// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use cstore; use index::Index; use schema::*; use rustc::middle::cstore::{InlinedItemRef, LinkMeta}; use rustc::middle::cstore::{LinkagePreference, NativeLibrary}; use rustc::hir::def; use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, DefIndex, DefId}; use rustc::middle::dependency_format::Linkage; use rustc::middle::lang_items; use rustc::mir; use rustc::traits::specialization_graph; use rustc::ty::{self, Ty, TyCtxt}; use rustc::session::config::{self, CrateTypeProcMacro}; use rustc::util::nodemap::{FxHashMap, NodeSet}; use rustc_serialize::{Encodable, Encoder, SpecializedEncoder, opaque}; use std::hash::Hash; use std::intrinsics; use std::io::prelude::*; use std::io::Cursor; use std::rc::Rc; use std::u32; use syntax::ast::{self, CRATE_NODE_ID}; use syntax::attr; use syntax::symbol::Symbol; use syntax_pos; use rustc::hir::{self, PatKind}; use rustc::hir::itemlikevisit::ItemLikeVisitor; use rustc::hir::intravisit::Visitor; use rustc::hir::intravisit; use super::index_builder::{FromId, IndexBuilder, Untracked}; pub struct EncodeContext<'a, 'tcx: 'a> { opaque: opaque::Encoder<'a>, pub tcx: TyCtxt<'a, 'tcx, 'tcx>, reexports: &'a def::ExportMap, link_meta: &'a LinkMeta, cstore: &'a cstore::CStore, reachable: &'a NodeSet, lazy_state: LazyState, type_shorthands: FxHashMap, usize>, predicate_shorthands: FxHashMap, usize>, } macro_rules! encoder_methods { ($($name:ident($ty:ty);)*) => { $(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> { self.opaque.$name(value) })* } } impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> { type Error = as Encoder>::Error; fn emit_nil(&mut self) -> Result<(), Self::Error> { Ok(()) } encoder_methods! { emit_usize(usize); emit_u64(u64); emit_u32(u32); emit_u16(u16); emit_u8(u8); emit_isize(isize); emit_i64(i64); emit_i32(i32); emit_i16(i16); emit_i8(i8); emit_bool(bool); emit_f64(f64); emit_f32(f32); emit_char(char); emit_str(&str); } } impl<'a, 'tcx, T> SpecializedEncoder> for EncodeContext<'a, 'tcx> { fn specialized_encode(&mut self, lazy: &Lazy) -> Result<(), Self::Error> { self.emit_lazy_distance(lazy.position, Lazy::::min_size()) } } impl<'a, 'tcx, T> SpecializedEncoder> for EncodeContext<'a, 'tcx> { fn specialized_encode(&mut self, seq: &LazySeq) -> Result<(), Self::Error> { self.emit_usize(seq.len)?; if seq.len == 0 { return Ok(()); } self.emit_lazy_distance(seq.position, LazySeq::::min_size(seq.len)) } } impl<'a, 'tcx> SpecializedEncoder> for EncodeContext<'a, 'tcx> { fn specialized_encode(&mut self, ty: &Ty<'tcx>) -> Result<(), Self::Error> { self.encode_with_shorthand(ty, &ty.sty, |ecx| &mut ecx.type_shorthands) } } impl<'a, 'tcx> SpecializedEncoder> for EncodeContext<'a, 'tcx> { fn specialized_encode(&mut self, predicates: &ty::GenericPredicates<'tcx>) -> Result<(), Self::Error> { predicates.parent.encode(self)?; predicates.predicates.len().encode(self)?; for predicate in &predicates.predicates { self.encode_with_shorthand(predicate, predicate, |ecx| &mut ecx.predicate_shorthands)? } Ok(()) } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { pub fn position(&self) -> usize { self.opaque.position() } fn emit_node R, R>(&mut self, f: F) -> R { assert_eq!(self.lazy_state, LazyState::NoNode); let pos = self.position(); self.lazy_state = LazyState::NodeStart(pos); let r = f(self, pos); self.lazy_state = LazyState::NoNode; r } fn emit_lazy_distance(&mut self, position: usize, min_size: usize) -> Result<(), ::Error> { let min_end = position + min_size; let distance = match self.lazy_state { LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"), LazyState::NodeStart(start) => { assert!(min_end <= start); start - min_end } LazyState::Previous(last_min_end) => { assert!(last_min_end <= position); position - last_min_end } }; self.lazy_state = LazyState::Previous(min_end); self.emit_usize(distance) } pub fn lazy(&mut self, value: &T) -> Lazy { self.emit_node(|ecx, pos| { value.encode(ecx).unwrap(); assert!(pos + Lazy::::min_size() <= ecx.position()); Lazy::with_position(pos) }) } fn lazy_seq(&mut self, iter: I) -> LazySeq where I: IntoIterator, T: Encodable { self.emit_node(|ecx, pos| { let len = iter.into_iter().map(|value| value.encode(ecx).unwrap()).count(); assert!(pos + LazySeq::::min_size(len) <= ecx.position()); LazySeq::with_position_and_length(pos, len) }) } fn lazy_seq_ref<'b, I, T>(&mut self, iter: I) -> LazySeq where I: IntoIterator, T: 'b + Encodable { self.emit_node(|ecx, pos| { let len = iter.into_iter().map(|value| value.encode(ecx).unwrap()).count(); assert!(pos + LazySeq::::min_size(len) <= ecx.position()); LazySeq::with_position_and_length(pos, len) }) } /// Encode the given value or a previously cached shorthand. fn encode_with_shorthand(&mut self, value: &T, variant: &U, map: M) -> Result<(), ::Error> where M: for<'b> Fn(&'b mut Self) -> &'b mut FxHashMap, T: Clone + Eq + Hash, U: Encodable { let existing_shorthand = map(self).get(value).cloned(); if let Some(shorthand) = existing_shorthand { return self.emit_usize(shorthand); } let start = self.position(); variant.encode(self)?; let len = self.position() - start; // The shorthand encoding uses the same usize as the // discriminant, with an offset so they can't conflict. let discriminant = unsafe { intrinsics::discriminant_value(variant) }; assert!(discriminant < SHORTHAND_OFFSET as u64); let shorthand = start + SHORTHAND_OFFSET; // Get the number of bits that leb128 could fit // in the same space as the fully encoded type. let leb128_bits = len * 7; // Check that the shorthand is a not longer than the // full encoding itself, i.e. it's an obvious win. if leb128_bits >= 64 || (shorthand as u64) < (1 << leb128_bits) { map(self).insert(value.clone(), shorthand); } Ok(()) } /// For every DefId that we create a metadata item for, we include a /// serialized copy of its DefKey, which allows us to recreate a path. fn encode_def_key(&mut self, def_id: DefId) -> Lazy { let tcx = self.tcx; self.lazy(&tcx.map.def_key(def_id)) } fn encode_item_variances(&mut self, def_id: DefId) -> LazySeq { let tcx = self.tcx; self.lazy_seq(tcx.item_variances(def_id).iter().cloned()) } fn encode_item_type(&mut self, def_id: DefId) -> Lazy> { let tcx = self.tcx; self.lazy(&tcx.item_type(def_id)) } /// Encode data for the given variant of the given ADT. The /// index of the variant is untracked: this is ok because we /// will have to lookup the adt-def by its id, and that gives us /// the right to access any information in the adt-def (including, /// e.g., the length of the various vectors). fn encode_enum_variant_info(&mut self, (enum_did, Untracked(index)): (DefId, Untracked)) -> Entry<'tcx> { let tcx = self.tcx; let def = tcx.lookup_adt_def(enum_did); let variant = &def.variants[index]; let def_id = variant.did; let data = VariantData { ctor_kind: variant.ctor_kind, disr: variant.disr_val.to_u64_unchecked(), struct_ctor: None, }; let enum_id = tcx.map.as_local_node_id(enum_did).unwrap(); let enum_vis = &tcx.map.expect_item(enum_id).vis; Entry { kind: EntryKind::Variant(self.lazy(&data)), visibility: enum_vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&tcx.get_attrs(def_id)), children: self.lazy_seq(variant.fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index })), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: None, mir: None, } } fn encode_info_for_mod(&mut self, FromId(id, (md, attrs, vis)): FromId<(&hir::Mod, &[ast::Attribute], &hir::Visibility)>) -> Entry<'tcx> { let tcx = self.tcx; let def_id = tcx.map.local_def_id(id); let data = ModData { reexports: match self.reexports.get(&id) { Some(exports) if *vis == hir::Public => self.lazy_seq_ref(exports), _ => LazySeq::empty(), }, }; Entry { kind: EntryKind::Mod(self.lazy(&data)), visibility: vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(attrs), children: self.lazy_seq(md.item_ids.iter().map(|item_id| { tcx.map.local_def_id(item_id.id).index })), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: None, inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: None, predicates: None, ast: None, mir: None } } } trait Visibility { fn simplify(&self) -> ty::Visibility; } impl Visibility for hir::Visibility { fn simplify(&self) -> ty::Visibility { if *self == hir::Public { ty::Visibility::Public } else { ty::Visibility::PrivateExternal } } } impl Visibility for ty::Visibility { fn simplify(&self) -> ty::Visibility { if *self == ty::Visibility::Public { ty::Visibility::Public } else { ty::Visibility::PrivateExternal } } } impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> { fn encode_fields(&mut self, adt_def_id: DefId) { let def = self.tcx.lookup_adt_def(adt_def_id); for (variant_index, variant) in def.variants.iter().enumerate() { for (field_index, field) in variant.fields.iter().enumerate() { self.record(field.did, EncodeContext::encode_field, (adt_def_id, Untracked((variant_index, field_index)))); } } } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { /// Encode data for the given field of the given variant of the /// given ADT. The indices of the variant/field are untracked: /// this is ok because we will have to lookup the adt-def by its /// id, and that gives us the right to access any information in /// the adt-def (including, e.g., the length of the various /// vectors). fn encode_field(&mut self, (adt_def_id, Untracked((variant_index, field_index))): (DefId, Untracked<(usize, usize)>)) -> Entry<'tcx> { let tcx = self.tcx; let variant = &tcx.lookup_adt_def(adt_def_id).variants[variant_index]; let field = &variant.fields[field_index]; let def_id = field.did; let variant_id = tcx.map.as_local_node_id(variant.did).unwrap(); let variant_data = tcx.map.expect_variant_data(variant_id); Entry { kind: EntryKind::Field, visibility: field.vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&variant_data.fields()[field_index].attrs), children: LazySeq::empty(), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: None, mir: None, } } fn encode_struct_ctor(&mut self, (adt_def_id, def_id): (DefId, DefId)) -> Entry<'tcx> { let tcx = self.tcx; let variant = tcx.lookup_adt_def(adt_def_id).struct_variant(); let data = VariantData { ctor_kind: variant.ctor_kind, disr: variant.disr_val.to_u64_unchecked(), struct_ctor: Some(def_id.index), }; let struct_id = tcx.map.as_local_node_id(adt_def_id).unwrap(); let struct_vis = &tcx.map.expect_item(struct_id).vis; Entry { kind: EntryKind::Struct(self.lazy(&data)), visibility: struct_vis.simplify(), def_key: self.encode_def_key(def_id), attributes: LazySeq::empty(), children: LazySeq::empty(), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: None, mir: None, } } fn encode_generics(&mut self, def_id: DefId) -> Lazy> { let tcx = self.tcx; self.lazy(tcx.item_generics(def_id)) } fn encode_predicates(&mut self, def_id: DefId) -> Lazy> { let tcx = self.tcx; self.lazy(&tcx.item_predicates(def_id)) } fn encode_info_for_trait_item(&mut self, def_id: DefId) -> Entry<'tcx> { let tcx = self.tcx; let node_id = tcx.map.as_local_node_id(def_id).unwrap(); let ast_item = tcx.map.expect_trait_item(node_id); let trait_item = tcx.associated_item(def_id); let container = match trait_item.defaultness { hir::Defaultness::Default { has_value: true } => AssociatedContainer::TraitWithDefault, hir::Defaultness::Default { has_value: false } => AssociatedContainer::TraitRequired, hir::Defaultness::Final => span_bug!(ast_item.span, "traits cannot have final items"), }; let kind = match trait_item.kind { ty::AssociatedKind::Const => EntryKind::AssociatedConst(container), ty::AssociatedKind::Method => { let fn_data = if let hir::MethodTraitItem(ref sig, _) = ast_item.node { FnData { constness: hir::Constness::NotConst, arg_names: self.encode_fn_arg_names(&sig.decl), } } else { bug!() }; EntryKind::Method(self.lazy(&MethodData { fn_data: fn_data, container: container, has_self: trait_item.method_has_self_argument, })) } ty::AssociatedKind::Type => EntryKind::AssociatedType(container), }; Entry { kind: kind, visibility: trait_item.vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&ast_item.attrs), children: LazySeq::empty(), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: match trait_item.kind { ty::AssociatedKind::Const | ty::AssociatedKind::Method => { Some(self.encode_item_type(def_id)) } ty::AssociatedKind::Type => { if trait_item.defaultness.has_value() { Some(self.encode_item_type(def_id)) } else { None } } }, inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: if trait_item.kind == ty::AssociatedKind::Const { let trait_def_id = trait_item.container.id(); Some(self.encode_inlined_item(InlinedItemRef::TraitItem(trait_def_id, ast_item))) } else { None }, mir: self.encode_mir(def_id), } } fn encode_info_for_impl_item(&mut self, def_id: DefId) -> Entry<'tcx> { let node_id = self.tcx.map.as_local_node_id(def_id).unwrap(); let ast_item = self.tcx.map.expect_impl_item(node_id); let impl_item = self.tcx.associated_item(def_id); let impl_def_id = impl_item.container.id(); let container = match impl_item.defaultness { hir::Defaultness::Default { has_value: true } => AssociatedContainer::ImplDefault, hir::Defaultness::Final => AssociatedContainer::ImplFinal, hir::Defaultness::Default { has_value: false } => span_bug!(ast_item.span, "impl items always have values (currently)"), }; let kind = match impl_item.kind { ty::AssociatedKind::Const => EntryKind::AssociatedConst(container), ty::AssociatedKind::Method => { let fn_data = if let hir::ImplItemKind::Method(ref sig, _) = ast_item.node { FnData { constness: sig.constness, arg_names: self.encode_fn_arg_names(&sig.decl), } } else { bug!() }; EntryKind::Method(self.lazy(&MethodData { fn_data: fn_data, container: container, has_self: impl_item.method_has_self_argument, })) } ty::AssociatedKind::Type => EntryKind::AssociatedType(container) }; let (ast, mir) = if impl_item.kind == ty::AssociatedKind::Const { (true, true) } else if let hir::ImplItemKind::Method(ref sig, _) = ast_item.node { let generics = self.tcx.item_generics(def_id); let types = generics.parent_types as usize + generics.types.len(); let needs_inline = types > 0 || attr::requests_inline(&ast_item.attrs); let is_const_fn = sig.constness == hir::Constness::Const; (is_const_fn, needs_inline || is_const_fn) } else { (false, false) }; Entry { kind: kind, visibility: impl_item.vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&ast_item.attrs), children: LazySeq::empty(), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: if ast { Some(self.encode_inlined_item(InlinedItemRef::ImplItem(impl_def_id, ast_item))) } else { None }, mir: if mir { self.encode_mir(def_id) } else { None }, } } fn encode_fn_arg_names(&mut self, decl: &hir::FnDecl) -> LazySeq { self.lazy_seq(decl.inputs.iter().map(|arg| { if let PatKind::Binding(_, _, ref path1, _) = arg.pat.node { path1.node } else { Symbol::intern("") } })) } fn encode_mir(&mut self, def_id: DefId) -> Option>> { self.tcx.mir_map.borrow().get(&def_id).map(|mir| self.lazy(&*mir.borrow())) } // Encodes the inherent implementations of a structure, enumeration, or trait. fn encode_inherent_implementations(&mut self, def_id: DefId) -> LazySeq { match self.tcx.inherent_impls.borrow().get(&def_id) { None => LazySeq::empty(), Some(implementations) => { self.lazy_seq(implementations.iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index })) } } } fn encode_stability(&mut self, def_id: DefId) -> Option> { self.tcx.lookup_stability(def_id).map(|stab| self.lazy(stab)) } fn encode_deprecation(&mut self, def_id: DefId) -> Option> { self.tcx.lookup_deprecation(def_id).map(|depr| self.lazy(&depr)) } fn encode_info_for_item(&mut self, (def_id, item): (DefId, &hir::Item)) -> Entry<'tcx> { let tcx = self.tcx; debug!("encoding info for item at {}", tcx.sess.codemap().span_to_string(item.span)); let kind = match item.node { hir::ItemStatic(_, hir::MutMutable, _) => EntryKind::MutStatic, hir::ItemStatic(_, hir::MutImmutable, _) => EntryKind::ImmStatic, hir::ItemConst(..) => EntryKind::Const, hir::ItemFn(ref decl, _, constness, ..) => { let data = FnData { constness: constness, arg_names: self.encode_fn_arg_names(&decl), }; EntryKind::Fn(self.lazy(&data)) } hir::ItemMod(ref m) => { return self.encode_info_for_mod(FromId(item.id, (m, &item.attrs, &item.vis))); } hir::ItemForeignMod(_) => EntryKind::ForeignMod, hir::ItemTy(..) => EntryKind::Type, hir::ItemEnum(..) => EntryKind::Enum, hir::ItemStruct(ref struct_def, _) => { let variant = tcx.lookup_adt_def(def_id).struct_variant(); // Encode def_ids for each field and method // for methods, write all the stuff get_trait_method // needs to know let struct_ctor = if !struct_def.is_struct() { Some(tcx.map.local_def_id(struct_def.id()).index) } else { None }; EntryKind::Struct(self.lazy(&VariantData { ctor_kind: variant.ctor_kind, disr: variant.disr_val.to_u64_unchecked(), struct_ctor: struct_ctor, })) } hir::ItemUnion(..) => { let variant = tcx.lookup_adt_def(def_id).struct_variant(); EntryKind::Union(self.lazy(&VariantData { ctor_kind: variant.ctor_kind, disr: variant.disr_val.to_u64_unchecked(), struct_ctor: None, })) } hir::ItemDefaultImpl(..) => { let data = ImplData { polarity: hir::ImplPolarity::Positive, parent_impl: None, coerce_unsized_kind: None, trait_ref: tcx.impl_trait_ref(def_id).map(|trait_ref| self.lazy(&trait_ref)), }; EntryKind::DefaultImpl(self.lazy(&data)) } hir::ItemImpl(_, polarity, ..) => { let trait_ref = tcx.impl_trait_ref(def_id); let parent = if let Some(trait_ref) = trait_ref { let trait_def = tcx.lookup_trait_def(trait_ref.def_id); trait_def.ancestors(def_id).skip(1).next().and_then(|node| { match node { specialization_graph::Node::Impl(parent) => Some(parent), _ => None, } }) } else { None }; let data = ImplData { polarity: polarity, parent_impl: parent, coerce_unsized_kind: tcx.custom_coerce_unsized_kinds .borrow() .get(&def_id) .cloned(), trait_ref: trait_ref.map(|trait_ref| self.lazy(&trait_ref)), }; EntryKind::Impl(self.lazy(&data)) } hir::ItemTrait(..) => { let trait_def = tcx.lookup_trait_def(def_id); let data = TraitData { unsafety: trait_def.unsafety, paren_sugar: trait_def.paren_sugar, has_default_impl: tcx.trait_has_default_impl(def_id), trait_ref: self.lazy(&trait_def.trait_ref), super_predicates: self.lazy(&tcx.item_super_predicates(def_id)), }; EntryKind::Trait(self.lazy(&data)) } hir::ItemExternCrate(_) | hir::ItemUse(..) => bug!("cannot encode info for item {:?}", item), }; Entry { kind: kind, visibility: item.vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&item.attrs), children: match item.node { hir::ItemForeignMod(ref fm) => { self.lazy_seq(fm.items .iter() .map(|foreign_item| tcx.map.local_def_id(foreign_item.id).index)) } hir::ItemEnum(..) => { let def = self.tcx.lookup_adt_def(def_id); self.lazy_seq(def.variants.iter().map(|v| { assert!(v.did.is_local()); v.did.index })) } hir::ItemStruct(..) | hir::ItemUnion(..) => { let def = self.tcx.lookup_adt_def(def_id); self.lazy_seq(def.struct_variant().fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index })) } hir::ItemImpl(..) | hir::ItemTrait(..) => { self.lazy_seq(tcx.associated_item_def_ids(def_id).iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index })) } _ => LazySeq::empty(), }, stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: match item.node { hir::ItemStatic(..) | hir::ItemConst(..) | hir::ItemFn(..) | hir::ItemTy(..) | hir::ItemEnum(..) | hir::ItemStruct(..) | hir::ItemUnion(..) | hir::ItemImpl(..) => Some(self.encode_item_type(def_id)), _ => None, }, inherent_impls: self.encode_inherent_implementations(def_id), variances: match item.node { hir::ItemEnum(..) | hir::ItemStruct(..) | hir::ItemUnion(..) | hir::ItemTrait(..) => self.encode_item_variances(def_id), _ => LazySeq::empty(), }, generics: match item.node { hir::ItemStatic(..) | hir::ItemConst(..) | hir::ItemFn(..) | hir::ItemTy(..) | hir::ItemEnum(..) | hir::ItemStruct(..) | hir::ItemUnion(..) | hir::ItemImpl(..) | hir::ItemTrait(..) => Some(self.encode_generics(def_id)), _ => None, }, predicates: match item.node { hir::ItemStatic(..) | hir::ItemConst(..) | hir::ItemFn(..) | hir::ItemTy(..) | hir::ItemEnum(..) | hir::ItemStruct(..) | hir::ItemUnion(..) | hir::ItemImpl(..) | hir::ItemTrait(..) => Some(self.encode_predicates(def_id)), _ => None, }, ast: match item.node { hir::ItemConst(..) | hir::ItemFn(_, _, hir::Constness::Const, ..) => { Some(self.encode_inlined_item(InlinedItemRef::Item(def_id, item))) } _ => None, }, mir: match item.node { hir::ItemConst(..) => self.encode_mir(def_id), hir::ItemFn(_, _, constness, _, ref generics, _) => { let tps_len = generics.ty_params.len(); let needs_inline = tps_len > 0 || attr::requests_inline(&item.attrs); if needs_inline || constness == hir::Constness::Const { self.encode_mir(def_id) } else { None } } _ => None, }, } } /// Serialize the text of exported macros fn encode_info_for_macro_def(&mut self, macro_def: &hir::MacroDef) -> Entry<'tcx> { let def_id = self.tcx.map.local_def_id(macro_def.id); let macro_def = MacroDef { name: macro_def.name, attrs: macro_def.attrs.to_vec(), span: macro_def.span, body: ::syntax::print::pprust::tts_to_string(¯o_def.body) }; Entry { kind: EntryKind::MacroDef(self.lazy(¯o_def)), visibility: ty::Visibility::Public, def_key: self.encode_def_key(def_id), attributes: LazySeq::empty(), children: LazySeq::empty(), stability: None, deprecation: None, ty: None, inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: None, predicates: None, ast: None, mir: None, } } } impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> { /// In some cases, along with the item itself, we also /// encode some sub-items. Usually we want some info from the item /// so it's easier to do that here then to wait until we would encounter /// normally in the visitor walk. fn encode_addl_info_for_item(&mut self, item: &hir::Item) { let def_id = self.tcx.map.local_def_id(item.id); match item.node { hir::ItemStatic(..) | hir::ItemConst(..) | hir::ItemFn(..) | hir::ItemMod(..) | hir::ItemForeignMod(..) | hir::ItemExternCrate(..) | hir::ItemUse(..) | hir::ItemDefaultImpl(..) | hir::ItemTy(..) => { // no sub-item recording needed in these cases } hir::ItemEnum(..) => { self.encode_fields(def_id); let def = self.tcx.lookup_adt_def(def_id); for (i, variant) in def.variants.iter().enumerate() { self.record(variant.did, EncodeContext::encode_enum_variant_info, (def_id, Untracked(i))); } } hir::ItemStruct(ref struct_def, _) => { self.encode_fields(def_id); // If the struct has a constructor, encode it. if !struct_def.is_struct() { let ctor_def_id = self.tcx.map.local_def_id(struct_def.id()); self.record(ctor_def_id, EncodeContext::encode_struct_ctor, (def_id, ctor_def_id)); } } hir::ItemUnion(..) => { self.encode_fields(def_id); } hir::ItemImpl(..) => { for &trait_item_def_id in &self.tcx.associated_item_def_ids(def_id)[..] { self.record(trait_item_def_id, EncodeContext::encode_info_for_impl_item, trait_item_def_id); } } hir::ItemTrait(..) => { for &item_def_id in &self.tcx.associated_item_def_ids(def_id)[..] { self.record(item_def_id, EncodeContext::encode_info_for_trait_item, item_def_id); } } } } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn encode_info_for_foreign_item(&mut self, (def_id, nitem): (DefId, &hir::ForeignItem)) -> Entry<'tcx> { let tcx = self.tcx; debug!("writing foreign item {}", tcx.node_path_str(nitem.id)); let kind = match nitem.node { hir::ForeignItemFn(ref fndecl, _) => { let data = FnData { constness: hir::Constness::NotConst, arg_names: self.encode_fn_arg_names(&fndecl), }; EntryKind::ForeignFn(self.lazy(&data)) } hir::ForeignItemStatic(_, true) => EntryKind::ForeignMutStatic, hir::ForeignItemStatic(_, false) => EntryKind::ForeignImmStatic, }; Entry { kind: kind, visibility: nitem.vis.simplify(), def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&nitem.attrs), children: LazySeq::empty(), stability: self.encode_stability(def_id), deprecation: self.encode_deprecation(def_id), ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: None, mir: None, } } } struct EncodeVisitor<'a, 'b: 'a, 'tcx: 'b> { index: IndexBuilder<'a, 'b, 'tcx>, } impl<'a, 'b, 'tcx> Visitor<'tcx> for EncodeVisitor<'a, 'b, 'tcx> { fn visit_expr(&mut self, ex: &'tcx hir::Expr) { intravisit::walk_expr(self, ex); self.index.encode_info_for_expr(ex); } fn visit_item(&mut self, item: &'tcx hir::Item) { intravisit::walk_item(self, item); let def_id = self.index.tcx.map.local_def_id(item.id); match item.node { hir::ItemExternCrate(_) | hir::ItemUse(..) => (), // ignore these _ => self.index.record(def_id, EncodeContext::encode_info_for_item, (def_id, item)), } self.index.encode_addl_info_for_item(item); } fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem) { intravisit::walk_foreign_item(self, ni); let def_id = self.index.tcx.map.local_def_id(ni.id); self.index.record(def_id, EncodeContext::encode_info_for_foreign_item, (def_id, ni)); } fn visit_ty(&mut self, ty: &'tcx hir::Ty) { intravisit::walk_ty(self, ty); self.index.encode_info_for_ty(ty); } fn visit_macro_def(&mut self, macro_def: &'tcx hir::MacroDef) { let def_id = self.index.tcx.map.local_def_id(macro_def.id); self.index.record(def_id, EncodeContext::encode_info_for_macro_def, macro_def); } } impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> { fn encode_info_for_ty(&mut self, ty: &hir::Ty) { if let hir::TyImplTrait(_) = ty.node { let def_id = self.tcx.map.local_def_id(ty.id); self.record(def_id, EncodeContext::encode_info_for_anon_ty, def_id); } } fn encode_info_for_expr(&mut self, expr: &hir::Expr) { match expr.node { hir::ExprClosure(..) => { let def_id = self.tcx.map.local_def_id(expr.id); self.record(def_id, EncodeContext::encode_info_for_closure, def_id); } _ => {} } } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn encode_info_for_anon_ty(&mut self, def_id: DefId) -> Entry<'tcx> { Entry { kind: EntryKind::Type, visibility: ty::Visibility::Public, def_key: self.encode_def_key(def_id), attributes: LazySeq::empty(), children: LazySeq::empty(), stability: None, deprecation: None, ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: Some(self.encode_predicates(def_id)), ast: None, mir: None, } } fn encode_info_for_closure(&mut self, def_id: DefId) -> Entry<'tcx> { let tcx = self.tcx; let data = ClosureData { kind: tcx.closure_kind(def_id), ty: self.lazy(&tcx.tables().closure_tys[&def_id]), }; Entry { kind: EntryKind::Closure(self.lazy(&data)), visibility: ty::Visibility::Public, def_key: self.encode_def_key(def_id), attributes: self.encode_attributes(&tcx.get_attrs(def_id)), children: LazySeq::empty(), stability: None, deprecation: None, ty: Some(self.encode_item_type(def_id)), inherent_impls: LazySeq::empty(), variances: LazySeq::empty(), generics: Some(self.encode_generics(def_id)), predicates: None, ast: None, mir: self.encode_mir(def_id), } } fn encode_info_for_items(&mut self) -> Index { let krate = self.tcx.map.krate(); let mut index = IndexBuilder::new(self); index.record(DefId::local(CRATE_DEF_INDEX), EncodeContext::encode_info_for_mod, FromId(CRATE_NODE_ID, (&krate.module, &krate.attrs, &hir::Public))); let mut visitor = EncodeVisitor { index: index }; krate.visit_all_item_likes(&mut visitor.as_deep_visitor()); for macro_def in &krate.exported_macros { visitor.visit_macro_def(macro_def); } visitor.index.into_items() } fn encode_attributes(&mut self, attrs: &[ast::Attribute]) -> LazySeq { self.lazy_seq_ref(attrs) } fn encode_crate_deps(&mut self) -> LazySeq { fn get_ordered_deps(cstore: &cstore::CStore) -> Vec<(CrateNum, Rc)> { // Pull the cnums and name,vers,hash out of cstore let mut deps = Vec::new(); cstore.iter_crate_data(|cnum, val| { deps.push((cnum, val.clone())); }); // Sort by cnum deps.sort_by(|kv1, kv2| kv1.0.cmp(&kv2.0)); // Sanity-check the crate numbers let mut expected_cnum = 1; for &(n, _) in &deps { assert_eq!(n, CrateNum::new(expected_cnum)); expected_cnum += 1; } deps } // We're just going to write a list of crate 'name-hash-version's, with // the assumption that they are numbered 1 to n. // FIXME (#2166): This is not nearly enough to support correct versioning // but is enough to get transitive crate dependencies working. let deps = get_ordered_deps(self.cstore); self.lazy_seq(deps.iter().map(|&(_, ref dep)| { CrateDep { name: dep.name(), hash: dep.hash(), kind: dep.dep_kind.get(), } })) } fn encode_lang_items(&mut self) -> (LazySeq<(DefIndex, usize)>, LazySeq) { let tcx = self.tcx; let lang_items = tcx.lang_items.items().iter(); (self.lazy_seq(lang_items.enumerate().filter_map(|(i, &opt_def_id)| { if let Some(def_id) = opt_def_id { if def_id.is_local() { return Some((def_id.index, i)); } } None })), self.lazy_seq_ref(&tcx.lang_items.missing)) } fn encode_native_libraries(&mut self) -> LazySeq { let used_libraries = self.tcx.sess.cstore.used_libraries(); self.lazy_seq(used_libraries) } fn encode_codemap(&mut self) -> LazySeq { let codemap = self.tcx.sess.codemap(); let all_filemaps = codemap.files.borrow(); self.lazy_seq_ref(all_filemaps.iter() .filter(|filemap| { // No need to export empty filemaps, as they can't contain spans // that need translation. // Also no need to re-export imported filemaps, as any downstream // crate will import them from their original source. !filemap.lines.borrow().is_empty() && !filemap.is_imported() }) .map(|filemap| &**filemap)) } } struct ImplVisitor<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, impls: FxHashMap>, } impl<'a, 'tcx, 'v> ItemLikeVisitor<'v> for ImplVisitor<'a, 'tcx> { fn visit_item(&mut self, item: &hir::Item) { if let hir::ItemImpl(..) = item.node { let impl_id = self.tcx.map.local_def_id(item.id); if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_id) { self.impls .entry(trait_ref.def_id) .or_insert(vec![]) .push(impl_id.index); } } } fn visit_impl_item(&mut self, _impl_item: &'v hir::ImplItem) { // handled in `visit_item` above } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { /// Encodes an index, mapping each trait to its (local) implementations. fn encode_impls(&mut self) -> LazySeq { let mut visitor = ImplVisitor { tcx: self.tcx, impls: FxHashMap(), }; self.tcx.map.krate().visit_all_item_likes(&mut visitor); let all_impls: Vec<_> = visitor.impls .into_iter() .map(|(trait_def_id, impls)| { TraitImpls { trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index), impls: self.lazy_seq(impls), } }) .collect(); self.lazy_seq(all_impls) } // Encodes all reachable symbols in this crate into the metadata. // // This pass is seeded off the reachability list calculated in the // middle::reachable module but filters out items that either don't have a // symbol associated with them (they weren't translated) or if they're an FFI // definition (as that's not defined in this crate). fn encode_reachable(&mut self) -> LazySeq { let reachable = self.reachable; let tcx = self.tcx; self.lazy_seq(reachable.iter().map(|&id| tcx.map.local_def_id(id).index)) } fn encode_dylib_dependency_formats(&mut self) -> LazySeq> { match self.tcx.sess.dependency_formats.borrow().get(&config::CrateTypeDylib) { Some(arr) => { self.lazy_seq(arr.iter().map(|slot| { match *slot { Linkage::NotLinked | Linkage::IncludedFromDylib => None, Linkage::Dynamic => Some(LinkagePreference::RequireDynamic), Linkage::Static => Some(LinkagePreference::RequireStatic), } })) } None => LazySeq::empty(), } } fn encode_crate_root(&mut self) -> Lazy { let mut i = self.position(); let crate_deps = self.encode_crate_deps(); let dylib_dependency_formats = self.encode_dylib_dependency_formats(); let dep_bytes = self.position() - i; // Encode the language items. i = self.position(); let (lang_items, lang_items_missing) = self.encode_lang_items(); let lang_item_bytes = self.position() - i; // Encode the native libraries used i = self.position(); let native_libraries = self.encode_native_libraries(); let native_lib_bytes = self.position() - i; // Encode codemap i = self.position(); let codemap = self.encode_codemap(); let codemap_bytes = self.position() - i; // Encode the def IDs of impls, for coherence checking. i = self.position(); let impls = self.encode_impls(); let impl_bytes = self.position() - i; // Encode reachability info. i = self.position(); let reachable_ids = self.encode_reachable(); let reachable_bytes = self.position() - i; // Encode and index the items. i = self.position(); let items = self.encode_info_for_items(); let item_bytes = self.position() - i; i = self.position(); let index = items.write_index(&mut self.opaque.cursor); let index_bytes = self.position() - i; let tcx = self.tcx; let link_meta = self.link_meta; let is_proc_macro = tcx.sess.crate_types.borrow().contains(&CrateTypeProcMacro); let root = self.lazy(&CrateRoot { name: link_meta.crate_name, triple: tcx.sess.opts.target_triple.clone(), hash: link_meta.crate_hash, disambiguator: tcx.sess.local_crate_disambiguator(), panic_strategy: tcx.sess.panic_strategy(), plugin_registrar_fn: tcx.sess .plugin_registrar_fn .get() .map(|id| tcx.map.local_def_id(id).index), macro_derive_registrar: if is_proc_macro { let id = tcx.sess.derive_registrar_fn.get().unwrap(); Some(tcx.map.local_def_id(id).index) } else { None }, crate_deps: crate_deps, dylib_dependency_formats: dylib_dependency_formats, lang_items: lang_items, lang_items_missing: lang_items_missing, native_libraries: native_libraries, codemap: codemap, impls: impls, reachable_ids: reachable_ids, index: index, }); let total_bytes = self.position(); if self.tcx.sess.meta_stats() { let mut zero_bytes = 0; for e in self.opaque.cursor.get_ref() { if *e == 0 { zero_bytes += 1; } } println!("metadata stats:"); println!(" dep bytes: {}", dep_bytes); println!(" lang item bytes: {}", lang_item_bytes); println!(" native bytes: {}", native_lib_bytes); println!(" codemap bytes: {}", codemap_bytes); println!(" impl bytes: {}", impl_bytes); println!(" reachable bytes: {}", reachable_bytes); println!(" item bytes: {}", item_bytes); println!(" index bytes: {}", index_bytes); println!(" zero bytes: {}", zero_bytes); println!(" total bytes: {}", total_bytes); } root } } // NOTE(eddyb) The following comment was preserved for posterity, even // though it's no longer relevant as EBML (which uses nested & tagged // "documents") was replaced with a scheme that can't go out of bounds. // // And here we run into yet another obscure archive bug: in which metadata // loaded from archives may have trailing garbage bytes. Awhile back one of // our tests was failing sporadically on the OSX 64-bit builders (both nopt // and opt) by having ebml generate an out-of-bounds panic when looking at // metadata. // // Upon investigation it turned out that the metadata file inside of an rlib // (and ar archive) was being corrupted. Some compilations would generate a // metadata file which would end in a few extra bytes, while other // compilations would not have these extra bytes appended to the end. These // extra bytes were interpreted by ebml as an extra tag, so they ended up // being interpreted causing the out-of-bounds. // // The root cause of why these extra bytes were appearing was never // discovered, and in the meantime the solution we're employing is to insert // the length of the metadata to the start of the metadata. Later on this // will allow us to slice the metadata to the precise length that we just // generated regardless of trailing bytes that end up in it. pub fn encode_metadata<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, cstore: &cstore::CStore, reexports: &def::ExportMap, link_meta: &LinkMeta, reachable: &NodeSet) -> Vec { let mut cursor = Cursor::new(vec![]); cursor.write_all(METADATA_HEADER).unwrap(); // Will be filed with the root position after encoding everything. cursor.write_all(&[0, 0, 0, 0]).unwrap(); let root = { let mut ecx = EncodeContext { opaque: opaque::Encoder::new(&mut cursor), tcx: tcx, reexports: reexports, link_meta: link_meta, cstore: cstore, reachable: reachable, lazy_state: LazyState::NoNode, type_shorthands: Default::default(), predicate_shorthands: Default::default(), }; // Encode the rustc version string in a predictable location. rustc_version().encode(&mut ecx).unwrap(); // Encode all the entries and extra information in the crate, // culminating in the `CrateRoot` which points to all of it. ecx.encode_crate_root() }; let mut result = cursor.into_inner(); // Encode the root position. let header = METADATA_HEADER.len(); let pos = root.position; result[header + 0] = (pos >> 24) as u8; result[header + 1] = (pos >> 16) as u8; result[header + 2] = (pos >> 8) as u8; result[header + 3] = (pos >> 0) as u8; result }