This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2.7 KiB
% Lang items
Note
: lang items are often provided by crates in the Rust distribution, and lang items themselves have an unstable interface. It is recommended to use officially distributed crates instead of defining your own lang items.
The rustc
compiler has certain pluggable operations, that is,
functionality that isn't hard-coded into the language, but is
implemented in libraries, with a special marker to tell the compiler
it exists. The marker is the attribute #[lang = "..."]
and there are
various different values of ...
, i.e. various different 'lang
items'.
For example, Box
pointers require two lang items, one for allocation
and one for deallocation. A freestanding program that uses the Box
sugar for dynamic allocations via malloc
and free
:
#![feature(lang_items, box_syntax, start, libc)]
#![no_std]
extern crate libc;
extern {
fn abort() -> !;
}
#[lang = "owned_box"]
pub struct Box<T>(*mut T);
#[lang = "exchange_malloc"]
unsafe fn allocate(size: usize, _align: usize) -> *mut u8 {
let p = libc::malloc(size as libc::size_t) as *mut u8;
// malloc failed
if p as usize == 0 {
abort();
}
p
}
#[lang = "exchange_free"]
unsafe fn deallocate(ptr: *mut u8, _size: usize, _align: usize) {
libc::free(ptr as *mut libc::c_void)
}
#[start]
fn main(argc: isize, argv: *const *const u8) -> isize {
let x = box 1;
0
}
#[lang = "eh_personality"] extern fn eh_personality() {}
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
# #[lang = "eh_unwind_resume"] extern fn rust_eh_unwind_resume() {}
# #[no_mangle] pub extern fn rust_eh_register_frames () {}
# #[no_mangle] pub extern fn rust_eh_unregister_frames () {}
Note the use of abort
: the exchange_malloc
lang item is assumed to
return a valid pointer, and so needs to do the check internally.
Other features provided by lang items include:
- overloadable operators via traits: the traits corresponding to the
==
,<
, dereferencing (*
) and+
(etc.) operators are all marked with lang items; those specific four areeq
,ord
,deref
, andadd
respectively. - stack unwinding and general failure; the
eh_personality
,fail
andfail_bounds_checks
lang items. - the traits in
std::marker
used to indicate types of various kinds; lang itemssend
,sync
andcopy
. - the marker types and variance indicators found in
std::marker
; lang itemscovariant_type
,contravariant_lifetime
, etc.
Lang items are loaded lazily by the compiler; e.g. if one never uses
Box
then there is no need to define functions for exchange_malloc
and exchange_free
. rustc
will emit an error when an item is needed
but not found in the current crate or any that it depends on.