rust/src/libsyntax/ext/tt/macro_rules.rs
bors 371bf0eda2 Auto merge of #33982 - LeoTestard:remove-check-matcher-old, r=pnkfelix
Remove the old FOLLOW checking (aka `check_matcher_old`).

It was supposed to be removed at the next release cycle but is still in the tree since like 6 months.
Potential breaking change, since some cases (such as #25658) will change from a warning to an error. But the warning stating that it will be a hard error in the next release has been there for 6 months now.
I think it's safe to break this code. ^_^
2016-06-07 17:56:35 -07:00

852 lines
33 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ast::{self, TokenTree};
use codemap::{Span, DUMMY_SP};
use ext::base::{DummyResult, ExtCtxt, MacResult, SyntaxExtension};
use ext::base::{NormalTT, TTMacroExpander};
use ext::tt::macro_parser::{Success, Error, Failure};
use ext::tt::macro_parser::{MatchedSeq, MatchedNonterminal};
use ext::tt::macro_parser::parse;
use parse::lexer::new_tt_reader;
use parse::parser::{Parser, Restrictions};
use parse::token::{self, gensym_ident, NtTT, Token};
use parse::token::Token::*;
use print;
use ptr::P;
use util::small_vector::SmallVector;
use std::cell::RefCell;
use std::collections::{HashMap};
use std::collections::hash_map::{Entry};
use std::rc::Rc;
struct ParserAnyMacro<'a> {
parser: RefCell<Parser<'a>>,
/// Span of the expansion site of the macro this parser is for
site_span: Span,
/// The ident of the macro we're parsing
macro_ident: ast::Ident
}
impl<'a> ParserAnyMacro<'a> {
/// Make sure we don't have any tokens left to parse, so we don't
/// silently drop anything. `allow_semi` is so that "optional"
/// semicolons at the end of normal expressions aren't complained
/// about e.g. the semicolon in `macro_rules! kapow { () => {
/// panic!(); } }` doesn't get picked up by .parse_expr(), but it's
/// allowed to be there.
fn ensure_complete_parse(&self, allow_semi: bool, context: &str) {
let mut parser = self.parser.borrow_mut();
if allow_semi && parser.token == token::Semi {
parser.bump();
}
if parser.token != token::Eof {
let token_str = parser.this_token_to_string();
let msg = format!("macro expansion ignores token `{}` and any \
following",
token_str);
let span = parser.span;
let mut err = parser.diagnostic().struct_span_err(span, &msg[..]);
let msg = format!("caused by the macro expansion here; the usage \
of `{}!` is likely invalid in {} context",
self.macro_ident, context);
err.span_note(self.site_span, &msg[..])
.emit();
}
}
}
impl<'a> MacResult for ParserAnyMacro<'a> {
fn make_expr(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Expr>> {
let ret = panictry!(self.parser.borrow_mut().parse_expr());
self.ensure_complete_parse(true, "expression");
Some(ret)
}
fn make_pat(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Pat>> {
let ret = panictry!(self.parser.borrow_mut().parse_pat());
self.ensure_complete_parse(false, "pattern");
Some(ret)
}
fn make_items(self: Box<ParserAnyMacro<'a>>) -> Option<SmallVector<P<ast::Item>>> {
let mut ret = SmallVector::zero();
while let Some(item) = panictry!(self.parser.borrow_mut().parse_item()) {
ret.push(item);
}
self.ensure_complete_parse(false, "item");
Some(ret)
}
fn make_impl_items(self: Box<ParserAnyMacro<'a>>)
-> Option<SmallVector<ast::ImplItem>> {
let mut ret = SmallVector::zero();
loop {
let mut parser = self.parser.borrow_mut();
match parser.token {
token::Eof => break,
_ => ret.push(panictry!(parser.parse_impl_item()))
}
}
self.ensure_complete_parse(false, "item");
Some(ret)
}
fn make_stmts(self: Box<ParserAnyMacro<'a>>)
-> Option<SmallVector<ast::Stmt>> {
let mut ret = SmallVector::zero();
loop {
let mut parser = self.parser.borrow_mut();
match parser.token {
token::Eof => break,
_ => match parser.parse_stmt() {
Ok(maybe_stmt) => match maybe_stmt {
Some(stmt) => ret.push(stmt),
None => (),
},
Err(mut e) => {
e.emit();
break;
}
}
}
}
self.ensure_complete_parse(false, "statement");
Some(ret)
}
fn make_ty(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Ty>> {
let ret = panictry!(self.parser.borrow_mut().parse_ty());
self.ensure_complete_parse(false, "type");
Some(ret)
}
}
struct MacroRulesMacroExpander {
name: ast::Ident,
imported_from: Option<ast::Ident>,
lhses: Vec<TokenTree>,
rhses: Vec<TokenTree>,
valid: bool,
}
impl TTMacroExpander for MacroRulesMacroExpander {
fn expand<'cx>(&self,
cx: &'cx mut ExtCtxt,
sp: Span,
arg: &[TokenTree])
-> Box<MacResult+'cx> {
if !self.valid {
return DummyResult::any(sp);
}
generic_extension(cx,
sp,
self.name,
self.imported_from,
arg,
&self.lhses,
&self.rhses)
}
}
/// Given `lhses` and `rhses`, this is the new macro we create
fn generic_extension<'cx>(cx: &'cx ExtCtxt,
sp: Span,
name: ast::Ident,
imported_from: Option<ast::Ident>,
arg: &[TokenTree],
lhses: &[TokenTree],
rhses: &[TokenTree])
-> Box<MacResult+'cx> {
if cx.trace_macros() {
println!("{}! {{ {} }}",
name,
print::pprust::tts_to_string(arg));
}
// Which arm's failure should we report? (the one furthest along)
let mut best_fail_spot = DUMMY_SP;
let mut best_fail_msg = "internal error: ran no matchers".to_string();
for (i, lhs) in lhses.iter().enumerate() { // try each arm's matchers
let lhs_tt = match *lhs {
TokenTree::Delimited(_, ref delim) => &delim.tts[..],
_ => cx.span_bug(sp, "malformed macro lhs")
};
match TokenTree::parse(cx, lhs_tt, arg) {
Success(named_matches) => {
let rhs = match rhses[i] {
// ignore delimiters
TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
_ => cx.span_bug(sp, "malformed macro rhs"),
};
// rhs has holes ( `$id` and `$(...)` that need filled)
let trncbr = new_tt_reader(&cx.parse_sess().span_diagnostic,
Some(named_matches),
imported_from,
rhs);
let mut p = Parser::new(cx.parse_sess(), cx.cfg(), Box::new(trncbr));
p.filename = cx.filename.clone();
p.mod_path_stack = cx.mod_path_stack.clone();
p.restrictions = match cx.in_block {
true => Restrictions::NO_NONINLINE_MOD,
false => Restrictions::empty(),
};
p.check_unknown_macro_variable();
// Let the context choose how to interpret the result.
// Weird, but useful for X-macros.
return Box::new(ParserAnyMacro {
parser: RefCell::new(p),
// Pass along the original expansion site and the name of the macro
// so we can print a useful error message if the parse of the expanded
// macro leaves unparsed tokens.
site_span: sp,
macro_ident: name
})
}
Failure(sp, ref msg) => if sp.lo >= best_fail_spot.lo {
best_fail_spot = sp;
best_fail_msg = (*msg).clone();
},
Error(err_sp, ref msg) => {
cx.span_fatal(err_sp.substitute_dummy(sp), &msg[..])
}
}
}
cx.span_fatal(best_fail_spot.substitute_dummy(sp), &best_fail_msg[..]);
}
// Note that macro-by-example's input is also matched against a token tree:
// $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!
/// Converts a `macro_rules!` invocation into a syntax extension.
pub fn compile<'cx>(cx: &'cx mut ExtCtxt,
def: &ast::MacroDef) -> SyntaxExtension {
let lhs_nm = gensym_ident("lhs");
let rhs_nm = gensym_ident("rhs");
// The pattern that macro_rules matches.
// The grammar for macro_rules! is:
// $( $lhs:tt => $rhs:tt );+
// ...quasiquoting this would be nice.
// These spans won't matter, anyways
let match_lhs_tok = MatchNt(lhs_nm, token::str_to_ident("tt"));
let match_rhs_tok = MatchNt(rhs_nm, token::str_to_ident("tt"));
let argument_gram = vec!(
TokenTree::Sequence(DUMMY_SP,
Rc::new(ast::SequenceRepetition {
tts: vec![
TokenTree::Token(DUMMY_SP, match_lhs_tok),
TokenTree::Token(DUMMY_SP, token::FatArrow),
TokenTree::Token(DUMMY_SP, match_rhs_tok)],
separator: Some(token::Semi),
op: ast::KleeneOp::OneOrMore,
num_captures: 2
})),
//to phase into semicolon-termination instead of
//semicolon-separation
TokenTree::Sequence(DUMMY_SP,
Rc::new(ast::SequenceRepetition {
tts: vec![TokenTree::Token(DUMMY_SP, token::Semi)],
separator: None,
op: ast::KleeneOp::ZeroOrMore,
num_captures: 0
})));
// Parse the macro_rules! invocation (`none` is for no interpolations):
let arg_reader = new_tt_reader(&cx.parse_sess().span_diagnostic,
None,
None,
def.body.clone());
let argument_map = match parse(cx.parse_sess(),
cx.cfg(),
arg_reader,
&argument_gram) {
Success(m) => m,
Failure(sp, str) | Error(sp, str) => {
panic!(cx.parse_sess().span_diagnostic
.span_fatal(sp.substitute_dummy(def.span), &str[..]));
}
};
let mut valid = true;
// Extract the arguments:
let lhses = match **argument_map.get(&lhs_nm.name).unwrap() {
MatchedSeq(ref s, _) => {
s.iter().map(|m| match **m {
MatchedNonterminal(NtTT(ref tt)) => {
valid &= check_lhs_nt_follows(cx, tt);
(**tt).clone()
}
_ => cx.span_bug(def.span, "wrong-structured lhs")
}).collect()
}
_ => cx.span_bug(def.span, "wrong-structured lhs")
};
let rhses = match **argument_map.get(&rhs_nm.name).unwrap() {
MatchedSeq(ref s, _) => {
s.iter().map(|m| match **m {
MatchedNonterminal(NtTT(ref tt)) => (**tt).clone(),
_ => cx.span_bug(def.span, "wrong-structured rhs")
}).collect()
}
_ => cx.span_bug(def.span, "wrong-structured rhs")
};
for rhs in &rhses {
valid &= check_rhs(cx, rhs);
}
let exp: Box<_> = Box::new(MacroRulesMacroExpander {
name: def.ident,
imported_from: def.imported_from,
lhses: lhses,
rhses: rhses,
valid: valid,
});
NormalTT(exp, Some(def.span), def.allow_internal_unstable)
}
fn check_lhs_nt_follows(cx: &mut ExtCtxt, lhs: &TokenTree) -> bool {
// lhs is going to be like TokenTree::Delimited(...), where the
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
match lhs {
&TokenTree::Delimited(_, ref tts) => check_matcher(cx, &tts.tts),
_ => {
cx.span_err(lhs.get_span(), "invalid macro matcher; matchers must \
be contained in balanced delimiters");
false
}
}
// we don't abort on errors on rejection, the driver will do that for us
// after parsing/expansion. we can report every error in every macro this way.
}
fn check_rhs(cx: &mut ExtCtxt, rhs: &TokenTree) -> bool {
match *rhs {
TokenTree::Delimited(..) => return true,
_ => cx.span_err(rhs.get_span(), "macro rhs must be delimited")
}
false
}
fn check_matcher(cx: &mut ExtCtxt, matcher: &[TokenTree]) -> bool {
let first_sets = FirstSets::new(matcher);
let empty_suffix = TokenSet::empty();
let err = cx.parse_sess.span_diagnostic.err_count();
check_matcher_core(cx, &first_sets, matcher, &empty_suffix);
err == cx.parse_sess.span_diagnostic.err_count()
}
// The FirstSets for a matcher is a mapping from subsequences in the
// matcher to the FIRST set for that subsequence.
//
// This mapping is partially precomputed via a backwards scan over the
// token trees of the matcher, which provides a mapping from each
// repetition sequence to its FIRST set.
//
// (Hypothetically sequences should be uniquely identifiable via their
// spans, though perhaps that is false e.g. for macro-generated macros
// that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in
// the precomputed mapping.)
struct FirstSets {
// this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
// span in the original matcher to the First set for the inner sequence `tt ...`.
//
// If two sequences have the same span in a matcher, then map that
// span to None (invalidating the mapping here and forcing the code to
// use a slow path).
first: HashMap<Span, Option<TokenSet>>,
}
impl FirstSets {
fn new(tts: &[TokenTree]) -> FirstSets {
let mut sets = FirstSets { first: HashMap::new() };
build_recur(&mut sets, tts);
return sets;
// walks backward over `tts`, returning the FIRST for `tts`
// and updating `sets` at the same time for all sequence
// substructure we find within `tts`.
fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet {
let mut first = TokenSet::empty();
for tt in tts.iter().rev() {
match *tt {
TokenTree::Token(sp, ref tok) => {
first.replace_with((sp, tok.clone()));
}
TokenTree::Delimited(_, ref delimited) => {
build_recur(sets, &delimited.tts[..]);
first.replace_with((delimited.open_span,
Token::OpenDelim(delimited.delim)));
}
TokenTree::Sequence(sp, ref seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts[..]);
match sets.first.entry(sp) {
Entry::Vacant(vac) => {
vac.insert(Some(subfirst.clone()));
}
Entry::Occupied(mut occ) => {
// if there is already an entry, then a span must have collided.
// This should not happen with typical macro_rules macros,
// but syntax extensions need not maintain distinct spans,
// so distinct syntax trees can be assigned the same span.
// In such a case, the map cannot be trusted; so mark this
// entry as unusable.
occ.insert(None);
}
}
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(ref sep), true) = (seq_rep.separator.clone(),
subfirst.maybe_empty) {
first.add_one_maybe((sp, sep.clone()));
}
// Reverse scan: Sequence comes before `first`.
if subfirst.maybe_empty || seq_rep.op == ast::KleeneOp::ZeroOrMore {
// If sequence is potentially empty, then
// union them (preserving first emptiness).
first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
} else {
// Otherwise, sequence guaranteed
// non-empty; replace first.
first = subfirst;
}
}
}
}
return first;
}
}
// walks forward over `tts` until all potential FIRST tokens are
// identified.
fn first(&self, tts: &[TokenTree]) -> TokenSet {
let mut first = TokenSet::empty();
for tt in tts.iter() {
assert!(first.maybe_empty);
match *tt {
TokenTree::Token(sp, ref tok) => {
first.add_one((sp, tok.clone()));
return first;
}
TokenTree::Delimited(_, ref delimited) => {
first.add_one((delimited.open_span,
Token::OpenDelim(delimited.delim)));
return first;
}
TokenTree::Sequence(sp, ref seq_rep) => {
match self.first.get(&sp) {
Some(&Some(ref subfirst)) => {
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(ref sep), true) = (seq_rep.separator.clone(),
subfirst.maybe_empty) {
first.add_one_maybe((sp, sep.clone()));
}
assert!(first.maybe_empty);
first.add_all(subfirst);
if subfirst.maybe_empty || seq_rep.op == ast::KleeneOp::ZeroOrMore {
// continue scanning for more first
// tokens, but also make sure we
// restore empty-tracking state
first.maybe_empty = true;
continue;
} else {
return first;
}
}
Some(&None) => {
panic!("assume all sequences have (unique) spans for now");
}
None => {
panic!("We missed a sequence during FirstSets construction");
}
}
}
}
}
// we only exit the loop if `tts` was empty or if every
// element of `tts` matches the empty sequence.
assert!(first.maybe_empty);
return first;
}
}
// A set of Tokens, which may include MatchNt tokens (for
// macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can
// match an empty token sequence.
//
// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
// which has corresponding FIRST = {$a:expr, c, d}.
// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
//
// (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)]
struct TokenSet {
tokens: Vec<(Span, Token)>,
maybe_empty: bool,
}
impl TokenSet {
// Returns a set for the empty sequence.
fn empty() -> Self { TokenSet { tokens: Vec::new(), maybe_empty: true } }
// Returns the set `{ tok }` for the single-token (and thus
// non-empty) sequence [tok].
fn singleton(tok: (Span, Token)) -> Self {
TokenSet { tokens: vec![tok], maybe_empty: false }
}
// Changes self to be the set `{ tok }`.
// Since `tok` is always present, marks self as non-empty.
fn replace_with(&mut self, tok: (Span, Token)) {
self.tokens.clear();
self.tokens.push(tok);
self.maybe_empty = false;
}
// Changes self to be the empty set `{}`; meant for use when
// the particular token does not matter, but we want to
// record that it occurs.
fn replace_with_irrelevant(&mut self) {
self.tokens.clear();
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`, marking sequence as non-empy.
fn add_one(&mut self, tok: (Span, Token)) {
if !self.tokens.contains(&tok) {
self.tokens.push(tok);
}
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
fn add_one_maybe(&mut self, tok: (Span, Token)) {
if !self.tokens.contains(&tok) {
self.tokens.push(tok);
}
}
// Adds all elements of `other` to this.
//
// (Since this is a set, we filter out duplicates.)
//
// If `other` is potentially empty, then preserves the previous
// setting of the empty flag of `self`. If `other` is guaranteed
// non-empty, then `self` is marked non-empty.
fn add_all(&mut self, other: &Self) {
for tok in &other.tokens {
if !self.tokens.contains(tok) {
self.tokens.push(tok.clone());
}
}
if !other.maybe_empty {
self.maybe_empty = false;
}
}
}
// Checks that `matcher` is internally consistent and that it
// can legally by followed by a token N, for all N in `follow`.
// (If `follow` is empty, then it imposes no constraint on
// the `matcher`.)
//
// Returns the set of NT tokens that could possibly come last in
// `matcher`. (If `matcher` matches the empty sequence, then
// `maybe_empty` will be set to true.)
//
// Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`.
fn check_matcher_core(cx: &mut ExtCtxt,
first_sets: &FirstSets,
matcher: &[TokenTree],
follow: &TokenSet) -> TokenSet {
use print::pprust::token_to_string;
let mut last = TokenSet::empty();
// 2. For each token and suffix [T, SUFFIX] in M:
// ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
// then ensure T can also be followed by any element of FOLLOW.
'each_token: for i in 0..matcher.len() {
let token = &matcher[i];
let suffix = &matcher[i+1..];
let build_suffix_first = || {
let mut s = first_sets.first(suffix);
if s.maybe_empty { s.add_all(follow); }
return s;
};
// (we build `suffix_first` on demand below; you can tell
// which cases are supposed to fall through by looking for the
// initialization of this variable.)
let suffix_first;
// First, update `last` so that it corresponds to the set
// of NT tokens that might end the sequence `... token`.
match *token {
TokenTree::Token(sp, ref tok) => {
let can_be_followed_by_any;
if let Err(bad_frag) = has_legal_fragment_specifier(tok) {
cx.struct_span_err(sp, &format!("invalid fragment specifier `{}`", bad_frag))
.help("valid fragment specifiers are `ident`, `block`, \
`stmt`, `expr`, `pat`, `ty`, `path`, `meta`, `tt` \
and `item`")
.emit();
// (This eliminates false positives and duplicates
// from error messages.)
can_be_followed_by_any = true;
} else {
can_be_followed_by_any = token_can_be_followed_by_any(tok);
}
if can_be_followed_by_any {
// don't need to track tokens that work with any,
last.replace_with_irrelevant();
// ... and don't need to check tokens that can be
// followed by anything against SUFFIX.
continue 'each_token;
} else {
last.replace_with((sp, tok.clone()));
suffix_first = build_suffix_first();
}
}
TokenTree::Delimited(_, ref d) => {
let my_suffix = TokenSet::singleton((d.close_span, Token::CloseDelim(d.delim)));
check_matcher_core(cx, first_sets, &d.tts, &my_suffix);
// don't track non NT tokens
last.replace_with_irrelevant();
// also, we don't need to check delimited sequences
// against SUFFIX
continue 'each_token;
}
TokenTree::Sequence(sp, ref seq_rep) => {
suffix_first = build_suffix_first();
// The trick here: when we check the interior, we want
// to include the separator (if any) as a potential
// (but not guaranteed) element of FOLLOW. So in that
// case, we make a temp copy of suffix and stuff
// delimiter in there.
//
// FIXME: Should I first scan suffix_first to see if
// delimiter is already in it before I go through the
// work of cloning it? But then again, this way I may
// get a "tighter" span?
let mut new;
let my_suffix = if let Some(ref u) = seq_rep.separator {
new = suffix_first.clone();
new.add_one_maybe((sp, u.clone()));
&new
} else {
&suffix_first
};
// At this point, `suffix_first` is built, and
// `my_suffix` is some TokenSet that we can use
// for checking the interior of `seq_rep`.
let next = check_matcher_core(cx, first_sets, &seq_rep.tts, my_suffix);
if next.maybe_empty {
last.add_all(&next);
} else {
last = next;
}
// the recursive call to check_matcher_core already ran the 'each_last
// check below, so we can just keep going forward here.
continue 'each_token;
}
}
// (`suffix_first` guaranteed initialized once reaching here.)
// Now `last` holds the complete set of NT tokens that could
// end the sequence before SUFFIX. Check that every one works with `suffix`.
'each_last: for &(_sp, ref t) in &last.tokens {
if let MatchNt(ref name, ref frag_spec) = *t {
for &(sp, ref next_token) in &suffix_first.tokens {
match is_in_follow(cx, next_token, &frag_spec.name.as_str()) {
Err((msg, help)) => {
cx.struct_span_err(sp, &msg).help(help).emit();
// don't bother reporting every source of
// conflict for a particular element of `last`.
continue 'each_last;
}
Ok(true) => {}
Ok(false) => {
let may_be = if last.tokens.len() == 1 &&
suffix_first.tokens.len() == 1
{
"is"
} else {
"may be"
};
cx.span_err(
sp,
&format!("`${name}:{frag}` {may_be} followed by `{next}`, which \
is not allowed for `{frag}` fragments",
name=name,
frag=frag_spec,
next=token_to_string(next_token),
may_be=may_be)
);
}
}
}
}
}
}
last
}
fn token_can_be_followed_by_any(tok: &Token) -> bool {
if let &MatchNt(_, ref frag_spec) = tok {
frag_can_be_followed_by_any(&frag_spec.name.as_str())
} else {
// (Non NT's can always be followed by anthing in matchers.)
true
}
}
/// True if a fragment of type `frag` can be followed by any sort of
/// token. We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn frag_can_be_followed_by_any(frag: &str) -> bool {
match frag {
"item" | // always terminated by `}` or `;`
"block" | // exactly one token tree
"ident" | // exactly one token tree
"meta" | // exactly one token tree
"tt" => // exactly one token tree
true,
_ =>
false,
}
}
/// True if `frag` can legally be followed by the token `tok`. For
/// fragments that can consume an unbounded number of tokens, `tok`
/// must be within a well-defined follow set. This is intended to
/// guarantee future compatibility: for example, without this rule, if
/// we expanded `expr` to include a new binary operator, we might
/// break macros that were relying on that binary operator as a
/// separator.
// when changing this do not forget to update doc/book/macros.md!
fn is_in_follow(_: &ExtCtxt, tok: &Token, frag: &str) -> Result<bool, (String, &'static str)> {
if let &CloseDelim(_) = tok {
// closing a token tree can never be matched by any fragment;
// iow, we always require that `(` and `)` match, etc.
Ok(true)
} else {
match frag {
"item" => {
// since items *must* be followed by either a `;` or a `}`, we can
// accept anything after them
Ok(true)
},
"block" => {
// anything can follow block, the braces provide an easy boundary to
// maintain
Ok(true)
},
"stmt" | "expr" => {
match *tok {
FatArrow | Comma | Semi => Ok(true),
_ => Ok(false)
}
},
"pat" => {
match *tok {
FatArrow | Comma | Eq | BinOp(token::Or) => Ok(true),
Ident(i) if (i.name.as_str() == "if" ||
i.name.as_str() == "in") => Ok(true),
_ => Ok(false)
}
},
"path" | "ty" => {
match *tok {
OpenDelim(token::DelimToken::Brace) | OpenDelim(token::DelimToken::Bracket) |
Comma | FatArrow | Colon | Eq | Gt | Semi | BinOp(token::Or) => Ok(true),
MatchNt(_, ref frag) if frag.name.as_str() == "block" => Ok(true),
Ident(i) if i.name.as_str() == "as" || i.name.as_str() == "where" => Ok(true),
_ => Ok(false)
}
},
"ident" => {
// being a single token, idents are harmless
Ok(true)
},
"meta" | "tt" => {
// being either a single token or a delimited sequence, tt is
// harmless
Ok(true)
},
_ => Err((format!("invalid fragment specifier `{}`", frag),
"valid fragment specifiers are `ident`, `block`, \
`stmt`, `expr`, `pat`, `ty`, `path`, `meta`, `tt` \
and `item`"))
}
}
}
fn has_legal_fragment_specifier(tok: &Token) -> Result<(), String> {
debug!("has_legal_fragment_specifier({:?})", tok);
if let &MatchNt(_, ref frag_spec) = tok {
let s = &frag_spec.name.as_str();
if !is_legal_fragment_specifier(s) {
return Err(s.to_string());
}
}
Ok(())
}
fn is_legal_fragment_specifier(frag: &str) -> bool {
match frag {
"item" | "block" | "stmt" | "expr" | "pat" |
"path" | "ty" | "ident" | "meta" | "tt" => true,
_ => false,
}
}