1402 lines
52 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cstore;
use index::Index;
use schema::*;
use rustc::middle::cstore::{InlinedItemRef, LinkMeta};
use rustc::middle::cstore::{LinkagePreference, NativeLibrary};
use rustc::hir::def;
use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, DefIndex, DefId};
use rustc::middle::dependency_format::Linkage;
use rustc::middle::lang_items;
use rustc::mir;
use rustc::traits::specialization_graph;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::session::config::{self, CrateTypeProcMacro};
use rustc::util::nodemap::{FxHashMap, NodeSet};
use rustc_serialize::{Encodable, Encoder, SpecializedEncoder, opaque};
use std::hash::Hash;
use std::intrinsics;
use std::io::prelude::*;
use std::io::Cursor;
use std::rc::Rc;
use std::u32;
use syntax::ast::{self, CRATE_NODE_ID};
use syntax::attr;
use syntax::symbol::Symbol;
use syntax_pos;
use rustc::hir::{self, PatKind};
use rustc::hir::itemlikevisit::ItemLikeVisitor;
use rustc::hir::intravisit::Visitor;
use rustc::hir::intravisit;
use super::index_builder::{FromId, IndexBuilder, Untracked};
pub struct EncodeContext<'a, 'tcx: 'a> {
opaque: opaque::Encoder<'a>,
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
reexports: &'a def::ExportMap,
link_meta: &'a LinkMeta,
cstore: &'a cstore::CStore,
reachable: &'a NodeSet,
lazy_state: LazyState,
type_shorthands: FxHashMap<Ty<'tcx>, usize>,
predicate_shorthands: FxHashMap<ty::Predicate<'tcx>, usize>,
}
macro_rules! encoder_methods {
($($name:ident($ty:ty);)*) => {
$(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> {
self.opaque.$name(value)
})*
}
}
impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
type Error = <opaque::Encoder<'a> as Encoder>::Error;
fn emit_nil(&mut self) -> Result<(), Self::Error> {
Ok(())
}
encoder_methods! {
emit_usize(usize);
emit_u64(u64);
emit_u32(u32);
emit_u16(u16);
emit_u8(u8);
emit_isize(isize);
emit_i64(i64);
emit_i32(i32);
emit_i16(i16);
emit_i8(i8);
emit_bool(bool);
emit_f64(f64);
emit_f32(f32);
emit_char(char);
emit_str(&str);
}
}
impl<'a, 'tcx, T> SpecializedEncoder<Lazy<T>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self, lazy: &Lazy<T>) -> Result<(), Self::Error> {
self.emit_lazy_distance(lazy.position, Lazy::<T>::min_size())
}
}
impl<'a, 'tcx, T> SpecializedEncoder<LazySeq<T>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self, seq: &LazySeq<T>) -> Result<(), Self::Error> {
self.emit_usize(seq.len)?;
if seq.len == 0 {
return Ok(());
}
self.emit_lazy_distance(seq.position, LazySeq::<T>::min_size(seq.len))
}
}
impl<'a, 'tcx> SpecializedEncoder<Ty<'tcx>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self, ty: &Ty<'tcx>) -> Result<(), Self::Error> {
self.encode_with_shorthand(ty, &ty.sty, |ecx| &mut ecx.type_shorthands)
}
}
impl<'a, 'tcx> SpecializedEncoder<ty::GenericPredicates<'tcx>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self,
predicates: &ty::GenericPredicates<'tcx>)
-> Result<(), Self::Error> {
predicates.parent.encode(self)?;
predicates.predicates.len().encode(self)?;
for predicate in &predicates.predicates {
self.encode_with_shorthand(predicate, predicate, |ecx| &mut ecx.predicate_shorthands)?
}
Ok(())
}
}
impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
pub fn position(&self) -> usize {
self.opaque.position()
}
fn emit_node<F: FnOnce(&mut Self, usize) -> R, R>(&mut self, f: F) -> R {
assert_eq!(self.lazy_state, LazyState::NoNode);
let pos = self.position();
self.lazy_state = LazyState::NodeStart(pos);
let r = f(self, pos);
self.lazy_state = LazyState::NoNode;
r
}
fn emit_lazy_distance(&mut self,
position: usize,
min_size: usize)
-> Result<(), <Self as Encoder>::Error> {
let min_end = position + min_size;
let distance = match self.lazy_state {
LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
LazyState::NodeStart(start) => {
assert!(min_end <= start);
start - min_end
}
LazyState::Previous(last_min_end) => {
assert!(last_min_end <= position);
position - last_min_end
}
};
self.lazy_state = LazyState::Previous(min_end);
self.emit_usize(distance)
}
pub fn lazy<T: Encodable>(&mut self, value: &T) -> Lazy<T> {
self.emit_node(|ecx, pos| {
value.encode(ecx).unwrap();
assert!(pos + Lazy::<T>::min_size() <= ecx.position());
Lazy::with_position(pos)
})
}
fn lazy_seq<I, T>(&mut self, iter: I) -> LazySeq<T>
where I: IntoIterator<Item = T>,
T: Encodable
{
self.emit_node(|ecx, pos| {
let len = iter.into_iter().map(|value| value.encode(ecx).unwrap()).count();
assert!(pos + LazySeq::<T>::min_size(len) <= ecx.position());
LazySeq::with_position_and_length(pos, len)
})
}
fn lazy_seq_ref<'b, I, T>(&mut self, iter: I) -> LazySeq<T>
where I: IntoIterator<Item = &'b T>,
T: 'b + Encodable
{
self.emit_node(|ecx, pos| {
let len = iter.into_iter().map(|value| value.encode(ecx).unwrap()).count();
assert!(pos + LazySeq::<T>::min_size(len) <= ecx.position());
LazySeq::with_position_and_length(pos, len)
})
}
/// Encode the given value or a previously cached shorthand.
fn encode_with_shorthand<T, U, M>(&mut self,
value: &T,
variant: &U,
map: M)
-> Result<(), <Self as Encoder>::Error>
where M: for<'b> Fn(&'b mut Self) -> &'b mut FxHashMap<T, usize>,
T: Clone + Eq + Hash,
U: Encodable
{
let existing_shorthand = map(self).get(value).cloned();
if let Some(shorthand) = existing_shorthand {
return self.emit_usize(shorthand);
}
let start = self.position();
variant.encode(self)?;
let len = self.position() - start;
// The shorthand encoding uses the same usize as the
// discriminant, with an offset so they can't conflict.
let discriminant = unsafe { intrinsics::discriminant_value(variant) };
assert!(discriminant < SHORTHAND_OFFSET as u64);
let shorthand = start + SHORTHAND_OFFSET;
// Get the number of bits that leb128 could fit
// in the same space as the fully encoded type.
let leb128_bits = len * 7;
// Check that the shorthand is a not longer than the
// full encoding itself, i.e. it's an obvious win.
if leb128_bits >= 64 || (shorthand as u64) < (1 << leb128_bits) {
map(self).insert(value.clone(), shorthand);
}
Ok(())
}
/// For every DefId that we create a metadata item for, we include a
/// serialized copy of its DefKey, which allows us to recreate a path.
fn encode_def_key(&mut self, def_id: DefId) -> Lazy<hir::map::DefKey> {
let tcx = self.tcx;
self.lazy(&tcx.map.def_key(def_id))
}
fn encode_item_variances(&mut self, def_id: DefId) -> LazySeq<ty::Variance> {
let tcx = self.tcx;
self.lazy_seq(tcx.item_variances(def_id).iter().cloned())
}
fn encode_item_type(&mut self, def_id: DefId) -> Lazy<Ty<'tcx>> {
let tcx = self.tcx;
self.lazy(&tcx.item_type(def_id))
}
/// Encode data for the given variant of the given ADT. The
/// index of the variant is untracked: this is ok because we
/// will have to lookup the adt-def by its id, and that gives us
/// the right to access any information in the adt-def (including,
/// e.g., the length of the various vectors).
fn encode_enum_variant_info(&mut self,
(enum_did, Untracked(index)): (DefId, Untracked<usize>))
-> Entry<'tcx> {
let tcx = self.tcx;
let def = tcx.lookup_adt_def(enum_did);
let variant = &def.variants[index];
let def_id = variant.did;
let data = VariantData {
ctor_kind: variant.ctor_kind,
disr: variant.disr_val.to_u64_unchecked(),
struct_ctor: None,
};
let enum_id = tcx.map.as_local_node_id(enum_did).unwrap();
let enum_vis = &tcx.map.expect_item(enum_id).vis;
Entry {
kind: EntryKind::Variant(self.lazy(&data)),
visibility: enum_vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&tcx.get_attrs(def_id)),
children: self.lazy_seq(variant.fields.iter().map(|f| {
assert!(f.did.is_local());
f.did.index
})),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
fn encode_info_for_mod(&mut self,
FromId(id, (md, attrs, vis)): FromId<(&hir::Mod,
&[ast::Attribute],
&hir::Visibility)>)
-> Entry<'tcx> {
let tcx = self.tcx;
let def_id = tcx.map.local_def_id(id);
let data = ModData {
reexports: match self.reexports.get(&id) {
Some(exports) if *vis == hir::Public => self.lazy_seq_ref(exports),
_ => LazySeq::empty(),
},
};
Entry {
kind: EntryKind::Mod(self.lazy(&data)),
visibility: vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(attrs),
children: self.lazy_seq(md.item_ids.iter().map(|item_id| {
tcx.map.local_def_id(item_id.id).index
})),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: None,
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: None,
predicates: None,
ast: None,
mir: None
}
}
}
trait Visibility {
fn simplify(&self) -> ty::Visibility;
}
impl Visibility for hir::Visibility {
fn simplify(&self) -> ty::Visibility {
if *self == hir::Public {
ty::Visibility::Public
} else {
ty::Visibility::PrivateExternal
}
}
}
impl Visibility for ty::Visibility {
fn simplify(&self) -> ty::Visibility {
if *self == ty::Visibility::Public {
ty::Visibility::Public
} else {
ty::Visibility::PrivateExternal
}
}
}
impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> {
fn encode_fields(&mut self, adt_def_id: DefId) {
let def = self.tcx.lookup_adt_def(adt_def_id);
for (variant_index, variant) in def.variants.iter().enumerate() {
for (field_index, field) in variant.fields.iter().enumerate() {
self.record(field.did,
EncodeContext::encode_field,
(adt_def_id, Untracked((variant_index, field_index))));
}
}
}
}
impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
/// Encode data for the given field of the given variant of the
/// given ADT. The indices of the variant/field are untracked:
/// this is ok because we will have to lookup the adt-def by its
/// id, and that gives us the right to access any information in
/// the adt-def (including, e.g., the length of the various
/// vectors).
fn encode_field(&mut self,
(adt_def_id, Untracked((variant_index, field_index))): (DefId,
Untracked<(usize,
usize)>))
-> Entry<'tcx> {
let tcx = self.tcx;
let variant = &tcx.lookup_adt_def(adt_def_id).variants[variant_index];
let field = &variant.fields[field_index];
let def_id = field.did;
let variant_id = tcx.map.as_local_node_id(variant.did).unwrap();
let variant_data = tcx.map.expect_variant_data(variant_id);
Entry {
kind: EntryKind::Field,
visibility: field.vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&variant_data.fields()[field_index].attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
fn encode_struct_ctor(&mut self, (adt_def_id, def_id): (DefId, DefId)) -> Entry<'tcx> {
let tcx = self.tcx;
let variant = tcx.lookup_adt_def(adt_def_id).struct_variant();
let data = VariantData {
ctor_kind: variant.ctor_kind,
disr: variant.disr_val.to_u64_unchecked(),
struct_ctor: Some(def_id.index),
};
let struct_id = tcx.map.as_local_node_id(adt_def_id).unwrap();
let struct_vis = &tcx.map.expect_item(struct_id).vis;
Entry {
kind: EntryKind::Struct(self.lazy(&data)),
visibility: struct_vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
fn encode_generics(&mut self, def_id: DefId) -> Lazy<ty::Generics<'tcx>> {
let tcx = self.tcx;
self.lazy(tcx.item_generics(def_id))
}
fn encode_predicates(&mut self, def_id: DefId) -> Lazy<ty::GenericPredicates<'tcx>> {
let tcx = self.tcx;
self.lazy(&tcx.item_predicates(def_id))
}
fn encode_info_for_trait_item(&mut self, def_id: DefId) -> Entry<'tcx> {
let tcx = self.tcx;
let node_id = tcx.map.as_local_node_id(def_id).unwrap();
let ast_item = tcx.map.expect_trait_item(node_id);
let trait_item = tcx.associated_item(def_id);
let container = match trait_item.defaultness {
hir::Defaultness::Default { has_value: true } =>
AssociatedContainer::TraitWithDefault,
hir::Defaultness::Default { has_value: false } =>
AssociatedContainer::TraitRequired,
hir::Defaultness::Final =>
span_bug!(ast_item.span, "traits cannot have final items"),
};
let kind = match trait_item.kind {
ty::AssociatedKind::Const => EntryKind::AssociatedConst(container),
ty::AssociatedKind::Method => {
let fn_data = if let hir::MethodTraitItem(ref sig, _) = ast_item.node {
FnData {
constness: hir::Constness::NotConst,
arg_names: self.encode_fn_arg_names(&sig.decl),
}
} else {
bug!()
};
EntryKind::Method(self.lazy(&MethodData {
fn_data: fn_data,
container: container,
has_self: trait_item.method_has_self_argument,
}))
}
ty::AssociatedKind::Type => EntryKind::AssociatedType(container),
};
Entry {
kind: kind,
visibility: trait_item.vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&ast_item.attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: match trait_item.kind {
ty::AssociatedKind::Const |
ty::AssociatedKind::Method => {
Some(self.encode_item_type(def_id))
}
ty::AssociatedKind::Type => {
if trait_item.defaultness.has_value() {
Some(self.encode_item_type(def_id))
} else {
None
}
}
},
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: if trait_item.kind == ty::AssociatedKind::Const {
let trait_def_id = trait_item.container.id();
Some(self.encode_inlined_item(InlinedItemRef::TraitItem(trait_def_id, ast_item)))
} else {
None
},
mir: self.encode_mir(def_id),
}
}
fn encode_info_for_impl_item(&mut self, def_id: DefId) -> Entry<'tcx> {
let node_id = self.tcx.map.as_local_node_id(def_id).unwrap();
let ast_item = self.tcx.map.expect_impl_item(node_id);
let impl_item = self.tcx.associated_item(def_id);
let impl_def_id = impl_item.container.id();
let container = match impl_item.defaultness {
hir::Defaultness::Default { has_value: true } => AssociatedContainer::ImplDefault,
hir::Defaultness::Final => AssociatedContainer::ImplFinal,
hir::Defaultness::Default { has_value: false } =>
span_bug!(ast_item.span, "impl items always have values (currently)"),
};
let kind = match impl_item.kind {
ty::AssociatedKind::Const => EntryKind::AssociatedConst(container),
ty::AssociatedKind::Method => {
let fn_data = if let hir::ImplItemKind::Method(ref sig, _) = ast_item.node {
FnData {
constness: sig.constness,
arg_names: self.encode_fn_arg_names(&sig.decl),
}
} else {
bug!()
};
EntryKind::Method(self.lazy(&MethodData {
fn_data: fn_data,
container: container,
has_self: impl_item.method_has_self_argument,
}))
}
ty::AssociatedKind::Type => EntryKind::AssociatedType(container)
};
let (ast, mir) = if impl_item.kind == ty::AssociatedKind::Const {
(true, true)
} else if let hir::ImplItemKind::Method(ref sig, _) = ast_item.node {
let generics = self.tcx.item_generics(def_id);
let types = generics.parent_types as usize + generics.types.len();
let needs_inline = types > 0 || attr::requests_inline(&ast_item.attrs);
let is_const_fn = sig.constness == hir::Constness::Const;
(is_const_fn, needs_inline || is_const_fn)
} else {
(false, false)
};
Entry {
kind: kind,
visibility: impl_item.vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&ast_item.attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: if ast {
Some(self.encode_inlined_item(InlinedItemRef::ImplItem(impl_def_id, ast_item)))
} else {
None
},
mir: if mir { self.encode_mir(def_id) } else { None },
}
}
fn encode_fn_arg_names(&mut self, decl: &hir::FnDecl) -> LazySeq<ast::Name> {
self.lazy_seq(decl.inputs.iter().map(|arg| {
if let PatKind::Binding(_, _, ref path1, _) = arg.pat.node {
path1.node
} else {
Symbol::intern("")
}
}))
}
fn encode_mir(&mut self, def_id: DefId) -> Option<Lazy<mir::Mir<'tcx>>> {
self.tcx.mir_map.borrow().get(&def_id).map(|mir| self.lazy(&*mir.borrow()))
}
// Encodes the inherent implementations of a structure, enumeration, or trait.
fn encode_inherent_implementations(&mut self, def_id: DefId) -> LazySeq<DefIndex> {
match self.tcx.inherent_impls.borrow().get(&def_id) {
None => LazySeq::empty(),
Some(implementations) => {
self.lazy_seq(implementations.iter().map(|&def_id| {
assert!(def_id.is_local());
def_id.index
}))
}
}
}
fn encode_stability(&mut self, def_id: DefId) -> Option<Lazy<attr::Stability>> {
self.tcx.lookup_stability(def_id).map(|stab| self.lazy(stab))
}
fn encode_deprecation(&mut self, def_id: DefId) -> Option<Lazy<attr::Deprecation>> {
self.tcx.lookup_deprecation(def_id).map(|depr| self.lazy(&depr))
}
fn encode_info_for_item(&mut self, (def_id, item): (DefId, &hir::Item)) -> Entry<'tcx> {
let tcx = self.tcx;
debug!("encoding info for item at {}",
tcx.sess.codemap().span_to_string(item.span));
let kind = match item.node {
hir::ItemStatic(_, hir::MutMutable, _) => EntryKind::MutStatic,
hir::ItemStatic(_, hir::MutImmutable, _) => EntryKind::ImmStatic,
hir::ItemConst(..) => EntryKind::Const,
hir::ItemFn(ref decl, _, constness, ..) => {
let data = FnData {
constness: constness,
arg_names: self.encode_fn_arg_names(&decl),
};
EntryKind::Fn(self.lazy(&data))
}
hir::ItemMod(ref m) => {
return self.encode_info_for_mod(FromId(item.id, (m, &item.attrs, &item.vis)));
}
hir::ItemForeignMod(_) => EntryKind::ForeignMod,
hir::ItemTy(..) => EntryKind::Type,
hir::ItemEnum(..) => EntryKind::Enum,
hir::ItemStruct(ref struct_def, _) => {
let variant = tcx.lookup_adt_def(def_id).struct_variant();
// Encode def_ids for each field and method
// for methods, write all the stuff get_trait_method
// needs to know
let struct_ctor = if !struct_def.is_struct() {
Some(tcx.map.local_def_id(struct_def.id()).index)
} else {
None
};
EntryKind::Struct(self.lazy(&VariantData {
ctor_kind: variant.ctor_kind,
disr: variant.disr_val.to_u64_unchecked(),
struct_ctor: struct_ctor,
}))
}
hir::ItemUnion(..) => {
let variant = tcx.lookup_adt_def(def_id).struct_variant();
EntryKind::Union(self.lazy(&VariantData {
ctor_kind: variant.ctor_kind,
disr: variant.disr_val.to_u64_unchecked(),
struct_ctor: None,
}))
}
hir::ItemDefaultImpl(..) => {
let data = ImplData {
polarity: hir::ImplPolarity::Positive,
parent_impl: None,
coerce_unsized_kind: None,
trait_ref: tcx.impl_trait_ref(def_id).map(|trait_ref| self.lazy(&trait_ref)),
};
EntryKind::DefaultImpl(self.lazy(&data))
}
hir::ItemImpl(_, polarity, ..) => {
let trait_ref = tcx.impl_trait_ref(def_id);
let parent = if let Some(trait_ref) = trait_ref {
let trait_def = tcx.lookup_trait_def(trait_ref.def_id);
trait_def.ancestors(def_id).skip(1).next().and_then(|node| {
match node {
specialization_graph::Node::Impl(parent) => Some(parent),
_ => None,
}
})
} else {
None
};
let data = ImplData {
polarity: polarity,
parent_impl: parent,
coerce_unsized_kind: tcx.custom_coerce_unsized_kinds
.borrow()
.get(&def_id)
.cloned(),
trait_ref: trait_ref.map(|trait_ref| self.lazy(&trait_ref)),
};
EntryKind::Impl(self.lazy(&data))
}
hir::ItemTrait(..) => {
let trait_def = tcx.lookup_trait_def(def_id);
let data = TraitData {
unsafety: trait_def.unsafety,
paren_sugar: trait_def.paren_sugar,
has_default_impl: tcx.trait_has_default_impl(def_id),
trait_ref: self.lazy(&trait_def.trait_ref),
super_predicates: self.lazy(&tcx.item_super_predicates(def_id)),
};
EntryKind::Trait(self.lazy(&data))
}
hir::ItemExternCrate(_) |
hir::ItemUse(..) => bug!("cannot encode info for item {:?}", item),
};
Entry {
kind: kind,
visibility: item.vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&item.attrs),
children: match item.node {
hir::ItemForeignMod(ref fm) => {
self.lazy_seq(fm.items
.iter()
.map(|foreign_item| tcx.map.local_def_id(foreign_item.id).index))
}
hir::ItemEnum(..) => {
let def = self.tcx.lookup_adt_def(def_id);
self.lazy_seq(def.variants.iter().map(|v| {
assert!(v.did.is_local());
v.did.index
}))
}
hir::ItemStruct(..) |
hir::ItemUnion(..) => {
let def = self.tcx.lookup_adt_def(def_id);
self.lazy_seq(def.struct_variant().fields.iter().map(|f| {
assert!(f.did.is_local());
f.did.index
}))
}
hir::ItemImpl(..) |
hir::ItemTrait(..) => {
self.lazy_seq(tcx.associated_item_def_ids(def_id).iter().map(|&def_id| {
assert!(def_id.is_local());
def_id.index
}))
}
_ => LazySeq::empty(),
},
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemImpl(..) => Some(self.encode_item_type(def_id)),
_ => None,
},
inherent_impls: self.encode_inherent_implementations(def_id),
variances: match item.node {
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemTrait(..) => self.encode_item_variances(def_id),
_ => LazySeq::empty(),
},
generics: match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemImpl(..) |
hir::ItemTrait(..) => Some(self.encode_generics(def_id)),
_ => None,
},
predicates: match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemImpl(..) |
hir::ItemTrait(..) => Some(self.encode_predicates(def_id)),
_ => None,
},
ast: match item.node {
hir::ItemConst(..) |
hir::ItemFn(_, _, hir::Constness::Const, ..) => {
Some(self.encode_inlined_item(InlinedItemRef::Item(def_id, item)))
}
_ => None,
},
mir: match item.node {
hir::ItemConst(..) => self.encode_mir(def_id),
hir::ItemFn(_, _, constness, _, ref generics, _) => {
let tps_len = generics.ty_params.len();
let needs_inline = tps_len > 0 || attr::requests_inline(&item.attrs);
if needs_inline || constness == hir::Constness::Const {
self.encode_mir(def_id)
} else {
None
}
}
_ => None,
},
}
}
/// Serialize the text of exported macros
fn encode_info_for_macro_def(&mut self, macro_def: &hir::MacroDef) -> Entry<'tcx> {
let def_id = self.tcx.map.local_def_id(macro_def.id);
let macro_def = MacroDef {
name: macro_def.name,
attrs: macro_def.attrs.to_vec(),
span: macro_def.span,
body: ::syntax::print::pprust::tts_to_string(&macro_def.body)
};
Entry {
kind: EntryKind::MacroDef(self.lazy(&macro_def)),
visibility: ty::Visibility::Public,
def_key: self.encode_def_key(def_id),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: None,
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: None,
predicates: None,
ast: None,
mir: None,
}
}
}
impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> {
/// In some cases, along with the item itself, we also
/// encode some sub-items. Usually we want some info from the item
/// so it's easier to do that here then to wait until we would encounter
/// normally in the visitor walk.
fn encode_addl_info_for_item(&mut self, item: &hir::Item) {
let def_id = self.tcx.map.local_def_id(item.id);
match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemMod(..) |
hir::ItemForeignMod(..) |
hir::ItemExternCrate(..) |
hir::ItemUse(..) |
hir::ItemDefaultImpl(..) |
hir::ItemTy(..) => {
// no sub-item recording needed in these cases
}
hir::ItemEnum(..) => {
self.encode_fields(def_id);
let def = self.tcx.lookup_adt_def(def_id);
for (i, variant) in def.variants.iter().enumerate() {
self.record(variant.did,
EncodeContext::encode_enum_variant_info,
(def_id, Untracked(i)));
}
}
hir::ItemStruct(ref struct_def, _) => {
self.encode_fields(def_id);
// If the struct has a constructor, encode it.
if !struct_def.is_struct() {
let ctor_def_id = self.tcx.map.local_def_id(struct_def.id());
self.record(ctor_def_id,
EncodeContext::encode_struct_ctor,
(def_id, ctor_def_id));
}
}
hir::ItemUnion(..) => {
self.encode_fields(def_id);
}
hir::ItemImpl(..) => {
for &trait_item_def_id in &self.tcx.associated_item_def_ids(def_id)[..] {
self.record(trait_item_def_id,
EncodeContext::encode_info_for_impl_item,
trait_item_def_id);
}
}
hir::ItemTrait(..) => {
for &item_def_id in &self.tcx.associated_item_def_ids(def_id)[..] {
self.record(item_def_id,
EncodeContext::encode_info_for_trait_item,
item_def_id);
}
}
}
}
}
impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
fn encode_info_for_foreign_item(&mut self,
(def_id, nitem): (DefId, &hir::ForeignItem))
-> Entry<'tcx> {
let tcx = self.tcx;
debug!("writing foreign item {}", tcx.node_path_str(nitem.id));
let kind = match nitem.node {
hir::ForeignItemFn(ref fndecl, _) => {
let data = FnData {
constness: hir::Constness::NotConst,
arg_names: self.encode_fn_arg_names(&fndecl),
};
EntryKind::ForeignFn(self.lazy(&data))
}
hir::ForeignItemStatic(_, true) => EntryKind::ForeignMutStatic,
hir::ForeignItemStatic(_, false) => EntryKind::ForeignImmStatic,
};
Entry {
kind: kind,
visibility: nitem.vis.simplify(),
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&nitem.attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
}
struct EncodeVisitor<'a, 'b: 'a, 'tcx: 'b> {
index: IndexBuilder<'a, 'b, 'tcx>,
}
impl<'a, 'b, 'tcx> Visitor<'tcx> for EncodeVisitor<'a, 'b, 'tcx> {
fn visit_expr(&mut self, ex: &'tcx hir::Expr) {
intravisit::walk_expr(self, ex);
self.index.encode_info_for_expr(ex);
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
intravisit::walk_item(self, item);
let def_id = self.index.tcx.map.local_def_id(item.id);
match item.node {
hir::ItemExternCrate(_) |
hir::ItemUse(..) => (), // ignore these
_ => self.index.record(def_id, EncodeContext::encode_info_for_item, (def_id, item)),
}
self.index.encode_addl_info_for_item(item);
}
fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem) {
intravisit::walk_foreign_item(self, ni);
let def_id = self.index.tcx.map.local_def_id(ni.id);
self.index.record(def_id,
EncodeContext::encode_info_for_foreign_item,
(def_id, ni));
}
fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
intravisit::walk_ty(self, ty);
self.index.encode_info_for_ty(ty);
}
fn visit_macro_def(&mut self, macro_def: &'tcx hir::MacroDef) {
let def_id = self.index.tcx.map.local_def_id(macro_def.id);
self.index.record(def_id, EncodeContext::encode_info_for_macro_def, macro_def);
}
}
impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> {
fn encode_info_for_ty(&mut self, ty: &hir::Ty) {
if let hir::TyImplTrait(_) = ty.node {
let def_id = self.tcx.map.local_def_id(ty.id);
self.record(def_id, EncodeContext::encode_info_for_anon_ty, def_id);
}
}
fn encode_info_for_expr(&mut self, expr: &hir::Expr) {
match expr.node {
hir::ExprClosure(..) => {
let def_id = self.tcx.map.local_def_id(expr.id);
self.record(def_id, EncodeContext::encode_info_for_closure, def_id);
}
_ => {}
}
}
}
impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
fn encode_info_for_anon_ty(&mut self, def_id: DefId) -> Entry<'tcx> {
Entry {
kind: EntryKind::Type,
visibility: ty::Visibility::Public,
def_key: self.encode_def_key(def_id),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
fn encode_info_for_closure(&mut self, def_id: DefId) -> Entry<'tcx> {
let tcx = self.tcx;
let data = ClosureData {
kind: tcx.closure_kind(def_id),
ty: self.lazy(&tcx.tables().closure_tys[&def_id]),
};
Entry {
kind: EntryKind::Closure(self.lazy(&data)),
visibility: ty::Visibility::Public,
def_key: self.encode_def_key(def_id),
attributes: self.encode_attributes(&tcx.get_attrs(def_id)),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: None,
ast: None,
mir: self.encode_mir(def_id),
}
}
fn encode_info_for_items(&mut self) -> Index {
let krate = self.tcx.map.krate();
let mut index = IndexBuilder::new(self);
index.record(DefId::local(CRATE_DEF_INDEX),
EncodeContext::encode_info_for_mod,
FromId(CRATE_NODE_ID, (&krate.module, &krate.attrs, &hir::Public)));
let mut visitor = EncodeVisitor { index: index };
krate.visit_all_item_likes(&mut visitor.as_deep_visitor());
for macro_def in &krate.exported_macros {
visitor.visit_macro_def(macro_def);
}
visitor.index.into_items()
}
fn encode_attributes(&mut self, attrs: &[ast::Attribute]) -> LazySeq<ast::Attribute> {
self.lazy_seq_ref(attrs)
}
fn encode_crate_deps(&mut self) -> LazySeq<CrateDep> {
fn get_ordered_deps(cstore: &cstore::CStore) -> Vec<(CrateNum, Rc<cstore::CrateMetadata>)> {
// Pull the cnums and name,vers,hash out of cstore
let mut deps = Vec::new();
cstore.iter_crate_data(|cnum, val| {
deps.push((cnum, val.clone()));
});
// Sort by cnum
deps.sort_by(|kv1, kv2| kv1.0.cmp(&kv2.0));
// Sanity-check the crate numbers
let mut expected_cnum = 1;
for &(n, _) in &deps {
assert_eq!(n, CrateNum::new(expected_cnum));
expected_cnum += 1;
}
deps
}
// We're just going to write a list of crate 'name-hash-version's, with
// the assumption that they are numbered 1 to n.
// FIXME (#2166): This is not nearly enough to support correct versioning
// but is enough to get transitive crate dependencies working.
let deps = get_ordered_deps(self.cstore);
self.lazy_seq(deps.iter().map(|&(_, ref dep)| {
CrateDep {
name: dep.name(),
hash: dep.hash(),
kind: dep.dep_kind.get(),
}
}))
}
fn encode_lang_items(&mut self) -> (LazySeq<(DefIndex, usize)>, LazySeq<lang_items::LangItem>) {
let tcx = self.tcx;
let lang_items = tcx.lang_items.items().iter();
(self.lazy_seq(lang_items.enumerate().filter_map(|(i, &opt_def_id)| {
if let Some(def_id) = opt_def_id {
if def_id.is_local() {
return Some((def_id.index, i));
}
}
None
})),
self.lazy_seq_ref(&tcx.lang_items.missing))
}
fn encode_native_libraries(&mut self) -> LazySeq<NativeLibrary> {
let used_libraries = self.tcx.sess.cstore.used_libraries();
self.lazy_seq(used_libraries)
}
fn encode_codemap(&mut self) -> LazySeq<syntax_pos::FileMap> {
let codemap = self.tcx.sess.codemap();
let all_filemaps = codemap.files.borrow();
self.lazy_seq_ref(all_filemaps.iter()
.filter(|filemap| {
// No need to export empty filemaps, as they can't contain spans
// that need translation.
// Also no need to re-export imported filemaps, as any downstream
// crate will import them from their original source.
!filemap.lines.borrow().is_empty() && !filemap.is_imported()
})
.map(|filemap| &**filemap))
}
}
struct ImplVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
impls: FxHashMap<DefId, Vec<DefIndex>>,
}
impl<'a, 'tcx, 'v> ItemLikeVisitor<'v> for ImplVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
if let hir::ItemImpl(..) = item.node {
let impl_id = self.tcx.map.local_def_id(item.id);
if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_id) {
self.impls
.entry(trait_ref.def_id)
.or_insert(vec![])
.push(impl_id.index);
}
}
}
fn visit_impl_item(&mut self, _impl_item: &'v hir::ImplItem) {
// handled in `visit_item` above
}
}
impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
/// Encodes an index, mapping each trait to its (local) implementations.
fn encode_impls(&mut self) -> LazySeq<TraitImpls> {
let mut visitor = ImplVisitor {
tcx: self.tcx,
impls: FxHashMap(),
};
self.tcx.map.krate().visit_all_item_likes(&mut visitor);
let all_impls: Vec<_> = visitor.impls
.into_iter()
.map(|(trait_def_id, impls)| {
TraitImpls {
trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
impls: self.lazy_seq(impls),
}
})
.collect();
self.lazy_seq(all_impls)
}
// Encodes all reachable symbols in this crate into the metadata.
//
// This pass is seeded off the reachability list calculated in the
// middle::reachable module but filters out items that either don't have a
// symbol associated with them (they weren't translated) or if they're an FFI
// definition (as that's not defined in this crate).
fn encode_reachable(&mut self) -> LazySeq<DefIndex> {
let reachable = self.reachable;
let tcx = self.tcx;
self.lazy_seq(reachable.iter().map(|&id| tcx.map.local_def_id(id).index))
}
fn encode_dylib_dependency_formats(&mut self) -> LazySeq<Option<LinkagePreference>> {
match self.tcx.sess.dependency_formats.borrow().get(&config::CrateTypeDylib) {
Some(arr) => {
self.lazy_seq(arr.iter().map(|slot| {
match *slot {
Linkage::NotLinked |
Linkage::IncludedFromDylib => None,
Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
Linkage::Static => Some(LinkagePreference::RequireStatic),
}
}))
}
None => LazySeq::empty(),
}
}
fn encode_crate_root(&mut self) -> Lazy<CrateRoot> {
let mut i = self.position();
let crate_deps = self.encode_crate_deps();
let dylib_dependency_formats = self.encode_dylib_dependency_formats();
let dep_bytes = self.position() - i;
// Encode the language items.
i = self.position();
let (lang_items, lang_items_missing) = self.encode_lang_items();
let lang_item_bytes = self.position() - i;
// Encode the native libraries used
i = self.position();
let native_libraries = self.encode_native_libraries();
let native_lib_bytes = self.position() - i;
// Encode codemap
i = self.position();
let codemap = self.encode_codemap();
let codemap_bytes = self.position() - i;
// Encode the def IDs of impls, for coherence checking.
i = self.position();
let impls = self.encode_impls();
let impl_bytes = self.position() - i;
// Encode reachability info.
i = self.position();
let reachable_ids = self.encode_reachable();
let reachable_bytes = self.position() - i;
// Encode and index the items.
i = self.position();
let items = self.encode_info_for_items();
let item_bytes = self.position() - i;
i = self.position();
let index = items.write_index(&mut self.opaque.cursor);
let index_bytes = self.position() - i;
let tcx = self.tcx;
let link_meta = self.link_meta;
let is_proc_macro = tcx.sess.crate_types.borrow().contains(&CrateTypeProcMacro);
let root = self.lazy(&CrateRoot {
name: link_meta.crate_name,
triple: tcx.sess.opts.target_triple.clone(),
hash: link_meta.crate_hash,
disambiguator: tcx.sess.local_crate_disambiguator(),
panic_strategy: tcx.sess.panic_strategy(),
plugin_registrar_fn: tcx.sess
.plugin_registrar_fn
.get()
.map(|id| tcx.map.local_def_id(id).index),
macro_derive_registrar: if is_proc_macro {
let id = tcx.sess.derive_registrar_fn.get().unwrap();
Some(tcx.map.local_def_id(id).index)
} else {
None
},
crate_deps: crate_deps,
dylib_dependency_formats: dylib_dependency_formats,
lang_items: lang_items,
lang_items_missing: lang_items_missing,
native_libraries: native_libraries,
codemap: codemap,
impls: impls,
reachable_ids: reachable_ids,
index: index,
});
let total_bytes = self.position();
if self.tcx.sess.meta_stats() {
let mut zero_bytes = 0;
for e in self.opaque.cursor.get_ref() {
if *e == 0 {
zero_bytes += 1;
}
}
println!("metadata stats:");
println!(" dep bytes: {}", dep_bytes);
println!(" lang item bytes: {}", lang_item_bytes);
println!(" native bytes: {}", native_lib_bytes);
println!(" codemap bytes: {}", codemap_bytes);
println!(" impl bytes: {}", impl_bytes);
println!(" reachable bytes: {}", reachable_bytes);
println!(" item bytes: {}", item_bytes);
println!(" index bytes: {}", index_bytes);
println!(" zero bytes: {}", zero_bytes);
println!(" total bytes: {}", total_bytes);
}
root
}
}
// NOTE(eddyb) The following comment was preserved for posterity, even
// though it's no longer relevant as EBML (which uses nested & tagged
// "documents") was replaced with a scheme that can't go out of bounds.
//
// And here we run into yet another obscure archive bug: in which metadata
// loaded from archives may have trailing garbage bytes. Awhile back one of
// our tests was failing sporadically on the OSX 64-bit builders (both nopt
// and opt) by having ebml generate an out-of-bounds panic when looking at
// metadata.
//
// Upon investigation it turned out that the metadata file inside of an rlib
// (and ar archive) was being corrupted. Some compilations would generate a
// metadata file which would end in a few extra bytes, while other
// compilations would not have these extra bytes appended to the end. These
// extra bytes were interpreted by ebml as an extra tag, so they ended up
// being interpreted causing the out-of-bounds.
//
// The root cause of why these extra bytes were appearing was never
// discovered, and in the meantime the solution we're employing is to insert
// the length of the metadata to the start of the metadata. Later on this
// will allow us to slice the metadata to the precise length that we just
// generated regardless of trailing bytes that end up in it.
pub fn encode_metadata<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
cstore: &cstore::CStore,
reexports: &def::ExportMap,
link_meta: &LinkMeta,
reachable: &NodeSet)
-> Vec<u8> {
let mut cursor = Cursor::new(vec![]);
cursor.write_all(METADATA_HEADER).unwrap();
// Will be filed with the root position after encoding everything.
cursor.write_all(&[0, 0, 0, 0]).unwrap();
let root = {
let mut ecx = EncodeContext {
opaque: opaque::Encoder::new(&mut cursor),
tcx: tcx,
reexports: reexports,
link_meta: link_meta,
cstore: cstore,
reachable: reachable,
lazy_state: LazyState::NoNode,
type_shorthands: Default::default(),
predicate_shorthands: Default::default(),
};
// Encode the rustc version string in a predictable location.
rustc_version().encode(&mut ecx).unwrap();
// Encode all the entries and extra information in the crate,
// culminating in the `CrateRoot` which points to all of it.
ecx.encode_crate_root()
};
let mut result = cursor.into_inner();
// Encode the root position.
let header = METADATA_HEADER.len();
let pos = root.position;
result[header + 0] = (pos >> 24) as u8;
result[header + 1] = (pos >> 16) as u8;
result[header + 2] = (pos >> 8) as u8;
result[header + 3] = (pos >> 0) as u8;
result
}