// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME: // Alignment of 128 bit types is not currently handled, this will // need to be fixed when PowerPC vector support is added. use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform}; use context::CrateContext; use rustc::ty::layout; #[derive(Debug, Clone, Copy, PartialEq)] enum ABI { ELFv1, // original ABI used for powerpc64 (big-endian) ELFv2, // newer ABI used for powerpc64le } use self::ABI::*; fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>, abi: ABI) -> Option { arg.layout.homogeneous_aggregate(ccx).and_then(|unit| { let size = arg.layout.size(ccx); // ELFv1 only passes one-member aggregates transparently. // ELFv2 passes up to eight uniquely addressable members. if (abi == ELFv1 && size > unit.size) || size > unit.size.checked_mul(8, ccx).unwrap() { return None; } let valid_unit = match unit.kind { RegKind::Integer => false, RegKind::Float => true, RegKind::Vector => size.bits() == 128 }; if valid_unit { Some(Uniform { unit, total: size }) } else { None } }) } fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>, abi: ABI) { if !ret.layout.is_aggregate() { ret.extend_integer_width_to(64); return; } // The ELFv1 ABI doesn't return aggregates in registers if abi == ELFv1 { ret.make_indirect(ccx); return; } if let Some(uniform) = is_homogeneous_aggregate(ccx, ret, abi) { ret.cast_to(ccx, uniform); return; } let size = ret.layout.size(ccx); let bits = size.bits(); if bits <= 128 { let unit = if bits <= 8 { Reg::i8() } else if bits <= 16 { Reg::i16() } else if bits <= 32 { Reg::i32() } else { Reg::i64() }; ret.cast_to(ccx, Uniform { unit, total: size }); return; } ret.make_indirect(ccx); } fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>, abi: ABI) { if !arg.layout.is_aggregate() { arg.extend_integer_width_to(64); return; } if let Some(uniform) = is_homogeneous_aggregate(ccx, arg, abi) { arg.cast_to(ccx, uniform); return; } let size = arg.layout.size(ccx); let (unit, total) = match abi { ELFv1 => { // In ELFv1, aggregates smaller than a doubleword should appear in // the least-significant bits of the parameter doubleword. The rest // should be padded at their tail to fill out multiple doublewords. if size.bits() <= 64 { (Reg { kind: RegKind::Integer, size }, size) } else { let align = layout::Align::from_bits(64, 64).unwrap(); (Reg::i64(), size.abi_align(align)) } }, ELFv2 => { // In ELFv2, we can just cast directly. (Reg::i64(), size) }, }; arg.cast_to(ccx, Uniform { unit, total }); } pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) { let abi = match ccx.sess().target.target.target_endian.as_str() { "big" => ELFv1, "little" => ELFv2, _ => unimplemented!(), }; if !fty.ret.is_ignore() { classify_ret_ty(ccx, &mut fty.ret, abi); } for arg in &mut fty.args { if arg.is_ignore() { continue; } classify_arg_ty(ccx, arg, abi); } }