// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Functions dealing with attributes and meta items pub use self::StabilityLevel::*; pub use self::ReprAttr::*; pub use self::IntType::*; use ast; use ast::{AttrId, Attribute, Attribute_}; use ast::{MetaItem, MetaItemKind, NestedMetaItem, NestedMetaItemKind}; use ast::{Lit, Expr, Item, Local, Stmt, StmtKind}; use codemap::{respan, spanned, dummy_spanned}; use syntax_pos::{Span, BytePos, DUMMY_SP}; use errors::Handler; use feature_gate::{Features, GatedCfg}; use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use parse::token::InternedString; use parse::{ParseSess, token}; use ptr::P; use util::ThinVec; use std::cell::{RefCell, Cell}; use std::collections::HashSet; thread_local! { static USED_ATTRS: RefCell> = RefCell::new(Vec::new()); static KNOWN_ATTRS: RefCell> = RefCell::new(Vec::new()); } enum AttrError { MultipleItem(InternedString), UnknownMetaItem(InternedString), MissingSince, MissingFeature, MultipleStabilityLevels, UnsupportedLiteral } fn handle_errors(diag: &Handler, span: Span, error: AttrError) { match error { AttrError::MultipleItem(item) => span_err!(diag, span, E0538, "multiple '{}' items", item), AttrError::UnknownMetaItem(item) => span_err!(diag, span, E0541, "unknown meta item '{}'", item), AttrError::MissingSince => span_err!(diag, span, E0542, "missing 'since'"), AttrError::MissingFeature => span_err!(diag, span, E0546, "missing 'feature'"), AttrError::MultipleStabilityLevels => span_err!(diag, span, E0544, "multiple stability levels"), AttrError::UnsupportedLiteral => span_err!(diag, span, E0565, "unsupported literal"), } } pub fn mark_used(attr: &Attribute) { debug!("Marking {:?} as used.", attr); let AttrId(id) = attr.node.id; USED_ATTRS.with(|slot| { let idx = (id / 64) as usize; let shift = id % 64; if slot.borrow().len() <= idx { slot.borrow_mut().resize(idx + 1, 0); } slot.borrow_mut()[idx] |= 1 << shift; }); } pub fn is_used(attr: &Attribute) -> bool { let AttrId(id) = attr.node.id; USED_ATTRS.with(|slot| { let idx = (id / 64) as usize; let shift = id % 64; slot.borrow().get(idx).map(|bits| bits & (1 << shift) != 0) .unwrap_or(false) }) } pub fn mark_known(attr: &Attribute) { debug!("Marking {:?} as known.", attr); let AttrId(id) = attr.node.id; KNOWN_ATTRS.with(|slot| { let idx = (id / 64) as usize; let shift = id % 64; if slot.borrow().len() <= idx { slot.borrow_mut().resize(idx + 1, 0); } slot.borrow_mut()[idx] |= 1 << shift; }); } pub fn is_known(attr: &Attribute) -> bool { let AttrId(id) = attr.node.id; KNOWN_ATTRS.with(|slot| { let idx = (id / 64) as usize; let shift = id % 64; slot.borrow().get(idx).map(|bits| bits & (1 << shift) != 0) .unwrap_or(false) }) } impl NestedMetaItem { /// Returns the MetaItem if self is a NestedMetaItemKind::MetaItem. pub fn meta_item(&self) -> Option<&P> { match self.node { NestedMetaItemKind::MetaItem(ref item) => Some(&item), _ => None } } /// Returns the Lit if self is a NestedMetaItemKind::Literal. pub fn literal(&self) -> Option<&Lit> { match self.node { NestedMetaItemKind::Literal(ref lit) => Some(&lit), _ => None } } /// Returns the Span for `self`. pub fn span(&self) -> Span { self.span } /// Returns true if this list item is a MetaItem with a name of `name`. pub fn check_name(&self, name: &str) -> bool { self.meta_item().map_or(false, |meta_item| meta_item.check_name(name)) } /// Returns the name of the meta item, e.g. `foo` in `#[foo]`, /// `#[foo="bar"]` and `#[foo(bar)]`, if self is a MetaItem pub fn name(&self) -> Option { self.meta_item().and_then(|meta_item| Some(meta_item.name())) } /// Gets the string value if self is a MetaItem and the MetaItem is a /// MetaItemKind::NameValue variant containing a string, otherwise None. pub fn value_str(&self) -> Option { self.meta_item().and_then(|meta_item| meta_item.value_str()) } /// Returns a MetaItem if self is a MetaItem with Kind Word. pub fn word(&self) -> Option<&P> { self.meta_item().and_then(|meta_item| if meta_item.is_word() { Some(meta_item) } else { None }) } /// Gets a list of inner meta items from a list MetaItem type. pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> { self.meta_item().and_then(|meta_item| meta_item.meta_item_list()) } /// Returns `true` if the variant is MetaItem. pub fn is_meta_item(&self) -> bool { self.meta_item().is_some() } /// Returns `true` if the variant is Literal. pub fn is_literal(&self) -> bool { self.literal().is_some() } /// Returns `true` if self is a MetaItem and the meta item is a word. pub fn is_word(&self) -> bool { self.word().is_some() } /// Returns `true` if self is a MetaItem and the meta item is a ValueString. pub fn is_value_str(&self) -> bool { self.value_str().is_some() } /// Returns `true` if self is a MetaItem and the meta item is a list. pub fn is_meta_item_list(&self) -> bool { self.meta_item_list().is_some() } } impl Attribute { pub fn check_name(&self, name: &str) -> bool { let matches = name == &self.name()[..]; if matches { mark_used(self); } matches } pub fn name(&self) -> InternedString { self.meta().name() } pub fn value_str(&self) -> Option { self.meta().value_str() } pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> { self.meta().meta_item_list() } pub fn is_word(&self) -> bool { self.meta().is_word() } pub fn span(&self) -> Span { self.meta().span } pub fn is_meta_item_list(&self) -> bool { self.meta_item_list().is_some() } /// Indicates if the attribute is a Value String. pub fn is_value_str(&self) -> bool { self.value_str().is_some() } } impl MetaItem { pub fn name(&self) -> InternedString { match self.node { MetaItemKind::Word(ref n) => (*n).clone(), MetaItemKind::NameValue(ref n, _) => (*n).clone(), MetaItemKind::List(ref n, _) => (*n).clone(), } } pub fn value_str(&self) -> Option { match self.node { MetaItemKind::NameValue(_, ref v) => { match v.node { ast::LitKind::Str(ref s, _) => Some((*s).clone()), _ => None, } }, _ => None } } pub fn meta_item_list(&self) -> Option<&[NestedMetaItem]> { match self.node { MetaItemKind::List(_, ref l) => Some(&l[..]), _ => None } } pub fn is_word(&self) -> bool { match self.node { MetaItemKind::Word(_) => true, _ => false, } } pub fn span(&self) -> Span { self.span } pub fn check_name(&self, name: &str) -> bool { name == &self.name()[..] } pub fn is_value_str(&self) -> bool { self.value_str().is_some() } pub fn is_meta_item_list(&self) -> bool { self.meta_item_list().is_some() } } impl Attribute { /// Extract the MetaItem from inside this Attribute. pub fn meta(&self) -> &MetaItem { &self.node.value } /// Convert self to a normal #[doc="foo"] comment, if it is a /// comment like `///` or `/** */`. (Returns self unchanged for /// non-sugared doc attributes.) pub fn with_desugared_doc(&self, f: F) -> T where F: FnOnce(&Attribute) -> T, { if self.node.is_sugared_doc { let comment = self.value_str().unwrap(); let meta = mk_name_value_item_str( InternedString::new("doc"), token::intern_and_get_ident(&strip_doc_comment_decoration( &comment))); if self.node.style == ast::AttrStyle::Outer { f(&mk_attr_outer(self.node.id, meta)) } else { f(&mk_attr_inner(self.node.id, meta)) } } else { f(self) } } } /* Constructors */ pub fn mk_name_value_item_str(name: InternedString, value: InternedString) -> P { let value_lit = dummy_spanned(ast::LitKind::Str(value, ast::StrStyle::Cooked)); mk_spanned_name_value_item(DUMMY_SP, name, value_lit) } pub fn mk_name_value_item(name: InternedString, value: ast::Lit) -> P { mk_spanned_name_value_item(DUMMY_SP, name, value) } pub fn mk_list_item(name: InternedString, items: Vec) -> P { mk_spanned_list_item(DUMMY_SP, name, items) } pub fn mk_list_word_item(name: InternedString) -> ast::NestedMetaItem { dummy_spanned(NestedMetaItemKind::MetaItem(mk_spanned_word_item(DUMMY_SP, name))) } pub fn mk_word_item(name: InternedString) -> P { mk_spanned_word_item(DUMMY_SP, name) } pub fn mk_spanned_name_value_item(sp: Span, name: InternedString, value: ast::Lit) -> P { P(respan(sp, MetaItemKind::NameValue(name, value))) } pub fn mk_spanned_list_item(sp: Span, name: InternedString, items: Vec) -> P { P(respan(sp, MetaItemKind::List(name, items))) } pub fn mk_spanned_word_item(sp: Span, name: InternedString) -> P { P(respan(sp, MetaItemKind::Word(name))) } thread_local! { static NEXT_ATTR_ID: Cell = Cell::new(0) } pub fn mk_attr_id() -> AttrId { let id = NEXT_ATTR_ID.with(|slot| { let r = slot.get(); slot.set(r + 1); r }); AttrId(id) } /// Returns an inner attribute with the given value. pub fn mk_attr_inner(id: AttrId, item: P) -> Attribute { mk_spanned_attr_inner(DUMMY_SP, id, item) } /// Returns an innter attribute with the given value and span. pub fn mk_spanned_attr_inner(sp: Span, id: AttrId, item: P) -> Attribute { respan(sp, Attribute_ { id: id, style: ast::AttrStyle::Inner, value: item, is_sugared_doc: false, }) } /// Returns an outer attribute with the given value. pub fn mk_attr_outer(id: AttrId, item: P) -> Attribute { mk_spanned_attr_outer(DUMMY_SP, id, item) } /// Returns an outer attribute with the given value and span. pub fn mk_spanned_attr_outer(sp: Span, id: AttrId, item: P) -> Attribute { respan(sp, Attribute_ { id: id, style: ast::AttrStyle::Outer, value: item, is_sugared_doc: false, }) } pub fn mk_doc_attr_outer(id: AttrId, item: P, is_sugared_doc: bool) -> Attribute { dummy_spanned(Attribute_ { id: id, style: ast::AttrStyle::Outer, value: item, is_sugared_doc: is_sugared_doc, }) } pub fn mk_sugared_doc_attr(id: AttrId, text: InternedString, lo: BytePos, hi: BytePos) -> Attribute { let style = doc_comment_style(&text); let lit = spanned(lo, hi, ast::LitKind::Str(text, ast::StrStyle::Cooked)); let attr = Attribute_ { id: id, style: style, value: P(spanned(lo, hi, MetaItemKind::NameValue(InternedString::new("doc"), lit))), is_sugared_doc: true }; spanned(lo, hi, attr) } /* Searching */ /// Check if `needle` occurs in `haystack` by a structural /// comparison. This is slightly subtle, and relies on ignoring the /// span included in the `==` comparison a plain MetaItem. pub fn contains(haystack: &[P], needle: &MetaItem) -> bool { debug!("attr::contains (name={})", needle.name()); haystack.iter().any(|item| { debug!(" testing: {}", item.name()); item.node == needle.node }) } pub fn list_contains_name(items: &[NestedMetaItem], name: &str) -> bool { debug!("attr::list_contains_name (name={})", name); items.iter().any(|item| { debug!(" testing: {:?}", item.name()); item.check_name(name) }) } pub fn contains_name(attrs: &[Attribute], name: &str) -> bool { debug!("attr::contains_name (name={})", name); attrs.iter().any(|item| { debug!(" testing: {}", item.name()); item.check_name(name) }) } pub fn first_attr_value_str_by_name(attrs: &[Attribute], name: &str) -> Option { attrs.iter() .find(|at| at.check_name(name)) .and_then(|at| at.value_str()) } pub fn last_meta_item_value_str_by_name(items: &[P], name: &str) -> Option { items.iter() .rev() .find(|mi| mi.check_name(name)) .and_then(|i| i.value_str()) } /* Higher-level applications */ pub fn find_crate_name(attrs: &[Attribute]) -> Option { first_attr_value_str_by_name(attrs, "crate_name") } /// Find the value of #[export_name=*] attribute and check its validity. pub fn find_export_name_attr(diag: &Handler, attrs: &[Attribute]) -> Option { attrs.iter().fold(None, |ia,attr| { if attr.check_name("export_name") { if let s@Some(_) = attr.value_str() { s } else { struct_span_err!(diag, attr.span, E0558, "export_name attribute has invalid format") .span_label(attr.span, &format!("did you mean #[export_name=\"*\"]?")) .emit(); None } } else { ia } }) } pub fn contains_extern_indicator(diag: &Handler, attrs: &[Attribute]) -> bool { contains_name(attrs, "no_mangle") || find_export_name_attr(diag, attrs).is_some() } #[derive(Copy, Clone, PartialEq)] pub enum InlineAttr { None, Hint, Always, Never, } /// Determine what `#[inline]` attribute is present in `attrs`, if any. pub fn find_inline_attr(diagnostic: Option<&Handler>, attrs: &[Attribute]) -> InlineAttr { attrs.iter().fold(InlineAttr::None, |ia,attr| { match attr.node.value.node { MetaItemKind::Word(ref n) if n == "inline" => { mark_used(attr); InlineAttr::Hint } MetaItemKind::List(ref n, ref items) if n == "inline" => { mark_used(attr); if items.len() != 1 { diagnostic.map(|d|{ span_err!(d, attr.span, E0534, "expected one argument"); }); InlineAttr::None } else if list_contains_name(&items[..], "always") { InlineAttr::Always } else if list_contains_name(&items[..], "never") { InlineAttr::Never } else { diagnostic.map(|d| { span_err!(d, items[0].span, E0535, "invalid argument"); }); InlineAttr::None } } _ => ia, } }) } /// True if `#[inline]` or `#[inline(always)]` is present in `attrs`. pub fn requests_inline(attrs: &[Attribute]) -> bool { match find_inline_attr(None, attrs) { InlineAttr::Hint | InlineAttr::Always => true, InlineAttr::None | InlineAttr::Never => false, } } /// Tests if a cfg-pattern matches the cfg set pub fn cfg_matches(cfg: &ast::MetaItem, sess: &ParseSess, features: Option<&Features>) -> bool { match cfg.node { ast::MetaItemKind::List(ref pred, ref mis) => { for mi in mis.iter() { if !mi.is_meta_item() { handle_errors(&sess.span_diagnostic, mi.span, AttrError::UnsupportedLiteral); return false; } } // The unwraps below may look dangerous, but we've already asserted // that they won't fail with the loop above. match &pred[..] { "any" => mis.iter().any(|mi| { cfg_matches(mi.meta_item().unwrap(), sess, features) }), "all" => mis.iter().all(|mi| { cfg_matches(mi.meta_item().unwrap(), sess, features) }), "not" => { if mis.len() != 1 { span_err!(sess.span_diagnostic, cfg.span, E0536, "expected 1 cfg-pattern"); return false; } !cfg_matches(mis[0].meta_item().unwrap(), sess, features) }, p => { span_err!(sess.span_diagnostic, cfg.span, E0537, "invalid predicate `{}`", p); false } } }, ast::MetaItemKind::Word(_) | ast::MetaItemKind::NameValue(..) => { if let (Some(feats), Some(gated_cfg)) = (features, GatedCfg::gate(cfg)) { gated_cfg.check_and_emit(sess, feats); } contains(&sess.config, cfg) } } } /// Represents the #[stable], #[unstable] and #[rustc_deprecated] attributes. #[derive(RustcEncodable, RustcDecodable, Clone, Debug, PartialEq, Eq, Hash)] pub struct Stability { pub level: StabilityLevel, pub feature: InternedString, pub rustc_depr: Option, } /// The available stability levels. #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub enum StabilityLevel { // Reason for the current stability level and the relevant rust-lang issue Unstable { reason: Option, issue: u32 }, Stable { since: InternedString }, } #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub struct RustcDeprecation { pub since: InternedString, pub reason: InternedString, } #[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Debug, Eq, Hash)] pub struct Deprecation { pub since: Option, pub note: Option, } impl StabilityLevel { pub fn is_unstable(&self) -> bool { if let Unstable {..} = *self { true } else { false }} pub fn is_stable(&self) -> bool { if let Stable {..} = *self { true } else { false }} } fn find_stability_generic<'a, I>(diagnostic: &Handler, attrs_iter: I, item_sp: Span) -> Option where I: Iterator { let mut stab: Option = None; let mut rustc_depr: Option = None; 'outer: for attr in attrs_iter { let tag = attr.name(); let tag = &*tag; if tag != "rustc_deprecated" && tag != "unstable" && tag != "stable" { continue // not a stability level } mark_used(attr); if let Some(metas) = attr.meta_item_list() { let get = |meta: &MetaItem, item: &mut Option| { if item.is_some() { handle_errors(diagnostic, meta.span, AttrError::MultipleItem(meta.name())); return false } if let Some(v) = meta.value_str() { *item = Some(v); true } else { span_err!(diagnostic, meta.span, E0539, "incorrect meta item"); false } }; match tag { "rustc_deprecated" => { if rustc_depr.is_some() { span_err!(diagnostic, item_sp, E0540, "multiple rustc_deprecated attributes"); break } let mut since = None; let mut reason = None; for meta in metas { if let Some(mi) = meta.meta_item() { match &*mi.name() { "since" => if !get(mi, &mut since) { continue 'outer }, "reason" => if !get(mi, &mut reason) { continue 'outer }, _ => { handle_errors(diagnostic, mi.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } match (since, reason) { (Some(since), Some(reason)) => { rustc_depr = Some(RustcDeprecation { since: since, reason: reason, }) } (None, _) => { handle_errors(diagnostic, attr.span(), AttrError::MissingSince); continue } _ => { span_err!(diagnostic, attr.span(), E0543, "missing 'reason'"); continue } } } "unstable" => { if stab.is_some() { handle_errors(diagnostic, attr.span(), AttrError::MultipleStabilityLevels); break } let mut feature = None; let mut reason = None; let mut issue = None; for meta in metas { if let Some(mi) = meta.meta_item() { match &*mi.name() { "feature" => if !get(mi, &mut feature) { continue 'outer }, "reason" => if !get(mi, &mut reason) { continue 'outer }, "issue" => if !get(mi, &mut issue) { continue 'outer }, _ => { handle_errors(diagnostic, meta.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } match (feature, reason, issue) { (Some(feature), reason, Some(issue)) => { stab = Some(Stability { level: Unstable { reason: reason, issue: { if let Ok(issue) = issue.parse() { issue } else { span_err!(diagnostic, attr.span(), E0545, "incorrect 'issue'"); continue } } }, feature: feature, rustc_depr: None, }) } (None, _, _) => { handle_errors(diagnostic, attr.span(), AttrError::MissingFeature); continue } _ => { span_err!(diagnostic, attr.span(), E0547, "missing 'issue'"); continue } } } "stable" => { if stab.is_some() { handle_errors(diagnostic, attr.span(), AttrError::MultipleStabilityLevels); break } let mut feature = None; let mut since = None; for meta in metas { if let NestedMetaItemKind::MetaItem(ref mi) = meta.node { match &*mi.name() { "feature" => if !get(mi, &mut feature) { continue 'outer }, "since" => if !get(mi, &mut since) { continue 'outer }, _ => { handle_errors(diagnostic, meta.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } match (feature, since) { (Some(feature), Some(since)) => { stab = Some(Stability { level: Stable { since: since, }, feature: feature, rustc_depr: None, }) } (None, _) => { handle_errors(diagnostic, attr.span(), AttrError::MissingFeature); continue } _ => { handle_errors(diagnostic, attr.span(), AttrError::MissingSince); continue } } } _ => unreachable!() } } else { span_err!(diagnostic, attr.span(), E0548, "incorrect stability attribute type"); continue } } // Merge the deprecation info into the stability info if let Some(rustc_depr) = rustc_depr { if let Some(ref mut stab) = stab { stab.rustc_depr = Some(rustc_depr); } else { span_err!(diagnostic, item_sp, E0549, "rustc_deprecated attribute must be paired with \ either stable or unstable attribute"); } } stab } fn find_deprecation_generic<'a, I>(diagnostic: &Handler, attrs_iter: I, item_sp: Span) -> Option where I: Iterator { let mut depr: Option = None; 'outer: for attr in attrs_iter { if attr.name() != "deprecated" { continue } mark_used(attr); if depr.is_some() { span_err!(diagnostic, item_sp, E0550, "multiple deprecated attributes"); break } depr = if let Some(metas) = attr.meta_item_list() { let get = |meta: &MetaItem, item: &mut Option| { if item.is_some() { handle_errors(diagnostic, meta.span, AttrError::MultipleItem(meta.name())); return false } if let Some(v) = meta.value_str() { *item = Some(v); true } else { span_err!(diagnostic, meta.span, E0551, "incorrect meta item"); false } }; let mut since = None; let mut note = None; for meta in metas { if let NestedMetaItemKind::MetaItem(ref mi) = meta.node { match &*mi.name() { "since" => if !get(mi, &mut since) { continue 'outer }, "note" => if !get(mi, &mut note) { continue 'outer }, _ => { handle_errors(diagnostic, meta.span, AttrError::UnknownMetaItem(mi.name())); continue 'outer } } } else { handle_errors(diagnostic, meta.span, AttrError::UnsupportedLiteral); continue 'outer } } Some(Deprecation {since: since, note: note}) } else { Some(Deprecation{since: None, note: None}) } } depr } /// Find the first stability attribute. `None` if none exists. pub fn find_stability(diagnostic: &Handler, attrs: &[Attribute], item_sp: Span) -> Option { find_stability_generic(diagnostic, attrs.iter(), item_sp) } /// Find the deprecation attribute. `None` if none exists. pub fn find_deprecation(diagnostic: &Handler, attrs: &[Attribute], item_sp: Span) -> Option { find_deprecation_generic(diagnostic, attrs.iter(), item_sp) } pub fn require_unique_names(diagnostic: &Handler, metas: &[P]) { let mut set = HashSet::new(); for meta in metas { let name = meta.name(); if !set.insert(name.clone()) { panic!(diagnostic.span_fatal(meta.span, &format!("duplicate meta item `{}`", name))); } } } /// Parse #[repr(...)] forms. /// /// Valid repr contents: any of the primitive integral type names (see /// `int_type_of_word`, below) to specify enum discriminant type; `C`, to use /// the same discriminant size that the corresponding C enum would or C /// structure layout, and `packed` to remove padding. pub fn find_repr_attrs(diagnostic: &Handler, attr: &Attribute) -> Vec { let mut acc = Vec::new(); match attr.node.value.node { ast::MetaItemKind::List(ref s, ref items) if s == "repr" => { mark_used(attr); for item in items { if !item.is_meta_item() { handle_errors(diagnostic, item.span, AttrError::UnsupportedLiteral); continue } if let Some(mi) = item.word() { let word = &*mi.name(); let hint = match word { // Can't use "extern" because it's not a lexical identifier. "C" => Some(ReprExtern), "packed" => Some(ReprPacked), "simd" => Some(ReprSimd), _ => match int_type_of_word(word) { Some(ity) => Some(ReprInt(ity)), None => { // Not a word we recognize span_err!(diagnostic, item.span, E0552, "unrecognized representation hint"); None } } }; if let Some(h) = hint { acc.push(h); } } else { span_err!(diagnostic, item.span, E0553, "unrecognized enum representation hint"); } } } // Not a "repr" hint: ignore. _ => { } } acc } fn int_type_of_word(s: &str) -> Option { match s { "i8" => Some(SignedInt(ast::IntTy::I8)), "u8" => Some(UnsignedInt(ast::UintTy::U8)), "i16" => Some(SignedInt(ast::IntTy::I16)), "u16" => Some(UnsignedInt(ast::UintTy::U16)), "i32" => Some(SignedInt(ast::IntTy::I32)), "u32" => Some(UnsignedInt(ast::UintTy::U32)), "i64" => Some(SignedInt(ast::IntTy::I64)), "u64" => Some(UnsignedInt(ast::UintTy::U64)), "isize" => Some(SignedInt(ast::IntTy::Is)), "usize" => Some(UnsignedInt(ast::UintTy::Us)), _ => None } } #[derive(PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)] pub enum ReprAttr { ReprAny, ReprInt(IntType), ReprExtern, ReprPacked, ReprSimd, } impl ReprAttr { pub fn is_ffi_safe(&self) -> bool { match *self { ReprAny => false, ReprInt(ity) => ity.is_ffi_safe(), ReprExtern => true, ReprPacked => false, ReprSimd => true, } } } #[derive(Eq, Hash, PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, Clone)] pub enum IntType { SignedInt(ast::IntTy), UnsignedInt(ast::UintTy) } impl IntType { #[inline] pub fn is_signed(self) -> bool { match self { SignedInt(..) => true, UnsignedInt(..) => false } } fn is_ffi_safe(self) -> bool { match self { SignedInt(ast::IntTy::I8) | UnsignedInt(ast::UintTy::U8) | SignedInt(ast::IntTy::I16) | UnsignedInt(ast::UintTy::U16) | SignedInt(ast::IntTy::I32) | UnsignedInt(ast::UintTy::U32) | SignedInt(ast::IntTy::I64) | UnsignedInt(ast::UintTy::U64) => true, SignedInt(ast::IntTy::Is) | UnsignedInt(ast::UintTy::Us) => false } } } pub trait HasAttrs: Sized { fn attrs(&self) -> &[ast::Attribute]; fn map_attrs) -> Vec>(self, f: F) -> Self; } impl HasAttrs for Vec { fn attrs(&self) -> &[Attribute] { &self } fn map_attrs) -> Vec>(self, f: F) -> Self { f(self) } } impl HasAttrs for ThinVec { fn attrs(&self) -> &[Attribute] { &self } fn map_attrs) -> Vec>(self, f: F) -> Self { f(self.into()).into() } } impl HasAttrs for P { fn attrs(&self) -> &[Attribute] { (**self).attrs() } fn map_attrs) -> Vec>(self, f: F) -> Self { self.map(|t| t.map_attrs(f)) } } impl HasAttrs for StmtKind { fn attrs(&self) -> &[Attribute] { match *self { StmtKind::Local(ref local) => local.attrs(), StmtKind::Item(..) => &[], StmtKind::Expr(ref expr) | StmtKind::Semi(ref expr) => expr.attrs(), StmtKind::Mac(ref mac) => { let (_, _, ref attrs) = **mac; attrs.attrs() } } } fn map_attrs) -> Vec>(self, f: F) -> Self { match self { StmtKind::Local(local) => StmtKind::Local(local.map_attrs(f)), StmtKind::Item(..) => self, StmtKind::Expr(expr) => StmtKind::Expr(expr.map_attrs(f)), StmtKind::Semi(expr) => StmtKind::Semi(expr.map_attrs(f)), StmtKind::Mac(mac) => StmtKind::Mac(mac.map(|(mac, style, attrs)| { (mac, style, attrs.map_attrs(f)) })), } } } macro_rules! derive_has_attrs_from_field { ($($ty:path),*) => { derive_has_attrs_from_field!($($ty: .attrs),*); }; ($($ty:path : $(.$field:ident)*),*) => { $( impl HasAttrs for $ty { fn attrs(&self) -> &[Attribute] { self $(.$field)* .attrs() } fn map_attrs(mut self, f: F) -> Self where F: FnOnce(Vec) -> Vec, { self $(.$field)* = self $(.$field)* .map_attrs(f); self } } )* } } derive_has_attrs_from_field! { Item, Expr, Local, ast::ForeignItem, ast::StructField, ast::ImplItem, ast::TraitItem, ast::Arm } derive_has_attrs_from_field! { Stmt: .node, ast::Variant: .node.attrs }