rust/src/librustc_trans/cabi_powerpc64.rs
Josh Stone a9bb599fb1 powerpc64: improve extern struct ABI
These fixes all have to do with the 64-bit PowerPC ELF ABI for big-endian
targets.  The ELF v2 ABI for powerpc64le already worked well.

- Return after marking return aggregates indirect. Fixes #42757.
- Pass one-member float aggregates as direct argument values.
- Aggregate arguments less than 64-bit must be written in the least-
  significant bits of the parameter space.
- Larger aggregates are instead padded at the tail.
  (i.e. filling MSBs, padding the remaining LSBs.)

New tests were also added for the single-float aggregate, and a 3-byte
aggregate to check that it's filled into LSBs.  Overall, at least these
formerly-failing tests now pass on powerpc64:

- run-make/extern-fn-struct-passing-abi
- run-make/extern-fn-with-packed-struct
- run-pass/extern-pass-TwoU16s.rs
- run-pass/extern-pass-TwoU8s.rs
- run-pass/struct-return.rs
2017-09-01 18:21:29 -07:00

149 lines
4.2 KiB
Rust

// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// FIXME:
// Alignment of 128 bit types is not currently handled, this will
// need to be fixed when PowerPC vector support is added.
use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform};
use context::CrateContext;
use rustc::ty::layout;
#[derive(Debug, Clone, Copy, PartialEq)]
enum ABI {
ELFv1, // original ABI used for powerpc64 (big-endian)
ELFv2, // newer ABI used for powerpc64le
}
use self::ABI::*;
fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
arg: &mut ArgType<'tcx>,
abi: ABI)
-> Option<Uniform> {
arg.layout.homogeneous_aggregate(ccx).and_then(|unit| {
let size = arg.layout.size(ccx);
// ELFv1 only passes one-member aggregates transparently.
// ELFv2 passes up to eight uniquely addressable members.
if (abi == ELFv1 && size > unit.size)
|| size > unit.size.checked_mul(8, ccx).unwrap() {
return None;
}
let valid_unit = match unit.kind {
RegKind::Integer => false,
RegKind::Float => true,
RegKind::Vector => size.bits() == 128
};
if valid_unit {
Some(Uniform {
unit,
total: size
})
} else {
None
}
})
}
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>, abi: ABI) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(64);
return;
}
// The ELFv1 ABI doesn't return aggregates in registers
if abi == ELFv1 {
ret.make_indirect(ccx);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, ret, abi) {
ret.cast_to(ccx, uniform);
return;
}
let size = ret.layout.size(ccx);
let bits = size.bits();
if bits <= 128 {
let unit = if bits <= 8 {
Reg::i8()
} else if bits <= 16 {
Reg::i16()
} else if bits <= 32 {
Reg::i32()
} else {
Reg::i64()
};
ret.cast_to(ccx, Uniform {
unit,
total: size
});
return;
}
ret.make_indirect(ccx);
}
fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>, abi: ABI) {
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(64);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, arg, abi) {
arg.cast_to(ccx, uniform);
return;
}
let size = arg.layout.size(ccx);
let (unit, total) = match abi {
ELFv1 => {
// In ELFv1, aggregates smaller than a doubleword should appear in
// the least-significant bits of the parameter doubleword. The rest
// should be padded at their tail to fill out multiple doublewords.
if size.bits() <= 64 {
(Reg { kind: RegKind::Integer, size }, size)
} else {
let align = layout::Align::from_bits(64, 64).unwrap();
(Reg::i64(), size.abi_align(align))
}
},
ELFv2 => {
// In ELFv2, we can just cast directly.
(Reg::i64(), size)
},
};
arg.cast_to(ccx, Uniform {
unit,
total
});
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let abi = match ccx.sess().target.target.target_endian.as_str() {
"big" => ELFv1,
"little" => ELFv2,
_ => unimplemented!(),
};
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, abi);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, abi);
}
}