: Option<&[Ident]>, generics: &'tcx Generics<'_>, span: Span, report_extra_lifetimes: bool, ) { if in_external_macro(cx.sess(), span) || has_where_lifetimes(cx, generics) { return; } let types = generics .params .iter() .filter(|param| matches!(param.kind, GenericParamKind::Type { .. })); for typ in types { if !typ.span.eq_ctxt(span) { return; } for pred in generics.bounds_for_param(typ.def_id) { if pred.origin == PredicateOrigin::WhereClause { // has_where_lifetimes checked that this predicate contains no lifetime. continue; } for bound in pred.bounds { let mut visitor = RefVisitor::new(cx); walk_param_bound(&mut visitor, bound); if visitor.lts.iter().any(|lt| matches!(lt.res, LifetimeName::Param(_))) { return; } if let GenericBound::Trait(ref trait_ref, _) = *bound { let params = &trait_ref .trait_ref .path .segments .last() .expect("a path must have at least one segment") .args; if let Some(params) = *params { let lifetimes = params.args.iter().filter_map(|arg| match arg { GenericArg::Lifetime(lt) => Some(lt), _ => None, }); for bound in lifetimes { if bound.res != LifetimeName::Static && !bound.is_elided() { return; } } } } } } } if let Some((elidable_lts, usages)) = could_use_elision(cx, sig.decl, body, trait_sig, generics.params) { if usages.iter().any(|usage| !usage.ident.span.eq_ctxt(span)) { return; } let lts = elidable_lts .iter() // In principle, the result of the call to `Node::ident` could be `unwrap`ped, as `DefId` should refer to a // `Node::GenericParam`. .filter_map(|&def_id| cx.tcx.hir_node_by_def_id(def_id).ident()) .map(|ident| ident.to_string()) .collect::>() .join(", "); span_lint_and_then( cx, NEEDLESS_LIFETIMES, elidable_lts .iter() .map(|<| cx.tcx.def_span(lt)) .chain(usages.iter().filter_map(|usage| { if let LifetimeName::Param(def_id) = usage.res && elidable_lts.contains(&def_id) { return Some(usage.ident.span); } None })) .collect_vec(), &format!("the following explicit lifetimes could be elided: {lts}"), |diag| { if sig.header.is_async() { // async functions have usages whose spans point at the lifetime declaration which messes up // suggestions return; }; if let Some(suggestions) = elision_suggestions(cx, generics, &elidable_lts, &usages) { diag.multipart_suggestion("elide the lifetimes", suggestions, Applicability::MachineApplicable); } }, ); } if report_extra_lifetimes { self::report_extra_lifetimes(cx, sig.decl, generics); } } fn elision_suggestions( cx: &LateContext<'_>, generics: &Generics<'_>, elidable_lts: &[LocalDefId], usages: &[Lifetime], ) -> Option> { let explicit_params = generics .params .iter() .filter(|param| !param.is_elided_lifetime() && !param.is_impl_trait()) .collect::>(); let mut suggestions = if elidable_lts.len() == explicit_params.len() { // if all the params are elided remove the whole generic block // // fn x<'a>() {} // ^^^^ vec![(generics.span, String::new())] } else { elidable_lts .iter() .map(|&id| { let pos = explicit_params.iter().position(|param| param.def_id == id)?; let param = explicit_params.get(pos)?; let span = if let Some(next) = explicit_params.get(pos + 1) { // fn x<'prev, 'a, 'next>() {} // ^^^^ param.span.until(next.span) } else { // `pos` should be at least 1 here, because the param in position 0 would either have a `next` // param or would have taken the `elidable_lts.len() == explicit_params.len()` branch. let prev = explicit_params.get(pos - 1)?; // fn x<'prev, 'a>() {} // ^^^^ param.span.with_lo(prev.span.hi()) }; Some((span, String::new())) }) .collect::>>()? }; suggestions.extend( usages .iter() .filter(|usage| named_lifetime(usage).map_or(false, |id| elidable_lts.contains(&id))) .map(|usage| { match cx.tcx.parent_hir_node(usage.hir_id) { Node::Ty(Ty { kind: TyKind::Ref(..), .. }) => { // expand `&'a T` to `&'a T` // ^^ ^^^ let span = cx .sess() .source_map() .span_extend_while(usage.ident.span, |ch| ch.is_ascii_whitespace()) .unwrap_or(usage.ident.span); (span, String::new()) }, // `T<'a>` and `impl Foo + 'a` should be replaced by `'_` _ => (usage.ident.span, String::from("'_")), } }), ); Some(suggestions) } // elision doesn't work for explicit self types, see rust-lang/rust#69064 fn explicit_self_type<'tcx>(cx: &LateContext<'tcx>, func: &FnDecl<'tcx>, ident: Option) -> bool { if let Some(ident) = ident && ident.name == kw::SelfLower && !func.implicit_self.has_implicit_self() && let Some(self_ty) = func.inputs.first() { let mut visitor = RefVisitor::new(cx); visitor.visit_ty(self_ty); !visitor.all_lts().is_empty() } else { false } } fn named_lifetime(lt: &Lifetime) -> Option { match lt.res { LifetimeName::Param(id) if !lt.is_anonymous() => Some(id), _ => None, } } fn could_use_elision<'tcx>( cx: &LateContext<'tcx>, func: &'tcx FnDecl<'_>, body: Option, trait_sig: Option<&[Ident]>, named_generics: &'tcx [GenericParam<'_>], ) -> Option<(Vec, Vec)> { // There are two scenarios where elision works: // * no output references, all input references have different LT // * output references, exactly one input reference with same LT // All lifetimes must be unnamed, 'static or defined without bounds on the // level of the current item. // check named LTs let allowed_lts = allowed_lts_from(named_generics); // these will collect all the lifetimes for references in arg/return types let mut input_visitor = RefVisitor::new(cx); let mut output_visitor = RefVisitor::new(cx); // extract lifetimes in input argument types for arg in func.inputs { input_visitor.visit_ty(arg); } // extract lifetimes in output type if let Return(ty) = func.output { output_visitor.visit_ty(ty); } for lt in named_generics { input_visitor.visit_generic_param(lt); } if input_visitor.abort() || output_visitor.abort() { return None; } let input_lts = input_visitor.lts; let output_lts = output_visitor.lts; if let Some(trait_sig) = trait_sig { if explicit_self_type(cx, func, trait_sig.first().copied()) { return None; } } if let Some(body_id) = body { let body = cx.tcx.hir().body(body_id); let first_ident = body.params.first().and_then(|param| param.pat.simple_ident()); if explicit_self_type(cx, func, first_ident) { return None; } let mut checker = BodyLifetimeChecker { lifetimes_used_in_body: false, }; checker.visit_expr(body.value); if checker.lifetimes_used_in_body { return None; } } // check for lifetimes from higher scopes for lt in input_lts.iter().chain(output_lts.iter()) { if let Some(id) = named_lifetime(lt) && !allowed_lts.contains(&id) { return None; } } // check for higher-ranked trait bounds if !input_visitor.nested_elision_site_lts.is_empty() || !output_visitor.nested_elision_site_lts.is_empty() { let allowed_lts: FxHashSet<_> = allowed_lts.iter().map(|id| cx.tcx.item_name(id.to_def_id())).collect(); for lt in input_visitor.nested_elision_site_lts { if allowed_lts.contains(<.ident.name) { return None; } } for lt in output_visitor.nested_elision_site_lts { if allowed_lts.contains(<.ident.name) { return None; } } } // A lifetime can be newly elided if: // - It occurs only once among the inputs. // - If there are multiple input lifetimes, then the newly elided lifetime does not occur among the // outputs (because eliding such an lifetime would create an ambiguity). let elidable_lts = named_lifetime_occurrences(&input_lts) .into_iter() .filter_map(|(def_id, occurrences)| { if occurrences == 1 && (input_lts.len() == 1 || !output_lts.iter().any(|lt| named_lifetime(lt) == Some(def_id))) { Some(def_id) } else { None } }) .collect::>(); if elidable_lts.is_empty() { return None; } let usages = itertools::chain(input_lts, output_lts).collect(); Some((elidable_lts, usages)) } fn allowed_lts_from(named_generics: &[GenericParam<'_>]) -> FxHashSet { named_generics .iter() .filter_map(|par| { if let GenericParamKind::Lifetime { .. } = par.kind { Some(par.def_id) } else { None } }) .collect() } /// Number of times each named lifetime occurs in the given slice. Returns a vector to preserve /// relative order. #[must_use] fn named_lifetime_occurrences(lts: &[Lifetime]) -> Vec<(LocalDefId, usize)> { let mut occurrences = Vec::new(); for lt in lts { if let Some(curr_def_id) = named_lifetime(lt) { if let Some(pair) = occurrences .iter_mut() .find(|(prev_def_id, _)| *prev_def_id == curr_def_id) { pair.1 += 1; } else { occurrences.push((curr_def_id, 1)); } } } occurrences } struct RefVisitor<'a, 'tcx> { cx: &'a LateContext<'tcx>, lts: Vec, nested_elision_site_lts: Vec, unelided_trait_object_lifetime: bool, } impl<'a, 'tcx> RefVisitor<'a, 'tcx> { fn new(cx: &'a LateContext<'tcx>) -> Self { Self { cx, lts: Vec::new(), nested_elision_site_lts: Vec::new(), unelided_trait_object_lifetime: false, } } fn all_lts(&self) -> Vec { self.lts .iter() .chain(self.nested_elision_site_lts.iter()) .copied() .collect::>() } fn abort(&self) -> bool { self.unelided_trait_object_lifetime } } impl<'a, 'tcx> Visitor<'tcx> for RefVisitor<'a, 'tcx> { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { self.lts.push(*lifetime); } fn visit_poly_trait_ref(&mut self, poly_tref: &'tcx PolyTraitRef<'tcx>) { let trait_ref = &poly_tref.trait_ref; if let Some(id) = trait_ref.trait_def_id() && lang_items::FN_TRAITS .iter() .any(|&item| self.cx.tcx.lang_items().get(item) == Some(id)) { let mut sub_visitor = RefVisitor::new(self.cx); sub_visitor.visit_trait_ref(trait_ref); self.nested_elision_site_lts.append(&mut sub_visitor.all_lts()); } else { walk_poly_trait_ref(self, poly_tref); } } fn visit_ty(&mut self, ty: &'tcx Ty<'_>) { match ty.kind { TyKind::OpaqueDef(item, bounds, _) => { let map = self.cx.tcx.hir(); let item = map.item(item); let len = self.lts.len(); walk_item(self, item); self.lts.truncate(len); self.lts.extend(bounds.iter().filter_map(|bound| match bound { GenericArg::Lifetime(&l) => Some(l), _ => None, })); }, TyKind::BareFn(&BareFnTy { decl, .. }) => { let mut sub_visitor = RefVisitor::new(self.cx); sub_visitor.visit_fn_decl(decl); self.nested_elision_site_lts.append(&mut sub_visitor.all_lts()); }, TyKind::TraitObject(bounds, lt, _) => { if !lt.is_elided() { self.unelided_trait_object_lifetime = true; } for bound in bounds { self.visit_poly_trait_ref(bound); } }, _ => walk_ty(self, ty), } } } /// Are any lifetimes mentioned in the `where` clause? If so, we don't try to /// reason about elision. fn has_where_lifetimes<'tcx>(cx: &LateContext<'tcx>, generics: &'tcx Generics<'_>) -> bool { for predicate in generics.predicates { match *predicate { WherePredicate::RegionPredicate(..) => return true, WherePredicate::BoundPredicate(ref pred) => { // a predicate like F: Trait or F: for<'a> Trait<'a> let mut visitor = RefVisitor::new(cx); // walk the type F, it may not contain LT refs walk_ty(&mut visitor, pred.bounded_ty); if !visitor.all_lts().is_empty() { return true; } // if the bounds define new lifetimes, they are fine to occur let allowed_lts = allowed_lts_from(pred.bound_generic_params); // now walk the bounds for bound in pred.bounds { walk_param_bound(&mut visitor, bound); } // and check that all lifetimes are allowed for lt in visitor.all_lts() { if let Some(id) = named_lifetime(<) && !allowed_lts.contains(&id) { return true; } } }, WherePredicate::EqPredicate(ref pred) => { let mut visitor = RefVisitor::new(cx); walk_ty(&mut visitor, pred.lhs_ty); walk_ty(&mut visitor, pred.rhs_ty); if !visitor.lts.is_empty() { return true; } }, } } false } struct LifetimeChecker<'cx, 'tcx, F> { cx: &'cx LateContext<'tcx>, map: FxHashMap, phantom: std::marker::PhantomData, } impl<'cx, 'tcx, F> LifetimeChecker<'cx, 'tcx, F> { fn new(cx: &'cx LateContext<'tcx>, map: FxHashMap) -> LifetimeChecker<'cx, 'tcx, F> { Self { cx, map, phantom: std::marker::PhantomData, } } } impl<'cx, 'tcx, F> Visitor<'tcx> for LifetimeChecker<'cx, 'tcx, F> where F: NestedFilter<'tcx>, { type Map = Map<'tcx>; type NestedFilter = F; // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { self.map.remove(&lifetime.ident.name); } fn visit_generic_param(&mut self, param: &'tcx GenericParam<'_>) { // don't actually visit `<'a>` or `<'a: 'b>` // we've already visited the `'a` declarations and // don't want to spuriously remove them // `'b` in `'a: 'b` is useless unless used elsewhere in // a non-lifetime bound if let GenericParamKind::Type { .. } = param.kind { walk_generic_param(self, param); } } fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } } fn report_extra_lifetimes<'tcx>(cx: &LateContext<'tcx>, func: &'tcx FnDecl<'_>, generics: &'tcx Generics<'_>) { let hs = generics .params .iter() .filter_map(|par| match par.kind { GenericParamKind::Lifetime { kind: LifetimeParamKind::Explicit, } => Some((par.name.ident().name, par.span)), _ => None, }) .collect(); let mut checker = LifetimeChecker::::new(cx, hs); walk_generics(&mut checker, generics); walk_fn_decl(&mut checker, func); for &v in checker.map.values() { span_lint( cx, EXTRA_UNUSED_LIFETIMES, v, "this lifetime isn't used in the function definition", ); } } fn report_extra_impl_lifetimes<'tcx>(cx: &LateContext<'tcx>, impl_: &'tcx Impl<'_>) { let hs = impl_ .generics .params .iter() .filter_map(|par| match par.kind { GenericParamKind::Lifetime { kind: LifetimeParamKind::Explicit, } => Some((par.name.ident().name, par.span)), _ => None, }) .collect(); let mut checker = LifetimeChecker::::new(cx, hs); walk_generics(&mut checker, impl_.generics); if let Some(ref trait_ref) = impl_.of_trait { walk_trait_ref(&mut checker, trait_ref); } walk_ty(&mut checker, impl_.self_ty); for item in impl_.items { walk_impl_item_ref(&mut checker, item); } for &v in checker.map.values() { span_lint(cx, EXTRA_UNUSED_LIFETIMES, v, "this lifetime isn't used in the impl"); } } struct BodyLifetimeChecker { lifetimes_used_in_body: bool, } impl<'tcx> Visitor<'tcx> for BodyLifetimeChecker { // for lifetimes as parameters of generics fn visit_lifetime(&mut self, lifetime: &'tcx Lifetime) { if !lifetime.is_anonymous() && lifetime.ident.name != kw::StaticLifetime { self.lifetimes_used_in_body = true; } } }