rust/src/libsyntax/attr.rs
2016-11-13 19:00:56 -05:00

1084 lines
37 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Functions dealing with attributes and meta items
pub use self::StabilityLevel::*;
pub use self::ReprAttr::*;
pub use self::IntType::*;
use ast;
use ast::{AttrId, Attribute, Attribute_};
use ast::{MetaItem, MetaItemKind, NestedMetaItem, NestedMetaItemKind};
use ast::{Lit, Expr, Item, Local, Stmt, StmtKind};
use codemap::{respan, spanned, dummy_spanned};
use syntax_pos::{Span, BytePos, DUMMY_SP};
use errors::Handler;
use feature_gate::{Features, GatedCfg};
use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration};
use parse::token::InternedString;
use parse::{ParseSess, token};
use ptr::P;
use util::ThinVec;
use std::cell::{RefCell, Cell};
use std::collections::HashSet;
thread_local! {
static USED_ATTRS: RefCell<Vec<u64>> = RefCell::new(Vec::new());
static KNOWN_ATTRS: RefCell<Vec<u64>> = RefCell::new(Vec::new());
}
enum AttrError {
MultipleItem(InternedString),
UnknownMetaItem(InternedString),
MissingSince,
MissingFeature,
MultipleStabilityLevels,
UnsupportedLiteral
}
fn handle_errors(diag: &Handler, span: Span, error: AttrError) {
match error {
AttrError::MultipleItem(item) => span_err!(diag, span, E0538,
"multiple '{}' items", item),
AttrError::UnknownMetaItem(item) => span_err!(diag, span, E0541,
"unknown meta item '{}'", item),
AttrError::MissingSince => span_err!(diag, span, E0542, "missing 'since'"),
AttrError::MissingFeature => span_err!(diag, span, E0546, "missing 'feature'"),
AttrError::MultipleStabilityLevels => span_err!(diag, span, E0544,
"multiple stability levels"),
AttrError::UnsupportedLiteral => span_err!(diag, span, E0565, "unsupported literal"),
}
}
pub fn mark_used(attr: &Attribute) {
debug!("Marking {:?} as used.", attr);
let AttrId(id) = attr.node.id;
USED_ATTRS.with(|slot| {
let idx = (id / 64) as usize;
let shift = id % 64;
if slot.borrow().len() <= idx {
slot.borrow_mut().resize(idx + 1, 0);
}
slot.borrow_mut()[idx] |= 1 << shift;
});
}
pub fn is_used(attr: &Attribute) -> bool {
let AttrId(id) = attr.node.id;
USED_ATTRS.with(|slot| {
let idx = (id / 64) as usize;
let shift = id % 64;
slot.borrow().get(idx).map(|bits| bits & (1 << shift) != 0)
.unwrap_or(false)
})
}
pub fn mark_known(attr: &Attribute) {
debug!("Marking {:?} as known.", attr);
let AttrId(id) = attr.node.id;
KNOWN_ATTRS.with(|slot| {
let idx = (id / 64) as usize;
let shift = id % 64;
if slot.borrow().len() <= idx {
slot.borrow_mut().resize(idx + 1, 0);
}
slot.borrow_mut()[idx] |= 1 << shift;
});
}
pub fn is_known(attr: &Attribute) -> bool {
let AttrId(id) = attr.node.id;
KNOWN_ATTRS.with(|slot| {
let idx = (id / 64) as usize;
let shift = id % 64;
slot.borrow().get(idx).map(|bits| bits & (1 << shift) != 0)
.unwrap_or(false)
})
}
impl NestedMetaItem {
/// Returns the MetaItem if self is a NestedMetaItemKind::MetaItem.
pub fn meta_item(&self) -> Option<&P<MetaItem>> {
match self.node {
NestedMetaItemKind::MetaItem(ref item) => Some(&item),
_ => None
}
}
/// Returns the Lit if self is a NestedMetaItemKind::Literal.
pub fn literal(&self) -> Option<&Lit> {
match self.node {
NestedMetaItemKind::Literal(ref lit) => Some(&lit),
_ => None
}
}
/// Returns the Span for `self`.
pub fn span(&self) -> Span {
self.span
}
/// Returns true if this list item is a MetaItem with a name of `name`.
pub fn check_name(&self, name: &str) -> bool {
self.meta_item().map_or(false, |meta_item| meta_item.check_name(name))
}
/// Returns the name of the meta item, e.g. `foo` in `#[foo]`,
/// `#[foo="bar"]` and `#[foo(bar)]`, if self is a MetaItem
pub fn name(&self) -> Option<InternedString> {
self.meta_item().and_then(|meta_item| Some(meta_item.name()))
}
/// Gets the string value if self is a MetaItem and the MetaItem is a
/// MetaItemKind::NameValue variant containing a string, otherwise None.
pub fn value_str(&self) -> Option<InternedString> {
self.meta_item().and_then(|meta_item| meta_item.value_str())
}
/// Returns a MetaItem if self is a MetaItem with Kind Word.
pub fn word(&self) -> Option<&P<MetaItem>> {
self.meta_item().and_then(|meta_item| if meta_item.is_word() {
Some(meta_item)
} else {
None
})
}
/// Gets a list of inner meta items from a list MetaItem type.
pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> {
self.meta_item().and_then(|meta_item| meta_item.meta_item_list())
}
/// Returns `true` if the variant is MetaItem.
pub fn is_meta_item(&self) -> bool {
self.meta_item().is_some()
}
/// Returns `true` if the variant is Literal.
pub fn is_literal(&self) -> bool {
self.literal().is_some()
}
/// Returns `true` if self is a MetaItem and the meta item is a word.
pub fn is_word(&self) -> bool {
self.word().is_some()
}
/// Returns `true` if self is a MetaItem and the meta item is a ValueString.
pub fn is_value_str(&self) -> bool {
self.value_str().is_some()
}
/// Returns `true` if self is a MetaItem and the meta item is a list.
pub fn is_meta_item_list(&self) -> bool {
self.meta_item_list().is_some()
}
}
impl Attribute {
pub fn check_name(&self, name: &str) -> bool {
let matches = name == &self.name()[..];
if matches {
mark_used(self);
}
matches
}
pub fn name(&self) -> InternedString { self.meta().name() }
pub fn value_str(&self) -> Option<InternedString> {
self.meta().value_str()
}
pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> {
self.meta().meta_item_list()
}
pub fn is_word(&self) -> bool { self.meta().is_word() }
pub fn span(&self) -> Span { self.meta().span }
pub fn is_meta_item_list(&self) -> bool {
self.meta_item_list().is_some()
}
/// Indicates if the attribute is a Value String.
pub fn is_value_str(&self) -> bool {
self.value_str().is_some()
}
}
impl MetaItem {
pub fn name(&self) -> InternedString {
match self.node {
MetaItemKind::Word(ref n) => (*n).clone(),
MetaItemKind::NameValue(ref n, _) => (*n).clone(),
MetaItemKind::List(ref n, _) => (*n).clone(),
}
}
pub fn value_str(&self) -> Option<InternedString> {
match self.node {
MetaItemKind::NameValue(_, ref v) => {
match v.node {
ast::LitKind::Str(ref s, _) => Some((*s).clone()),
_ => None,
}
},
_ => None
}
}
pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> {
match self.node {
MetaItemKind::List(_, ref l) => Some(&l[..]),
_ => None
}
}
pub fn is_word(&self) -> bool {
match self.node {
MetaItemKind::Word(_) => true,
_ => false,
}
}
pub fn span(&self) -> Span { self.span }
pub fn check_name(&self, name: &str) -> bool {
name == &self.name()[..]
}
pub fn is_value_str(&self) -> bool {
self.value_str().is_some()
}
pub fn is_meta_item_list(&self) -> bool {
self.meta_item_list().is_some()
}
}
impl Attribute {
/// Extract the MetaItem from inside this Attribute.
pub fn meta(&self) -> &MetaItem {
&self.node.value
}
/// Convert self to a normal #[doc="foo"] comment, if it is a
/// comment like `///` or `/** */`. (Returns self unchanged for
/// non-sugared doc attributes.)
pub fn with_desugared_doc<T, F>(&self, f: F) -> T where
F: FnOnce(&Attribute) -> T,
{
if self.node.is_sugared_doc {
let comment = self.value_str().unwrap();
let meta = mk_name_value_item_str(
InternedString::new("doc"),
token::intern_and_get_ident(&strip_doc_comment_decoration(
&comment)));
if self.node.style == ast::AttrStyle::Outer {
f(&mk_attr_outer(self.node.id, meta))
} else {
f(&mk_attr_inner(self.node.id, meta))
}
} else {
f(self)
}
}
}
/* Constructors */
pub fn mk_name_value_item_str(name: InternedString, value: InternedString)
-> P<MetaItem> {
let value_lit = dummy_spanned(ast::LitKind::Str(value, ast::StrStyle::Cooked));
mk_spanned_name_value_item(DUMMY_SP, name, value_lit)
}
pub fn mk_name_value_item(name: InternedString, value: ast::Lit)
-> P<MetaItem> {
mk_spanned_name_value_item(DUMMY_SP, name, value)
}
pub fn mk_list_item(name: InternedString, items: Vec<NestedMetaItem>) -> P<MetaItem> {
mk_spanned_list_item(DUMMY_SP, name, items)
}
pub fn mk_list_word_item(name: InternedString) -> ast::NestedMetaItem {
dummy_spanned(NestedMetaItemKind::MetaItem(mk_spanned_word_item(DUMMY_SP, name)))
}
pub fn mk_word_item(name: InternedString) -> P<MetaItem> {
mk_spanned_word_item(DUMMY_SP, name)
}
pub fn mk_spanned_name_value_item(sp: Span, name: InternedString, value: ast::Lit)
-> P<MetaItem> {
P(respan(sp, MetaItemKind::NameValue(name, value)))
}
pub fn mk_spanned_list_item(sp: Span, name: InternedString, items: Vec<NestedMetaItem>)
-> P<MetaItem> {
P(respan(sp, MetaItemKind::List(name, items)))
}
pub fn mk_spanned_word_item(sp: Span, name: InternedString) -> P<MetaItem> {
P(respan(sp, MetaItemKind::Word(name)))
}
thread_local! { static NEXT_ATTR_ID: Cell<usize> = Cell::new(0) }
pub fn mk_attr_id() -> AttrId {
let id = NEXT_ATTR_ID.with(|slot| {
let r = slot.get();
slot.set(r + 1);
r
});
AttrId(id)
}
/// Returns an inner attribute with the given value.
pub fn mk_attr_inner(id: AttrId, item: P<MetaItem>) -> Attribute {
mk_spanned_attr_inner(DUMMY_SP, id, item)
}
/// Returns an innter attribute with the given value and span.
pub fn mk_spanned_attr_inner(sp: Span, id: AttrId, item: P<MetaItem>) -> Attribute {
respan(sp,
Attribute_ {
id: id,
style: ast::AttrStyle::Inner,
value: item,
is_sugared_doc: false,
})
}
/// Returns an outer attribute with the given value.
pub fn mk_attr_outer(id: AttrId, item: P<MetaItem>) -> Attribute {
mk_spanned_attr_outer(DUMMY_SP, id, item)
}
/// Returns an outer attribute with the given value and span.
pub fn mk_spanned_attr_outer(sp: Span, id: AttrId, item: P<MetaItem>) -> Attribute {
respan(sp,
Attribute_ {
id: id,
style: ast::AttrStyle::Outer,
value: item,
is_sugared_doc: false,
})
}
pub fn mk_doc_attr_outer(id: AttrId, item: P<MetaItem>, is_sugared_doc: bool) -> Attribute {
dummy_spanned(Attribute_ {
id: id,
style: ast::AttrStyle::Outer,
value: item,
is_sugared_doc: is_sugared_doc,
})
}
pub fn mk_sugared_doc_attr(id: AttrId, text: InternedString, lo: BytePos,
hi: BytePos)
-> Attribute {
let style = doc_comment_style(&text);
let lit = spanned(lo, hi, ast::LitKind::Str(text, ast::StrStyle::Cooked));
let attr = Attribute_ {
id: id,
style: style,
value: P(spanned(lo, hi, MetaItemKind::NameValue(InternedString::new("doc"), lit))),
is_sugared_doc: true
};
spanned(lo, hi, attr)
}
/* Searching */
/// Check if `needle` occurs in `haystack` by a structural
/// comparison. This is slightly subtle, and relies on ignoring the
/// span included in the `==` comparison a plain MetaItem.
pub fn contains(haystack: &[P<MetaItem>], needle: &MetaItem) -> bool {
debug!("attr::contains (name={})", needle.name());
haystack.iter().any(|item| {
debug!(" testing: {}", item.name());
item.node == needle.node
})
}
pub fn list_contains_name(items: &[NestedMetaItem], name: &str) -> bool {
debug!("attr::list_contains_name (name={})", name);
items.iter().any(|item| {
debug!(" testing: {:?}", item.name());
item.check_name(name)
})
}
pub fn contains_name(attrs: &[Attribute], name: &str) -> bool {
debug!("attr::contains_name (name={})", name);
attrs.iter().any(|item| {
debug!(" testing: {}", item.name());
item.check_name(name)
})
}
pub fn first_attr_value_str_by_name(attrs: &[Attribute], name: &str)
-> Option<InternedString> {
attrs.iter()
.find(|at| at.check_name(name))
.and_then(|at| at.value_str())
}
pub fn last_meta_item_value_str_by_name(items: &[P<MetaItem>], name: &str)
-> Option<InternedString> {
items.iter()
.rev()
.find(|mi| mi.check_name(name))
.and_then(|i| i.value_str())
}
/* Higher-level applications */
pub fn find_crate_name(attrs: &[Attribute]) -> Option<InternedString> {
first_attr_value_str_by_name(attrs, "crate_name")
}
/// Find the value of #[export_name=*] attribute and check its validity.
pub fn find_export_name_attr(diag: &Handler, attrs: &[Attribute]) -> Option<InternedString> {
attrs.iter().fold(None, |ia,attr| {
if attr.check_name("export_name") {
if let s@Some(_) = attr.value_str() {
s
} else {
struct_span_err!(diag, attr.span, E0558,
"export_name attribute has invalid format")
.span_label(attr.span,
&format!("did you mean #[export_name=\"*\"]?"))
.emit();
None
}
} else {
ia
}
})
}
pub fn contains_extern_indicator(diag: &Handler, attrs: &[Attribute]) -> bool {
contains_name(attrs, "no_mangle") ||
find_export_name_attr(diag, attrs).is_some()
}
#[derive(Copy, Clone, PartialEq)]
pub enum InlineAttr {
None,
Hint,
Always,
Never,
}
/// Determine what `#[inline]` attribute is present in `attrs`, if any.
pub fn find_inline_attr(diagnostic: Option<&Handler>, attrs: &[Attribute]) -> InlineAttr {
attrs.iter().fold(InlineAttr::None, |ia,attr| {
match attr.node.value.node {
MetaItemKind::Word(ref n) if n == "inline" => {
mark_used(attr);
InlineAttr::Hint
}
MetaItemKind::List(ref n, ref items) if n == "inline" => {
mark_used(attr);
if items.len() != 1 {
diagnostic.map(|d|{ span_err!(d, attr.span, E0534, "expected one argument"); });
InlineAttr::None
} else if list_contains_name(&items[..], "always") {
InlineAttr::Always
} else if list_contains_name(&items[..], "never") {
InlineAttr::Never
} else {
diagnostic.map(|d| {
span_err!(d, items[0].span, E0535, "invalid argument");
});
InlineAttr::None
}
}
_ => ia,
}
})
}
/// True if `#[inline]` or `#[inline(always)]` is present in `attrs`.
pub fn requests_inline(attrs: &[Attribute]) -> bool {
match find_inline_attr(None, attrs) {
InlineAttr::Hint | InlineAttr::Always => true,
InlineAttr::None | InlineAttr::Never => false,
}
}
/// Tests if a cfg-pattern matches the cfg set
pub fn cfg_matches(cfg: &ast::MetaItem, sess: &ParseSess, features: Option<&Features>) -> bool {
match cfg.node {
ast::MetaItemKind::List(ref pred, ref mis) => {
for mi in mis.iter() {
if !mi.is_meta_item() {
handle_errors(&sess.span_diagnostic, mi.span, AttrError::UnsupportedLiteral);
return false;
}
}
// The unwraps below may look dangerous, but we've already asserted
// that they won't fail with the loop above.
match &pred[..] {
"any" => mis.iter().any(|mi| {
cfg_matches(mi.meta_item().unwrap(), sess, features)
}),
"all" => mis.iter().all(|mi| {
cfg_matches(mi.meta_item().unwrap(), sess, features)
}),
"not" => {
if mis.len() != 1 {
span_err!(sess.span_diagnostic, cfg.span, E0536, "expected 1 cfg-pattern");
return false;
}
!cfg_matches(mis[0].meta_item().unwrap(), sess, features)
},
p => {
span_err!(sess.span_diagnostic, cfg.span, E0537, "invalid predicate `{}`", p);
false
}
}
},
ast::MetaItemKind::Word(_) | ast::MetaItemKind::NameValue(..) => {
if let (Some(feats), Some(gated_cfg)) = (features, GatedCfg::gate(cfg)) {
gated_cfg.check_and_emit(sess, feats);
}
contains(&sess.config, cfg)
}
}
}
/// Represents the #[stable], #[unstable] and #[rustc_deprecated] attributes.
#[derive(RustcEncodable, RustcDecodable, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Stability {
pub level: StabilityLevel,
pub feature: InternedString,
pub rustc_depr: Option<RustcDeprecation>,
}
/// The available stability levels.
#[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)]
pub enum StabilityLevel {
// Reason for the current stability level and the relevant rust-lang issue
Unstable { reason: Option<InternedString>, issue: u32 },
Stable { since: InternedString },
}
#[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)]
pub struct RustcDeprecation {
pub since: InternedString,
pub reason: InternedString,
}
#[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)]
pub struct Deprecation {
pub since: Option<InternedString>,
pub note: Option<InternedString>,
}
impl StabilityLevel {
pub fn is_unstable(&self) -> bool { if let Unstable {..} = *self { true } else { false }}
pub fn is_stable(&self) -> bool { if let Stable {..} = *self { true } else { false }}
}
fn find_stability_generic<'a, I>(diagnostic: &Handler,
attrs_iter: I,
item_sp: Span)
-> Option<Stability>
where I: Iterator<Item = &'a Attribute>
{
let mut stab: Option<Stability> = None;
let mut rustc_depr: Option<RustcDeprecation> = None;
'outer: for attr in attrs_iter {
let tag = attr.name();
let tag = &*tag;
if tag != "rustc_deprecated" && tag != "unstable" && tag != "stable" {
continue // not a stability level
}
mark_used(attr);
if let Some(metas) = attr.meta_item_list() {
let get = |meta: &MetaItem, item: &mut Option<InternedString>| {
if item.is_some() {
handle_errors(diagnostic, meta.span, AttrError::MultipleItem(meta.name()));
return false
}
if let Some(v) = meta.value_str() {
*item = Some(v);
true
} else {
span_err!(diagnostic, meta.span, E0539, "incorrect meta item");
false
}
};
match tag {
"rustc_deprecated" => {
if rustc_depr.is_some() {
span_err!(diagnostic, item_sp, E0540,
"multiple rustc_deprecated attributes");
break
}
let mut since = None;
let mut reason = None;
for meta in metas {
if let Some(mi) = meta.meta_item() {
match &*mi.name() {
"since" => if !get(mi, &mut since) { continue 'outer },
"reason" => if !get(mi, &mut reason) { continue 'outer },
_ => {
handle_errors(diagnostic, mi.span,
AttrError::UnknownMetaItem(mi.name()));
continue 'outer
}
}
} else {
handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral);
continue 'outer
}
}
match (since, reason) {
(Some(since), Some(reason)) => {
rustc_depr = Some(RustcDeprecation {
since: since,
reason: reason,
})
}
(None, _) => {
handle_errors(diagnostic, attr.span(), AttrError::MissingSince);
continue
}
_ => {
span_err!(diagnostic, attr.span(), E0543, "missing 'reason'");
continue
}
}
}
"unstable" => {
if stab.is_some() {
handle_errors(diagnostic, attr.span(), AttrError::MultipleStabilityLevels);
break
}
let mut feature = None;
let mut reason = None;
let mut issue = None;
for meta in metas {
if let Some(mi) = meta.meta_item() {
match &*mi.name() {
"feature" => if !get(mi, &mut feature) { continue 'outer },
"reason" => if !get(mi, &mut reason) { continue 'outer },
"issue" => if !get(mi, &mut issue) { continue 'outer },
_ => {
handle_errors(diagnostic, meta.span,
AttrError::UnknownMetaItem(mi.name()));
continue 'outer
}
}
} else {
handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral);
continue 'outer
}
}
match (feature, reason, issue) {
(Some(feature), reason, Some(issue)) => {
stab = Some(Stability {
level: Unstable {
reason: reason,
issue: {
if let Ok(issue) = issue.parse() {
issue
} else {
span_err!(diagnostic, attr.span(), E0545,
"incorrect 'issue'");
continue
}
}
},
feature: feature,
rustc_depr: None,
})
}
(None, _, _) => {
handle_errors(diagnostic, attr.span(), AttrError::MissingFeature);
continue
}
_ => {
span_err!(diagnostic, attr.span(), E0547, "missing 'issue'");
continue
}
}
}
"stable" => {
if stab.is_some() {
handle_errors(diagnostic, attr.span(), AttrError::MultipleStabilityLevels);
break
}
let mut feature = None;
let mut since = None;
for meta in metas {
if let NestedMetaItemKind::MetaItem(ref mi) = meta.node {
match &*mi.name() {
"feature" => if !get(mi, &mut feature) { continue 'outer },
"since" => if !get(mi, &mut since) { continue 'outer },
_ => {
handle_errors(diagnostic, meta.span,
AttrError::UnknownMetaItem(mi.name()));
continue 'outer
}
}
} else {
handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral);
continue 'outer
}
}
match (feature, since) {
(Some(feature), Some(since)) => {
stab = Some(Stability {
level: Stable {
since: since,
},
feature: feature,
rustc_depr: None,
})
}
(None, _) => {
handle_errors(diagnostic, attr.span(), AttrError::MissingFeature);
continue
}
_ => {
handle_errors(diagnostic, attr.span(), AttrError::MissingSince);
continue
}
}
}
_ => unreachable!()
}
} else {
span_err!(diagnostic, attr.span(), E0548, "incorrect stability attribute type");
continue
}
}
// Merge the deprecation info into the stability info
if let Some(rustc_depr) = rustc_depr {
if let Some(ref mut stab) = stab {
stab.rustc_depr = Some(rustc_depr);
} else {
span_err!(diagnostic, item_sp, E0549,
"rustc_deprecated attribute must be paired with \
either stable or unstable attribute");
}
}
stab
}
fn find_deprecation_generic<'a, I>(diagnostic: &Handler,
attrs_iter: I,
item_sp: Span)
-> Option<Deprecation>
where I: Iterator<Item = &'a Attribute>
{
let mut depr: Option<Deprecation> = None;
'outer: for attr in attrs_iter {
if attr.name() != "deprecated" {
continue
}
mark_used(attr);
if depr.is_some() {
span_err!(diagnostic, item_sp, E0550, "multiple deprecated attributes");
break
}
depr = if let Some(metas) = attr.meta_item_list() {
let get = |meta: &MetaItem, item: &mut Option<InternedString>| {
if item.is_some() {
handle_errors(diagnostic, meta.span, AttrError::MultipleItem(meta.name()));
return false
}
if let Some(v) = meta.value_str() {
*item = Some(v);
true
} else {
span_err!(diagnostic, meta.span, E0551, "incorrect meta item");
false
}
};
let mut since = None;
let mut note = None;
for meta in metas {
if let NestedMetaItemKind::MetaItem(ref mi) = meta.node {
match &*mi.name() {
"since" => if !get(mi, &mut since) { continue 'outer },
"note" => if !get(mi, &mut note) { continue 'outer },
_ => {
handle_errors(diagnostic, meta.span,
AttrError::UnknownMetaItem(mi.name()));
continue 'outer
}
}
} else {
handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral);
continue 'outer
}
}
Some(Deprecation {since: since, note: note})
} else {
Some(Deprecation{since: None, note: None})
}
}
depr
}
/// Find the first stability attribute. `None` if none exists.
pub fn find_stability(diagnostic: &Handler, attrs: &[Attribute],
item_sp: Span) -> Option<Stability> {
find_stability_generic(diagnostic, attrs.iter(), item_sp)
}
/// Find the deprecation attribute. `None` if none exists.
pub fn find_deprecation(diagnostic: &Handler, attrs: &[Attribute],
item_sp: Span) -> Option<Deprecation> {
find_deprecation_generic(diagnostic, attrs.iter(), item_sp)
}
pub fn require_unique_names(diagnostic: &Handler, metas: &[P<MetaItem>]) {
let mut set = HashSet::new();
for meta in metas {
let name = meta.name();
if !set.insert(name.clone()) {
panic!(diagnostic.span_fatal(meta.span,
&format!("duplicate meta item `{}`", name)));
}
}
}
/// Parse #[repr(...)] forms.
///
/// Valid repr contents: any of the primitive integral type names (see
/// `int_type_of_word`, below) to specify enum discriminant type; `C`, to use
/// the same discriminant size that the corresponding C enum would or C
/// structure layout, and `packed` to remove padding.
pub fn find_repr_attrs(diagnostic: &Handler, attr: &Attribute) -> Vec<ReprAttr> {
let mut acc = Vec::new();
match attr.node.value.node {
ast::MetaItemKind::List(ref s, ref items) if s == "repr" => {
mark_used(attr);
for item in items {
if !item.is_meta_item() {
handle_errors(diagnostic, item.span, AttrError::UnsupportedLiteral);
continue
}
if let Some(mi) = item.word() {
let word = &*mi.name();
let hint = match word {
// Can't use "extern" because it's not a lexical identifier.
"C" => Some(ReprExtern),
"packed" => Some(ReprPacked),
"simd" => Some(ReprSimd),
_ => match int_type_of_word(word) {
Some(ity) => Some(ReprInt(ity)),
None => {
// Not a word we recognize
span_err!(diagnostic, item.span, E0552,
"unrecognized representation hint");
None
}
}
};
if let Some(h) = hint {
acc.push(h);
}
} else {
span_err!(diagnostic, item.span, E0553,
"unrecognized enum representation hint");
}
}
}
// Not a "repr" hint: ignore.
_ => { }
}
acc
}
fn int_type_of_word(s: &str) -> Option<IntType> {
match s {
"i8" => Some(SignedInt(ast::IntTy::I8)),
"u8" => Some(UnsignedInt(ast::UintTy::U8)),
"i16" => Some(SignedInt(ast::IntTy::I16)),
"u16" => Some(UnsignedInt(ast::UintTy::U16)),
"i32" => Some(SignedInt(ast::IntTy::I32)),
"u32" => Some(UnsignedInt(ast::UintTy::U32)),
"i64" => Some(SignedInt(ast::IntTy::I64)),
"u64" => Some(UnsignedInt(ast::UintTy::U64)),
"isize" => Some(SignedInt(ast::IntTy::Is)),
"usize" => Some(UnsignedInt(ast::UintTy::Us)),
_ => None
}
}
#[derive(PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)]
pub enum ReprAttr {
ReprAny,
ReprInt(IntType),
ReprExtern,
ReprPacked,
ReprSimd,
}
impl ReprAttr {
pub fn is_ffi_safe(&self) -> bool {
match *self {
ReprAny => false,
ReprInt(ity) => ity.is_ffi_safe(),
ReprExtern => true,
ReprPacked => false,
ReprSimd => true,
}
}
}
#[derive(Eq, Hash, PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)]
pub enum IntType {
SignedInt(ast::IntTy),
UnsignedInt(ast::UintTy)
}
impl IntType {
#[inline]
pub fn is_signed(self) -> bool {
match self {
SignedInt(..) => true,
UnsignedInt(..) => false
}
}
fn is_ffi_safe(self) -> bool {
match self {
SignedInt(ast::IntTy::I8) | UnsignedInt(ast::UintTy::U8) |
SignedInt(ast::IntTy::I16) | UnsignedInt(ast::UintTy::U16) |
SignedInt(ast::IntTy::I32) | UnsignedInt(ast::UintTy::U32) |
SignedInt(ast::IntTy::I64) | UnsignedInt(ast::UintTy::U64) => true,
SignedInt(ast::IntTy::Is) | UnsignedInt(ast::UintTy::Us) => false
}
}
}
pub trait HasAttrs: Sized {
fn attrs(&self) -> &[ast::Attribute];
fn map_attrs<F: FnOnce(Vec<ast::Attribute>) -> Vec<ast::Attribute>>(self, f: F) -> Self;
}
impl HasAttrs for Vec<Attribute> {
fn attrs(&self) -> &[Attribute] {
&self
}
fn map_attrs<F: FnOnce(Vec<Attribute>) -> Vec<Attribute>>(self, f: F) -> Self {
f(self)
}
}
impl HasAttrs for ThinVec<Attribute> {
fn attrs(&self) -> &[Attribute] {
&self
}
fn map_attrs<F: FnOnce(Vec<Attribute>) -> Vec<Attribute>>(self, f: F) -> Self {
f(self.into()).into()
}
}
impl<T: HasAttrs + 'static> HasAttrs for P<T> {
fn attrs(&self) -> &[Attribute] {
(**self).attrs()
}
fn map_attrs<F: FnOnce(Vec<Attribute>) -> Vec<Attribute>>(self, f: F) -> Self {
self.map(|t| t.map_attrs(f))
}
}
impl HasAttrs for StmtKind {
fn attrs(&self) -> &[Attribute] {
match *self {
StmtKind::Local(ref local) => local.attrs(),
StmtKind::Item(..) => &[],
StmtKind::Expr(ref expr) | StmtKind::Semi(ref expr) => expr.attrs(),
StmtKind::Mac(ref mac) => {
let (_, _, ref attrs) = **mac;
attrs.attrs()
}
}
}
fn map_attrs<F: FnOnce(Vec<Attribute>) -> Vec<Attribute>>(self, f: F) -> Self {
match self {
StmtKind::Local(local) => StmtKind::Local(local.map_attrs(f)),
StmtKind::Item(..) => self,
StmtKind::Expr(expr) => StmtKind::Expr(expr.map_attrs(f)),
StmtKind::Semi(expr) => StmtKind::Semi(expr.map_attrs(f)),
StmtKind::Mac(mac) => StmtKind::Mac(mac.map(|(mac, style, attrs)| {
(mac, style, attrs.map_attrs(f))
})),
}
}
}
macro_rules! derive_has_attrs_from_field {
($($ty:path),*) => { derive_has_attrs_from_field!($($ty: .attrs),*); };
($($ty:path : $(.$field:ident)*),*) => { $(
impl HasAttrs for $ty {
fn attrs(&self) -> &[Attribute] {
self $(.$field)* .attrs()
}
fn map_attrs<F>(mut self, f: F) -> Self
where F: FnOnce(Vec<Attribute>) -> Vec<Attribute>,
{
self $(.$field)* = self $(.$field)* .map_attrs(f);
self
}
}
)* }
}
derive_has_attrs_from_field! {
Item, Expr, Local, ast::ForeignItem, ast::StructField, ast::ImplItem, ast::TraitItem, ast::Arm
}
derive_has_attrs_from_field! { Stmt: .node, ast::Variant: .node.attrs }