aaaf7e00ec
structure patterns. Closes #4508.
1809 lines
68 KiB
Rust
1809 lines
68 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
*
|
|
* # Compilation of match statements
|
|
*
|
|
* I will endeavor to explain the code as best I can. I have only a loose
|
|
* understanding of some parts of it.
|
|
*
|
|
* ## Matching
|
|
*
|
|
* The basic state of the code is maintained in an array `m` of `Match`
|
|
* objects. Each `Match` describes some list of patterns, all of which must
|
|
* match against the current list of values. If those patterns match, then
|
|
* the arm listed in the match is the correct arm. A given arm may have
|
|
* multiple corresponding match entries, one for each alternative that
|
|
* remains. As we proceed these sets of matches are adjusted by the various
|
|
* `enter_XXX()` functions, each of which adjusts the set of options given
|
|
* some information about the value which has been matched.
|
|
*
|
|
* So, initially, there is one value and N matches, each of which have one
|
|
* constituent pattern. N here is usually the number of arms but may be
|
|
* greater, if some arms have multiple alternatives. For example, here:
|
|
*
|
|
* enum Foo { A, B(int), C(uint, uint) }
|
|
* match foo {
|
|
* A => ...,
|
|
* B(x) => ...,
|
|
* C(1u, 2) => ...,
|
|
* C(_) => ...
|
|
* }
|
|
*
|
|
* The value would be `foo`. There would be four matches, each of which
|
|
* contains one pattern (and, in one case, a guard). We could collect the
|
|
* various options and then compile the code for the case where `foo` is an
|
|
* `A`, a `B`, and a `C`. When we generate the code for `C`, we would (1)
|
|
* drop the two matches that do not match a `C` and (2) expand the other two
|
|
* into two patterns each. In the first case, the two patterns would be `1u`
|
|
* and `2`, and the in the second case the _ pattern would be expanded into
|
|
* `_` and `_`. The two values are of course the arguments to `C`.
|
|
*
|
|
* Here is a quick guide to the various functions:
|
|
*
|
|
* - `compile_submatch()`: The main workhouse. It takes a list of values and
|
|
* a list of matches and finds the various possibilities that could occur.
|
|
*
|
|
* - `enter_XXX()`: modifies the list of matches based on some information
|
|
* about the value that has been matched. For example,
|
|
* `enter_rec_or_struct()` adjusts the values given that a record or struct
|
|
* has been matched. This is an infallible pattern, so *all* of the matches
|
|
* must be either wildcards or record/struct patterns. `enter_opt()`
|
|
* handles the fallible cases, and it is correspondingly more complex.
|
|
*
|
|
* ## Bindings
|
|
*
|
|
* We store information about the bound variables for each arm as part of the
|
|
* per-arm `ArmData` struct. There is a mapping from identifiers to
|
|
* `BindingInfo` structs. These structs contain the mode/id/type of the
|
|
* binding, but they also contain an LLVM value which points at an alloca
|
|
* called `llmatch`. For by value bindings that are Copy, we also create
|
|
* an extra alloca that we copy the matched value to so that any changes
|
|
* we do to our copy is not reflected in the original and vice-versa.
|
|
* We don't do this if it's a move since the original value can't be used
|
|
* and thus allowing us to cheat in not creating an extra alloca.
|
|
*
|
|
* The `llmatch` binding always stores a pointer into the value being matched
|
|
* which points at the data for the binding. If the value being matched has
|
|
* type `T`, then, `llmatch` will point at an alloca of type `T*` (and hence
|
|
* `llmatch` has type `T**`). So, if you have a pattern like:
|
|
*
|
|
* let a: A = ...;
|
|
* let b: B = ...;
|
|
* match (a, b) { (ref c, d) => { ... } }
|
|
*
|
|
* For `c` and `d`, we would generate allocas of type `C*` and `D*`
|
|
* respectively. These are called the `llmatch`. As we match, when we come
|
|
* up against an identifier, we store the current pointer into the
|
|
* corresponding alloca.
|
|
*
|
|
* Once a pattern is completely matched, and assuming that there is no guard
|
|
* pattern, we will branch to a block that leads to the body itself. For any
|
|
* by-value bindings, this block will first load the ptr from `llmatch` (the
|
|
* one of type `D*`) and then load a second time to get the actual value (the
|
|
* one of type `D`). For by ref bindings, the value of the local variable is
|
|
* simply the first alloca.
|
|
*
|
|
* So, for the example above, we would generate a setup kind of like this:
|
|
*
|
|
* +-------+
|
|
* | Entry |
|
|
* +-------+
|
|
* |
|
|
* +--------------------------------------------+
|
|
* | llmatch_c = (addr of first half of tuple) |
|
|
* | llmatch_d = (addr of second half of tuple) |
|
|
* +--------------------------------------------+
|
|
* |
|
|
* +--------------------------------------+
|
|
* | *llbinding_d = **llmatch_d |
|
|
* +--------------------------------------+
|
|
*
|
|
* If there is a guard, the situation is slightly different, because we must
|
|
* execute the guard code. Moreover, we need to do so once for each of the
|
|
* alternatives that lead to the arm, because if the guard fails, they may
|
|
* have different points from which to continue the search. Therefore, in that
|
|
* case, we generate code that looks more like:
|
|
*
|
|
* +-------+
|
|
* | Entry |
|
|
* +-------+
|
|
* |
|
|
* +-------------------------------------------+
|
|
* | llmatch_c = (addr of first half of tuple) |
|
|
* | llmatch_d = (addr of first half of tuple) |
|
|
* +-------------------------------------------+
|
|
* |
|
|
* +-------------------------------------------------+
|
|
* | *llbinding_d = **llmatch_d |
|
|
* | check condition |
|
|
* | if false { goto next case } |
|
|
* | if true { goto body } |
|
|
* +-------------------------------------------------+
|
|
*
|
|
* The handling for the cleanups is a bit... sensitive. Basically, the body
|
|
* is the one that invokes `add_clean()` for each binding. During the guard
|
|
* evaluation, we add temporary cleanups and revoke them after the guard is
|
|
* evaluated (it could fail, after all). Note that guards and moves are
|
|
* just plain incompatible.
|
|
*
|
|
* Some relevant helper functions that manage bindings:
|
|
* - `create_bindings_map()`
|
|
* - `insert_lllocals()`
|
|
*
|
|
*
|
|
* ## Notes on vector pattern matching.
|
|
*
|
|
* Vector pattern matching is surprisingly tricky. The problem is that
|
|
* the structure of the vector isn't fully known, and slice matches
|
|
* can be done on subparts of it.
|
|
*
|
|
* The way that vector pattern matches are dealt with, then, is as
|
|
* follows. First, we make the actual condition associated with a
|
|
* vector pattern simply a vector length comparison. So the pattern
|
|
* [1, .. x] gets the condition "vec len >= 1", and the pattern
|
|
* [.. x] gets the condition "vec len >= 0". The problem here is that
|
|
* having the condition "vec len >= 1" hold clearly does not mean that
|
|
* only a pattern that has exactly that condition will match. This
|
|
* means that it may well be the case that a condition holds, but none
|
|
* of the patterns matching that condition match; to deal with this,
|
|
* when doing vector length matches, we have match failures proceed to
|
|
* the next condition to check.
|
|
*
|
|
* There are a couple more subtleties to deal with. While the "actual"
|
|
* condition associated with vector length tests is simply a test on
|
|
* the vector length, the actual vec_len Opt entry contains more
|
|
* information used to restrict which matches are associated with it.
|
|
* So that all matches in a submatch are matching against the same
|
|
* values from inside the vector, they are split up by how many
|
|
* elements they match at the front and at the back of the vector. In
|
|
* order to make sure that arms are properly checked in order, even
|
|
* with the overmatching conditions, each vec_len Opt entry is
|
|
* associated with a range of matches.
|
|
* Consider the following:
|
|
*
|
|
* match &[1, 2, 3] {
|
|
* [1, 1, .. _] => 0,
|
|
* [1, 2, 2, .. _] => 1,
|
|
* [1, 2, 3, .. _] => 2,
|
|
* [1, 2, .. _] => 3,
|
|
* _ => 4
|
|
* }
|
|
* The proper arm to match is arm 2, but arms 0 and 3 both have the
|
|
* condition "len >= 2". If arm 3 was lumped in with arm 0, then the
|
|
* wrong branch would be taken. Instead, vec_len Opts are associated
|
|
* with a contiguous range of matches that have the same "shape".
|
|
* This is sort of ugly and requires a bunch of special handling of
|
|
* vec_len options.
|
|
*
|
|
*/
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
use back::abi;
|
|
use driver::config::FullDebugInfo;
|
|
use lib::llvm::{llvm, ValueRef, BasicBlockRef};
|
|
use middle::const_eval;
|
|
use middle::def;
|
|
use middle::check_match;
|
|
use middle::lang_items::StrEqFnLangItem;
|
|
use middle::pat_util::*;
|
|
use middle::resolve::DefMap;
|
|
use middle::trans::adt;
|
|
use middle::trans::base::*;
|
|
use middle::trans::build::*;
|
|
use middle::trans::callee;
|
|
use middle::trans::cleanup;
|
|
use middle::trans::cleanup::CleanupMethods;
|
|
use middle::trans::common::*;
|
|
use middle::trans::consts;
|
|
use middle::trans::controlflow;
|
|
use middle::trans::datum::*;
|
|
use middle::trans::expr::Dest;
|
|
use middle::trans::expr;
|
|
use middle::trans::tvec;
|
|
use middle::trans::type_of;
|
|
use middle::trans::debuginfo;
|
|
use middle::ty;
|
|
use util::common::indenter;
|
|
use util::ppaux::{Repr, vec_map_to_str};
|
|
|
|
use std;
|
|
use std::collections::HashMap;
|
|
use std::cell::Cell;
|
|
use std::rc::Rc;
|
|
use std::gc::{Gc};
|
|
use syntax::ast;
|
|
use syntax::ast::Ident;
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token::InternedString;
|
|
|
|
// An option identifying a literal: either an expression or a DefId of a static expression.
|
|
enum Lit {
|
|
ExprLit(Gc<ast::Expr>),
|
|
ConstLit(ast::DefId), // the def ID of the constant
|
|
}
|
|
|
|
#[deriving(PartialEq)]
|
|
pub enum VecLenOpt {
|
|
vec_len_eq,
|
|
vec_len_ge(/* length of prefix */uint)
|
|
}
|
|
|
|
// An option identifying a branch (either a literal, an enum variant or a
|
|
// range)
|
|
enum Opt {
|
|
lit(Lit),
|
|
var(ty::Disr, Rc<adt::Repr>, ast::DefId),
|
|
range(Gc<ast::Expr>, Gc<ast::Expr>),
|
|
vec_len(/* length */ uint, VecLenOpt, /*range of matches*/(uint, uint))
|
|
}
|
|
|
|
fn lit_to_expr(tcx: &ty::ctxt, a: &Lit) -> Gc<ast::Expr> {
|
|
match *a {
|
|
ExprLit(existing_a_expr) => existing_a_expr,
|
|
ConstLit(a_const) => const_eval::lookup_const_by_id(tcx, a_const).unwrap()
|
|
}
|
|
}
|
|
|
|
fn opt_eq(tcx: &ty::ctxt, a: &Opt, b: &Opt) -> bool {
|
|
match (a, b) {
|
|
(&lit(a), &lit(b)) => {
|
|
let a_expr = lit_to_expr(tcx, &a);
|
|
let b_expr = lit_to_expr(tcx, &b);
|
|
match const_eval::compare_lit_exprs(tcx, &*a_expr, &*b_expr) {
|
|
Some(val1) => val1 == 0,
|
|
None => fail!("compare_list_exprs: type mismatch"),
|
|
}
|
|
}
|
|
(&range(ref a1, ref a2), &range(ref b1, ref b2)) => {
|
|
let m1 = const_eval::compare_lit_exprs(tcx, &**a1, &**b1);
|
|
let m2 = const_eval::compare_lit_exprs(tcx, &**a2, &**b2);
|
|
match (m1, m2) {
|
|
(Some(val1), Some(val2)) => (val1 == 0 && val2 == 0),
|
|
_ => fail!("compare_list_exprs: type mismatch"),
|
|
}
|
|
}
|
|
(&var(a, _, _), &var(b, _, _)) => a == b,
|
|
(&vec_len(a1, a2, _), &vec_len(b1, b2, _)) =>
|
|
a1 == b1 && a2 == b2,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub enum opt_result<'a> {
|
|
single_result(Result<'a>),
|
|
lower_bound(Result<'a>),
|
|
range_result(Result<'a>, Result<'a>),
|
|
}
|
|
|
|
fn trans_opt<'a>(bcx: &'a Block<'a>, o: &Opt) -> opt_result<'a> {
|
|
let _icx = push_ctxt("match::trans_opt");
|
|
let ccx = bcx.ccx();
|
|
let mut bcx = bcx;
|
|
match *o {
|
|
lit(ExprLit(ref lit_expr)) => {
|
|
let lit_datum = unpack_datum!(bcx, expr::trans(bcx, &**lit_expr));
|
|
let lit_datum = lit_datum.assert_rvalue(bcx); // literals are rvalues
|
|
let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx));
|
|
return single_result(Result::new(bcx, lit_datum.val));
|
|
}
|
|
lit(l @ ConstLit(ref def_id)) => {
|
|
let lit_ty = ty::node_id_to_type(bcx.tcx(), lit_to_expr(bcx.tcx(), &l).id);
|
|
let (llval, _) = consts::get_const_val(bcx.ccx(), *def_id);
|
|
let lit_datum = immediate_rvalue(llval, lit_ty);
|
|
let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx));
|
|
return single_result(Result::new(bcx, lit_datum.val));
|
|
}
|
|
var(disr_val, ref repr, _) => {
|
|
return adt::trans_case(bcx, &**repr, disr_val);
|
|
}
|
|
range(ref l1, ref l2) => {
|
|
let (l1, _) = consts::const_expr(ccx, &**l1, true);
|
|
let (l2, _) = consts::const_expr(ccx, &**l2, true);
|
|
return range_result(Result::new(bcx, l1), Result::new(bcx, l2));
|
|
}
|
|
vec_len(n, vec_len_eq, _) => {
|
|
return single_result(Result::new(bcx, C_int(ccx, n as int)));
|
|
}
|
|
vec_len(n, vec_len_ge(_), _) => {
|
|
return lower_bound(Result::new(bcx, C_int(ccx, n as int)));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn variant_opt(bcx: &Block, pat_id: ast::NodeId) -> Opt {
|
|
let ccx = bcx.ccx();
|
|
let def = ccx.tcx.def_map.borrow().get_copy(&pat_id);
|
|
match def {
|
|
def::DefVariant(enum_id, var_id, _) => {
|
|
let variant = ty::enum_variant_with_id(ccx.tcx(), enum_id, var_id);
|
|
var(variant.disr_val, adt::represent_node(bcx, pat_id), var_id)
|
|
}
|
|
_ => {
|
|
ccx.sess().bug("non-variant or struct in variant_opt()");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub enum TransBindingMode {
|
|
TrByCopy(/* llbinding */ ValueRef),
|
|
TrByMove,
|
|
TrByRef,
|
|
}
|
|
|
|
/**
|
|
* Information about a pattern binding:
|
|
* - `llmatch` is a pointer to a stack slot. The stack slot contains a
|
|
* pointer into the value being matched. Hence, llmatch has type `T**`
|
|
* where `T` is the value being matched.
|
|
* - `trmode` is the trans binding mode
|
|
* - `id` is the node id of the binding
|
|
* - `ty` is the Rust type of the binding */
|
|
#[deriving(Clone)]
|
|
pub struct BindingInfo {
|
|
pub llmatch: ValueRef,
|
|
pub trmode: TransBindingMode,
|
|
pub id: ast::NodeId,
|
|
pub span: Span,
|
|
pub ty: ty::t,
|
|
}
|
|
|
|
type BindingsMap = HashMap<Ident, BindingInfo>;
|
|
|
|
struct ArmData<'a, 'b> {
|
|
bodycx: &'b Block<'b>,
|
|
arm: &'a ast::Arm,
|
|
bindings_map: BindingsMap
|
|
}
|
|
|
|
/**
|
|
* Info about Match.
|
|
* If all `pats` are matched then arm `data` will be executed.
|
|
* As we proceed `bound_ptrs` are filled with pointers to values to be bound,
|
|
* these pointers are stored in llmatch variables just before executing `data` arm.
|
|
*/
|
|
struct Match<'a, 'b> {
|
|
pats: Vec<Gc<ast::Pat>>,
|
|
data: &'a ArmData<'a, 'b>,
|
|
bound_ptrs: Vec<(Ident, ValueRef)>
|
|
}
|
|
|
|
impl<'a, 'b> Repr for Match<'a, 'b> {
|
|
fn repr(&self, tcx: &ty::ctxt) -> String {
|
|
if tcx.sess.verbose() {
|
|
// for many programs, this just take too long to serialize
|
|
self.pats.repr(tcx)
|
|
} else {
|
|
format!("{} pats", self.pats.len())
|
|
}
|
|
}
|
|
}
|
|
|
|
fn has_nested_bindings(m: &[Match], col: uint) -> bool {
|
|
for br in m.iter() {
|
|
match br.pats.get(col).node {
|
|
ast::PatIdent(_, _, Some(_)) => return true,
|
|
_ => ()
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
fn expand_nested_bindings<'a, 'b>(
|
|
bcx: &'b Block<'b>,
|
|
m: &'a [Match<'a, 'b>],
|
|
col: uint,
|
|
val: ValueRef)
|
|
-> Vec<Match<'a, 'b>> {
|
|
debug!("expand_nested_bindings(bcx={}, m={}, col={}, val={})",
|
|
bcx.to_str(),
|
|
m.repr(bcx.tcx()),
|
|
col,
|
|
bcx.val_to_str(val));
|
|
let _indenter = indenter();
|
|
|
|
m.iter().map(|br| {
|
|
match br.pats.get(col).node {
|
|
ast::PatIdent(_, ref path1, Some(inner)) => {
|
|
let pats = Vec::from_slice(br.pats.slice(0u, col))
|
|
.append((vec!(inner))
|
|
.append(br.pats.slice(col + 1u, br.pats.len())).as_slice());
|
|
|
|
let mut bound_ptrs = br.bound_ptrs.clone();
|
|
bound_ptrs.push((path1.node, val));
|
|
Match {
|
|
pats: pats,
|
|
data: &*br.data,
|
|
bound_ptrs: bound_ptrs
|
|
}
|
|
}
|
|
_ => Match {
|
|
pats: br.pats.clone(),
|
|
data: &*br.data,
|
|
bound_ptrs: br.bound_ptrs.clone()
|
|
}
|
|
}
|
|
}).collect()
|
|
}
|
|
|
|
type enter_pats<'a> = |&[Gc<ast::Pat>]|: 'a -> Option<Vec<Gc<ast::Pat>>>;
|
|
|
|
fn enter_match<'a, 'b>(
|
|
bcx: &'b Block<'b>,
|
|
dm: &DefMap,
|
|
m: &'a [Match<'a, 'b>],
|
|
col: uint,
|
|
val: ValueRef,
|
|
e: enter_pats)
|
|
-> Vec<Match<'a, 'b>> {
|
|
debug!("enter_match(bcx={}, m={}, col={}, val={})",
|
|
bcx.to_str(),
|
|
m.repr(bcx.tcx()),
|
|
col,
|
|
bcx.val_to_str(val));
|
|
let _indenter = indenter();
|
|
|
|
m.iter().filter_map(|br| {
|
|
e(br.pats.as_slice()).map(|pats| {
|
|
let this = *br.pats.get(col);
|
|
let mut bound_ptrs = br.bound_ptrs.clone();
|
|
match this.node {
|
|
ast::PatIdent(_, ref path1, None) => {
|
|
if pat_is_binding(dm, &*this) {
|
|
bound_ptrs.push((path1.node, val));
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
Match {
|
|
pats: pats,
|
|
data: br.data,
|
|
bound_ptrs: bound_ptrs
|
|
}
|
|
})
|
|
}).collect()
|
|
}
|
|
|
|
fn enter_default<'a, 'b>(
|
|
bcx: &'b Block<'b>,
|
|
dm: &DefMap,
|
|
m: &'a [Match<'a, 'b>],
|
|
col: uint,
|
|
val: ValueRef)
|
|
-> Vec<Match<'a, 'b>> {
|
|
debug!("enter_default(bcx={}, m={}, col={}, val={})",
|
|
bcx.to_str(),
|
|
m.repr(bcx.tcx()),
|
|
col,
|
|
bcx.val_to_str(val));
|
|
let _indenter = indenter();
|
|
|
|
// Collect all of the matches that can match against anything.
|
|
enter_match(bcx, dm, m, col, val, |pats| {
|
|
if pat_is_binding_or_wild(dm, pats[col]) {
|
|
Some(Vec::from_slice(pats.slice_to(col)).append(pats.slice_from(col + 1)))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
}
|
|
|
|
// <pcwalton> nmatsakis: what does enter_opt do?
|
|
// <pcwalton> in trans/match
|
|
// <pcwalton> trans/match.rs is like stumbling around in a dark cave
|
|
// <nmatsakis> pcwalton: the enter family of functions adjust the set of
|
|
// patterns as needed
|
|
// <nmatsakis> yeah, at some point I kind of achieved some level of
|
|
// understanding
|
|
// <nmatsakis> anyhow, they adjust the patterns given that something of that
|
|
// kind has been found
|
|
// <nmatsakis> pcwalton: ok, right, so enter_XXX() adjusts the patterns, as I
|
|
// said
|
|
// <nmatsakis> enter_match() kind of embodies the generic code
|
|
// <nmatsakis> it is provided with a function that tests each pattern to see
|
|
// if it might possibly apply and so forth
|
|
// <nmatsakis> so, if you have a pattern like {a: _, b: _, _} and one like _
|
|
// <nmatsakis> then _ would be expanded to (_, _)
|
|
// <nmatsakis> one spot for each of the sub-patterns
|
|
// <nmatsakis> enter_opt() is one of the more complex; it covers the fallible
|
|
// cases
|
|
// <nmatsakis> enter_rec_or_struct() or enter_tuple() are simpler, since they
|
|
// are infallible patterns
|
|
// <nmatsakis> so all patterns must either be records (resp. tuples) or
|
|
// wildcards
|
|
|
|
/// The above is now outdated in that enter_match() now takes a function that
|
|
/// takes the complete row of patterns rather than just the first one.
|
|
/// Also, most of the enter_() family functions have been unified with
|
|
/// the check_match specialization step.
|
|
fn enter_opt<'a, 'b>(
|
|
bcx: &'b Block<'b>,
|
|
_: ast::NodeId,
|
|
dm: &DefMap,
|
|
m: &'a [Match<'a, 'b>],
|
|
opt: &Opt,
|
|
col: uint,
|
|
variant_size: uint,
|
|
val: ValueRef)
|
|
-> Vec<Match<'a, 'b>> {
|
|
debug!("enter_opt(bcx={}, m={}, opt={:?}, col={}, val={})",
|
|
bcx.to_str(),
|
|
m.repr(bcx.tcx()),
|
|
*opt,
|
|
col,
|
|
bcx.val_to_str(val));
|
|
let _indenter = indenter();
|
|
|
|
let ctor = match opt {
|
|
&lit(x) => check_match::ConstantValue(const_eval::eval_const_expr(
|
|
bcx.tcx(), lit_to_expr(bcx.tcx(), &x))),
|
|
&range(ref lo, ref hi) => check_match::ConstantRange(
|
|
const_eval::eval_const_expr(bcx.tcx(), &**lo),
|
|
const_eval::eval_const_expr(bcx.tcx(), &**hi)
|
|
),
|
|
&vec_len(len, _, _) => check_match::Slice(len),
|
|
&var(_, _, def_id) => check_match::Variant(def_id)
|
|
};
|
|
|
|
let mut i = 0;
|
|
let tcx = bcx.tcx();
|
|
let mcx = check_match::MatchCheckCtxt { tcx: bcx.tcx() };
|
|
enter_match(bcx, dm, m, col, val, |pats| {
|
|
let span = pats[col].span;
|
|
let specialized = match pats[col].node {
|
|
ast::PatVec(ref before, slice, ref after) => {
|
|
let (lo, hi) = match *opt {
|
|
vec_len(_, _, (lo, hi)) => (lo, hi),
|
|
_ => tcx.sess.span_bug(span,
|
|
"vec pattern but not vec opt")
|
|
};
|
|
|
|
let elems = match slice {
|
|
Some(slice) if i >= lo && i <= hi => {
|
|
let n = before.len() + after.len();
|
|
let this_opt = vec_len(n, vec_len_ge(before.len()),
|
|
(lo, hi));
|
|
if opt_eq(tcx, &this_opt, opt) {
|
|
let mut new_before = Vec::new();
|
|
for pat in before.iter() {
|
|
new_before.push(*pat);
|
|
}
|
|
new_before.push(slice);
|
|
for pat in after.iter() {
|
|
new_before.push(*pat);
|
|
}
|
|
Some(new_before)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
None if i >= lo && i <= hi => {
|
|
let n = before.len();
|
|
if opt_eq(tcx, &vec_len(n, vec_len_eq, (lo,hi)), opt) {
|
|
let mut new_before = Vec::new();
|
|
for pat in before.iter() {
|
|
new_before.push(*pat);
|
|
}
|
|
Some(new_before)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
_ => None
|
|
};
|
|
elems.map(|head| head.append(pats.slice_to(col)).append(pats.slice_from(col + 1)))
|
|
}
|
|
_ => {
|
|
check_match::specialize(&mcx, pats.as_slice(), &ctor, col, variant_size)
|
|
}
|
|
};
|
|
i += 1;
|
|
specialized
|
|
})
|
|
}
|
|
|
|
// Returns the options in one column of matches. An option is something that
|
|
// needs to be conditionally matched at runtime; for example, the discriminant
|
|
// on a set of enum variants or a literal.
|
|
fn get_options(bcx: &Block, m: &[Match], col: uint) -> Vec<Opt> {
|
|
let ccx = bcx.ccx();
|
|
fn add_to_set(tcx: &ty::ctxt, set: &mut Vec<Opt>, val: Opt) {
|
|
if set.iter().any(|l| opt_eq(tcx, l, &val)) {return;}
|
|
set.push(val);
|
|
}
|
|
// Vector comparisons are special in that since the actual
|
|
// conditions over-match, we need to be careful about them. This
|
|
// means that in order to properly handle things in order, we need
|
|
// to not always merge conditions.
|
|
fn add_veclen_to_set(set: &mut Vec<Opt> , i: uint,
|
|
len: uint, vlo: VecLenOpt) {
|
|
match set.last() {
|
|
// If the last condition in the list matches the one we want
|
|
// to add, then extend its range. Otherwise, make a new
|
|
// vec_len with a range just covering the new entry.
|
|
Some(&vec_len(len2, vlo2, (start, end)))
|
|
if len == len2 && vlo == vlo2 => {
|
|
let length = set.len();
|
|
*set.get_mut(length - 1) =
|
|
vec_len(len, vlo, (start, end+1))
|
|
}
|
|
_ => set.push(vec_len(len, vlo, (i, i)))
|
|
}
|
|
}
|
|
|
|
let mut found = Vec::new();
|
|
for (i, br) in m.iter().enumerate() {
|
|
let cur = *br.pats.get(col);
|
|
match cur.node {
|
|
ast::PatLit(l) => {
|
|
add_to_set(ccx.tcx(), &mut found, lit(ExprLit(l)));
|
|
}
|
|
ast::PatIdent(..) => {
|
|
// This is either an enum variant or a variable binding.
|
|
let opt_def = ccx.tcx.def_map.borrow().find_copy(&cur.id);
|
|
match opt_def {
|
|
Some(def::DefVariant(..)) => {
|
|
add_to_set(ccx.tcx(), &mut found,
|
|
variant_opt(bcx, cur.id));
|
|
}
|
|
Some(def::DefStatic(const_did, false)) => {
|
|
add_to_set(ccx.tcx(), &mut found,
|
|
lit(ConstLit(const_did)));
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ast::PatEnum(..) | ast::PatStruct(..) => {
|
|
// This could be one of: a tuple-like enum variant, a
|
|
// struct-like enum variant, or a struct.
|
|
let opt_def = ccx.tcx.def_map.borrow().find_copy(&cur.id);
|
|
match opt_def {
|
|
Some(def::DefFn(..)) |
|
|
Some(def::DefVariant(..)) => {
|
|
add_to_set(ccx.tcx(), &mut found,
|
|
variant_opt(bcx, cur.id));
|
|
}
|
|
Some(def::DefStatic(const_did, false)) => {
|
|
add_to_set(ccx.tcx(), &mut found,
|
|
lit(ConstLit(const_did)));
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ast::PatRange(l1, l2) => {
|
|
add_to_set(ccx.tcx(), &mut found, range(l1, l2));
|
|
}
|
|
ast::PatVec(ref before, slice, ref after) => {
|
|
let (len, vec_opt) = match slice {
|
|
None => (before.len(), vec_len_eq),
|
|
Some(_) => (before.len() + after.len(),
|
|
vec_len_ge(before.len()))
|
|
};
|
|
add_veclen_to_set(&mut found, i, len, vec_opt);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
struct ExtractedBlock<'a> {
|
|
vals: Vec<ValueRef> ,
|
|
bcx: &'a Block<'a>,
|
|
}
|
|
|
|
fn extract_variant_args<'a>(
|
|
bcx: &'a Block<'a>,
|
|
repr: &adt::Repr,
|
|
disr_val: ty::Disr,
|
|
val: ValueRef)
|
|
-> ExtractedBlock<'a> {
|
|
let _icx = push_ctxt("match::extract_variant_args");
|
|
let args = Vec::from_fn(adt::num_args(repr, disr_val), |i| {
|
|
adt::trans_field_ptr(bcx, repr, val, disr_val, i)
|
|
});
|
|
|
|
ExtractedBlock { vals: args, bcx: bcx }
|
|
}
|
|
|
|
fn match_datum(bcx: &Block,
|
|
val: ValueRef,
|
|
pat_id: ast::NodeId)
|
|
-> Datum<Lvalue> {
|
|
/*!
|
|
* Helper for converting from the ValueRef that we pass around in
|
|
* the match code, which is always an lvalue, into a Datum. Eventually
|
|
* we should just pass around a Datum and be done with it.
|
|
*/
|
|
|
|
let ty = node_id_type(bcx, pat_id);
|
|
Datum::new(val, ty, Lvalue)
|
|
}
|
|
|
|
|
|
fn extract_vec_elems<'a>(
|
|
bcx: &'a Block<'a>,
|
|
pat_id: ast::NodeId,
|
|
elem_count: uint,
|
|
slice: Option<uint>,
|
|
val: ValueRef)
|
|
-> ExtractedBlock<'a> {
|
|
let _icx = push_ctxt("match::extract_vec_elems");
|
|
let vec_datum = match_datum(bcx, val, pat_id);
|
|
let (base, len) = vec_datum.get_vec_base_and_len(bcx);
|
|
let vec_ty = node_id_type(bcx, pat_id);
|
|
let vt = tvec::vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty));
|
|
|
|
let mut elems = Vec::from_fn(elem_count, |i| {
|
|
match slice {
|
|
None => GEPi(bcx, base, [i]),
|
|
Some(n) if i < n => GEPi(bcx, base, [i]),
|
|
Some(n) if i > n => {
|
|
InBoundsGEP(bcx, base, [
|
|
Sub(bcx, len,
|
|
C_int(bcx.ccx(), (elem_count - i) as int))])
|
|
}
|
|
_ => unsafe { llvm::LLVMGetUndef(vt.llunit_ty.to_ref()) }
|
|
}
|
|
});
|
|
if slice.is_some() {
|
|
let n = slice.unwrap();
|
|
let slice_byte_offset = Mul(bcx, vt.llunit_size, C_uint(bcx.ccx(), n));
|
|
let slice_begin = tvec::pointer_add_byte(bcx, base, slice_byte_offset);
|
|
let slice_len_offset = C_uint(bcx.ccx(), elem_count - 1u);
|
|
let slice_len = Sub(bcx, len, slice_len_offset);
|
|
let slice_ty = ty::mk_slice(bcx.tcx(),
|
|
ty::ReStatic,
|
|
ty::mt {ty: vt.unit_ty, mutbl: ast::MutImmutable});
|
|
let scratch = rvalue_scratch_datum(bcx, slice_ty, "");
|
|
Store(bcx, slice_begin,
|
|
GEPi(bcx, scratch.val, [0u, abi::slice_elt_base]));
|
|
Store(bcx, slice_len, GEPi(bcx, scratch.val, [0u, abi::slice_elt_len]));
|
|
*elems.get_mut(n) = scratch.val;
|
|
}
|
|
|
|
ExtractedBlock { vals: elems, bcx: bcx }
|
|
}
|
|
|
|
// Macro for deciding whether any of the remaining matches fit a given kind of
|
|
// pattern. Note that, because the macro is well-typed, either ALL of the
|
|
// matches should fit that sort of pattern or NONE (however, some of the
|
|
// matches may be wildcards like _ or identifiers).
|
|
macro_rules! any_pat (
|
|
($m:expr, $pattern:pat) => (
|
|
($m).iter().any(|br| {
|
|
match br.pats.get(col).node {
|
|
$pattern => true,
|
|
_ => false
|
|
}
|
|
})
|
|
)
|
|
)
|
|
|
|
fn any_uniq_pat(m: &[Match], col: uint) -> bool {
|
|
any_pat!(m, ast::PatBox(_))
|
|
}
|
|
|
|
fn any_region_pat(m: &[Match], col: uint) -> bool {
|
|
any_pat!(m, ast::PatRegion(_))
|
|
}
|
|
|
|
fn any_irrefutable_adt_pat(bcx: &Block, m: &[Match], col: uint) -> bool {
|
|
m.iter().any(|br| {
|
|
let pat = *br.pats.get(col);
|
|
match pat.node {
|
|
ast::PatTup(_) => true,
|
|
ast::PatStruct(..) => {
|
|
match bcx.tcx().def_map.borrow().find(&pat.id) {
|
|
Some(&def::DefVariant(..)) => false,
|
|
_ => true,
|
|
}
|
|
}
|
|
ast::PatEnum(..) | ast::PatIdent(_, _, None) => {
|
|
match bcx.tcx().def_map.borrow().find(&pat.id) {
|
|
Some(&def::DefFn(..)) |
|
|
Some(&def::DefStruct(..)) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
_ => false
|
|
}
|
|
})
|
|
}
|
|
|
|
struct DynamicFailureHandler<'a> {
|
|
bcx: &'a Block<'a>,
|
|
sp: Span,
|
|
msg: InternedString,
|
|
finished: Cell<Option<BasicBlockRef>>,
|
|
}
|
|
|
|
impl<'a> DynamicFailureHandler<'a> {
|
|
fn handle_fail(&self) -> BasicBlockRef {
|
|
match self.finished.get() {
|
|
Some(bb) => return bb,
|
|
_ => (),
|
|
}
|
|
|
|
let fcx = self.bcx.fcx;
|
|
let fail_cx = fcx.new_block(false, "case_fallthrough", None);
|
|
controlflow::trans_fail(fail_cx, self.sp, self.msg.clone());
|
|
self.finished.set(Some(fail_cx.llbb));
|
|
fail_cx.llbb
|
|
}
|
|
}
|
|
|
|
/// What to do when the pattern match fails.
|
|
enum FailureHandler<'a> {
|
|
Infallible,
|
|
JumpToBasicBlock(BasicBlockRef),
|
|
DynamicFailureHandlerClass(Box<DynamicFailureHandler<'a>>),
|
|
}
|
|
|
|
impl<'a> FailureHandler<'a> {
|
|
fn is_infallible(&self) -> bool {
|
|
match *self {
|
|
Infallible => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn is_fallible(&self) -> bool {
|
|
!self.is_infallible()
|
|
}
|
|
|
|
fn handle_fail(&self) -> BasicBlockRef {
|
|
match *self {
|
|
Infallible => {
|
|
fail!("attempted to fail in infallible failure handler!")
|
|
}
|
|
JumpToBasicBlock(basic_block) => basic_block,
|
|
DynamicFailureHandlerClass(ref dynamic_failure_handler) => {
|
|
dynamic_failure_handler.handle_fail()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn pick_col(m: &[Match]) -> uint {
|
|
fn score(p: &ast::Pat) -> uint {
|
|
match p.node {
|
|
ast::PatLit(_) | ast::PatEnum(_, _) | ast::PatRange(_, _) => 1u,
|
|
ast::PatIdent(_, _, Some(ref p)) => score(&**p),
|
|
_ => 0u
|
|
}
|
|
}
|
|
let mut scores = Vec::from_elem(m[0].pats.len(), 0u);
|
|
for br in m.iter() {
|
|
for (i, ref p) in br.pats.iter().enumerate() {
|
|
*scores.get_mut(i) += score(&***p);
|
|
}
|
|
}
|
|
let mut max_score = 0u;
|
|
let mut best_col = 0u;
|
|
for (i, score) in scores.iter().enumerate() {
|
|
let score = *score;
|
|
|
|
// Irrefutable columns always go first, they'd only be duplicated in
|
|
// the branches.
|
|
if score == 0u { return i; }
|
|
// If no irrefutable ones are found, we pick the one with the biggest
|
|
// branching factor.
|
|
if score > max_score { max_score = score; best_col = i; }
|
|
}
|
|
return best_col;
|
|
}
|
|
|
|
#[deriving(PartialEq)]
|
|
pub enum branch_kind { no_branch, single, switch, compare, compare_vec_len }
|
|
|
|
// Compiles a comparison between two things.
|
|
fn compare_values<'a>(
|
|
cx: &'a Block<'a>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
rhs_t: ty::t)
|
|
-> Result<'a> {
|
|
fn compare_str<'a>(cx: &'a Block<'a>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
rhs_t: ty::t)
|
|
-> Result<'a> {
|
|
let did = langcall(cx,
|
|
None,
|
|
format!("comparison of `{}`",
|
|
cx.ty_to_str(rhs_t)).as_slice(),
|
|
StrEqFnLangItem);
|
|
callee::trans_lang_call(cx, did, [lhs, rhs], None)
|
|
}
|
|
|
|
let _icx = push_ctxt("compare_values");
|
|
if ty::type_is_scalar(rhs_t) {
|
|
let rs = compare_scalar_types(cx, lhs, rhs, rhs_t, ast::BiEq);
|
|
return Result::new(rs.bcx, rs.val);
|
|
}
|
|
|
|
match ty::get(rhs_t).sty {
|
|
ty::ty_rptr(_, mt) => match ty::get(mt.ty).sty {
|
|
ty::ty_str => compare_str(cx, lhs, rhs, rhs_t),
|
|
ty::ty_vec(mt, _) => match ty::get(mt.ty).sty {
|
|
ty::ty_uint(ast::TyU8) => {
|
|
// NOTE: cast &[u8] to &str and abuse the str_eq lang item,
|
|
// which calls memcmp().
|
|
let t = ty::mk_str_slice(cx.tcx(), ty::ReStatic, ast::MutImmutable);
|
|
let lhs = BitCast(cx, lhs, type_of::type_of(cx.ccx(), t).ptr_to());
|
|
let rhs = BitCast(cx, rhs, type_of::type_of(cx.ccx(), t).ptr_to());
|
|
compare_str(cx, lhs, rhs, rhs_t)
|
|
},
|
|
_ => cx.sess().bug("only byte strings supported in compare_values"),
|
|
},
|
|
_ => cx.sess().bug("only string and byte strings supported in compare_values"),
|
|
},
|
|
_ => cx.sess().bug("only scalars, byte strings, and strings supported in compare_values"),
|
|
}
|
|
}
|
|
|
|
fn insert_lllocals<'a>(mut bcx: &'a Block<'a>,
|
|
bindings_map: &BindingsMap)
|
|
-> &'a Block<'a> {
|
|
/*!
|
|
* For each binding in `data.bindings_map`, adds an appropriate entry into
|
|
* the `fcx.lllocals` map
|
|
*/
|
|
|
|
for (&ident, &binding_info) in bindings_map.iter() {
|
|
let llval = match binding_info.trmode {
|
|
// By value mut binding for a copy type: load from the ptr
|
|
// into the matched value and copy to our alloca
|
|
TrByCopy(llbinding) => {
|
|
let llval = Load(bcx, binding_info.llmatch);
|
|
let datum = Datum::new(llval, binding_info.ty, Lvalue);
|
|
bcx = datum.store_to(bcx, llbinding);
|
|
|
|
llbinding
|
|
},
|
|
|
|
// By value move bindings: load from the ptr into the matched value
|
|
TrByMove => Load(bcx, binding_info.llmatch),
|
|
|
|
// By ref binding: use the ptr into the matched value
|
|
TrByRef => binding_info.llmatch
|
|
};
|
|
|
|
let datum = Datum::new(llval, binding_info.ty, Lvalue);
|
|
|
|
debug!("binding {:?} to {}",
|
|
binding_info.id,
|
|
bcx.val_to_str(llval));
|
|
bcx.fcx.lllocals.borrow_mut().insert(binding_info.id, datum);
|
|
|
|
if bcx.sess().opts.debuginfo == FullDebugInfo {
|
|
debuginfo::create_match_binding_metadata(bcx,
|
|
ident,
|
|
binding_info);
|
|
}
|
|
}
|
|
bcx
|
|
}
|
|
|
|
fn compile_guard<'a, 'b>(
|
|
bcx: &'b Block<'b>,
|
|
guard_expr: &ast::Expr,
|
|
data: &ArmData,
|
|
m: &'a [Match<'a, 'b>],
|
|
vals: &[ValueRef],
|
|
chk: &FailureHandler,
|
|
has_genuine_default: bool)
|
|
-> &'b Block<'b> {
|
|
debug!("compile_guard(bcx={}, guard_expr={}, m={}, vals={})",
|
|
bcx.to_str(),
|
|
bcx.expr_to_str(guard_expr),
|
|
m.repr(bcx.tcx()),
|
|
vec_map_to_str(vals, |v| bcx.val_to_str(*v)));
|
|
let _indenter = indenter();
|
|
|
|
let mut bcx = insert_lllocals(bcx, &data.bindings_map);
|
|
|
|
let val = unpack_datum!(bcx, expr::trans(bcx, guard_expr));
|
|
let val = val.to_llbool(bcx);
|
|
|
|
return with_cond(bcx, Not(bcx, val), |bcx| {
|
|
// Guard does not match: remove all bindings from the lllocals table
|
|
for (_, &binding_info) in data.bindings_map.iter() {
|
|
bcx.fcx.lllocals.borrow_mut().remove(&binding_info.id);
|
|
}
|
|
match chk {
|
|
// If the default arm is the only one left, move on to the next
|
|
// condition explicitly rather than (possibly) falling back to
|
|
// the default arm.
|
|
&JumpToBasicBlock(_) if m.len() == 1 && has_genuine_default => {
|
|
Br(bcx, chk.handle_fail());
|
|
}
|
|
_ => {
|
|
compile_submatch(bcx, m, vals, chk, has_genuine_default);
|
|
}
|
|
};
|
|
bcx
|
|
});
|
|
}
|
|
|
|
fn compile_submatch<'a, 'b>(
|
|
bcx: &'b Block<'b>,
|
|
m: &'a [Match<'a, 'b>],
|
|
vals: &[ValueRef],
|
|
chk: &FailureHandler,
|
|
has_genuine_default: bool) {
|
|
debug!("compile_submatch(bcx={}, m={}, vals={})",
|
|
bcx.to_str(),
|
|
m.repr(bcx.tcx()),
|
|
vec_map_to_str(vals, |v| bcx.val_to_str(*v)));
|
|
let _indenter = indenter();
|
|
let _icx = push_ctxt("match::compile_submatch");
|
|
let mut bcx = bcx;
|
|
if m.len() == 0u {
|
|
if chk.is_fallible() {
|
|
Br(bcx, chk.handle_fail());
|
|
}
|
|
return;
|
|
}
|
|
if m[0].pats.len() == 0u {
|
|
let data = &m[0].data;
|
|
for &(ref ident, ref value_ptr) in m[0].bound_ptrs.iter() {
|
|
let llmatch = data.bindings_map.get(ident).llmatch;
|
|
Store(bcx, *value_ptr, llmatch);
|
|
}
|
|
match data.arm.guard {
|
|
Some(ref guard_expr) => {
|
|
bcx = compile_guard(bcx,
|
|
&**guard_expr,
|
|
m[0].data,
|
|
m.slice(1, m.len()),
|
|
vals,
|
|
chk,
|
|
has_genuine_default);
|
|
}
|
|
_ => ()
|
|
}
|
|
Br(bcx, data.bodycx.llbb);
|
|
return;
|
|
}
|
|
|
|
let col = pick_col(m);
|
|
let val = vals[col];
|
|
|
|
if has_nested_bindings(m, col) {
|
|
let expanded = expand_nested_bindings(bcx, m, col, val);
|
|
compile_submatch_continue(bcx,
|
|
expanded.as_slice(),
|
|
vals,
|
|
chk,
|
|
col,
|
|
val,
|
|
has_genuine_default)
|
|
} else {
|
|
compile_submatch_continue(bcx, m, vals, chk, col, val, has_genuine_default)
|
|
}
|
|
}
|
|
|
|
fn compile_submatch_continue<'a, 'b>(
|
|
mut bcx: &'b Block<'b>,
|
|
m: &'a [Match<'a, 'b>],
|
|
vals: &[ValueRef],
|
|
chk: &FailureHandler,
|
|
col: uint,
|
|
val: ValueRef,
|
|
has_genuine_default: bool) {
|
|
let fcx = bcx.fcx;
|
|
let tcx = bcx.tcx();
|
|
let dm = &tcx.def_map;
|
|
|
|
let vals_left = Vec::from_slice(vals.slice(0u, col)).append(vals.slice(col + 1u, vals.len()));
|
|
let ccx = bcx.fcx.ccx;
|
|
|
|
// Find a real id (we're adding placeholder wildcard patterns, but
|
|
// each column is guaranteed to have at least one real pattern)
|
|
let pat_id = m.iter().map(|br| br.pats.get(col).id).find(|&id| id != 0).unwrap_or(0);
|
|
|
|
let left_ty = if pat_id == 0 {
|
|
ty::mk_nil()
|
|
} else {
|
|
node_id_type(bcx, pat_id)
|
|
};
|
|
|
|
let mcx = check_match::MatchCheckCtxt { tcx: bcx.tcx() };
|
|
let adt_vals = if any_irrefutable_adt_pat(bcx, m, col) {
|
|
let repr = adt::represent_type(bcx.ccx(), left_ty);
|
|
let arg_count = adt::num_args(&*repr, 0);
|
|
let field_vals: Vec<ValueRef> = std::iter::range(0, arg_count).map(|ix|
|
|
adt::trans_field_ptr(bcx, &*repr, val, 0, ix)
|
|
).collect();
|
|
Some(field_vals)
|
|
} else if any_uniq_pat(m, col) || any_region_pat(m, col) {
|
|
Some(vec!(Load(bcx, val)))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
match adt_vals {
|
|
Some(field_vals) => {
|
|
let pats = enter_match(bcx, dm, m, col, val, |pats|
|
|
check_match::specialize(&mcx, pats, &check_match::Single, col, field_vals.len())
|
|
);
|
|
let vals = field_vals.append(vals_left.as_slice());
|
|
compile_submatch(bcx, pats.as_slice(), vals.as_slice(), chk, has_genuine_default);
|
|
return;
|
|
}
|
|
_ => ()
|
|
}
|
|
|
|
// Decide what kind of branch we need
|
|
let opts = get_options(bcx, m, col);
|
|
debug!("options={:?}", opts);
|
|
let mut kind = no_branch;
|
|
let mut test_val = val;
|
|
debug!("test_val={}", bcx.val_to_str(test_val));
|
|
if opts.len() > 0u {
|
|
match *opts.get(0) {
|
|
var(_, ref repr, _) => {
|
|
let (the_kind, val_opt) = adt::trans_switch(bcx, &**repr, val);
|
|
kind = the_kind;
|
|
for &tval in val_opt.iter() { test_val = tval; }
|
|
}
|
|
lit(_) => {
|
|
test_val = load_if_immediate(bcx, val, left_ty);
|
|
kind = if ty::type_is_integral(left_ty) { switch }
|
|
else { compare };
|
|
}
|
|
range(_, _) => {
|
|
test_val = Load(bcx, val);
|
|
kind = compare;
|
|
},
|
|
vec_len(..) => {
|
|
let (_, len) = tvec::get_base_and_len(bcx, val, left_ty);
|
|
test_val = len;
|
|
kind = compare_vec_len;
|
|
}
|
|
}
|
|
}
|
|
for o in opts.iter() {
|
|
match *o {
|
|
range(_, _) => { kind = compare; break }
|
|
_ => ()
|
|
}
|
|
}
|
|
let else_cx = match kind {
|
|
no_branch | single => bcx,
|
|
_ => bcx.fcx.new_temp_block("match_else")
|
|
};
|
|
let sw = if kind == switch {
|
|
Switch(bcx, test_val, else_cx.llbb, opts.len())
|
|
} else {
|
|
C_int(ccx, 0) // Placeholder for when not using a switch
|
|
};
|
|
|
|
let defaults = enter_default(else_cx, dm, m, col, val);
|
|
let exhaustive = chk.is_infallible() && defaults.len() == 0u;
|
|
let len = opts.len();
|
|
|
|
// Compile subtrees for each option
|
|
for (i, opt) in opts.iter().enumerate() {
|
|
// In some cases of range and vector pattern matching, we need to
|
|
// override the failure case so that instead of failing, it proceeds
|
|
// to try more matching. branch_chk, then, is the proper failure case
|
|
// for the current conditional branch.
|
|
let mut branch_chk = None;
|
|
let mut opt_cx = else_cx;
|
|
if !exhaustive || i+1 < len {
|
|
opt_cx = bcx.fcx.new_temp_block("match_case");
|
|
match kind {
|
|
single => Br(bcx, opt_cx.llbb),
|
|
switch => {
|
|
match trans_opt(bcx, opt) {
|
|
single_result(r) => {
|
|
unsafe {
|
|
llvm::LLVMAddCase(sw, r.val, opt_cx.llbb);
|
|
bcx = r.bcx;
|
|
}
|
|
}
|
|
_ => {
|
|
bcx.sess().bug(
|
|
"in compile_submatch, expected \
|
|
trans_opt to return a single_result")
|
|
}
|
|
}
|
|
}
|
|
compare | compare_vec_len => {
|
|
let t = if kind == compare {
|
|
left_ty
|
|
} else {
|
|
ty::mk_uint() // vector length
|
|
};
|
|
let Result {bcx: after_cx, val: matches} = {
|
|
match trans_opt(bcx, opt) {
|
|
single_result(Result {bcx, val}) => {
|
|
compare_values(bcx, test_val, val, t)
|
|
}
|
|
lower_bound(Result {bcx, val}) => {
|
|
compare_scalar_types(bcx, test_val, val, t, ast::BiGe)
|
|
}
|
|
range_result(Result {val: vbegin, ..},
|
|
Result {bcx, val: vend}) => {
|
|
let Result {bcx, val: llge} =
|
|
compare_scalar_types(
|
|
bcx, test_val,
|
|
vbegin, t, ast::BiGe);
|
|
let Result {bcx, val: llle} =
|
|
compare_scalar_types(
|
|
bcx, test_val, vend,
|
|
t, ast::BiLe);
|
|
Result::new(bcx, And(bcx, llge, llle))
|
|
}
|
|
}
|
|
};
|
|
bcx = fcx.new_temp_block("compare_next");
|
|
|
|
// If none of the sub-cases match, and the current condition
|
|
// is guarded or has multiple patterns, move on to the next
|
|
// condition, if there is any, rather than falling back to
|
|
// the default.
|
|
let guarded = m[i].data.arm.guard.is_some();
|
|
let multi_pats = m[i].pats.len() > 1;
|
|
if i + 1 < len && (guarded || multi_pats || kind == compare_vec_len) {
|
|
branch_chk = Some(JumpToBasicBlock(bcx.llbb));
|
|
}
|
|
CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb);
|
|
}
|
|
_ => ()
|
|
}
|
|
} else if kind == compare || kind == compare_vec_len {
|
|
Br(bcx, else_cx.llbb);
|
|
}
|
|
|
|
let mut size = 0u;
|
|
let mut unpacked = Vec::new();
|
|
match *opt {
|
|
var(disr_val, ref repr, _) => {
|
|
let ExtractedBlock {vals: argvals, bcx: new_bcx} =
|
|
extract_variant_args(opt_cx, &**repr, disr_val, val);
|
|
size = argvals.len();
|
|
unpacked = argvals;
|
|
opt_cx = new_bcx;
|
|
}
|
|
vec_len(n, vt, _) => {
|
|
let (n, slice) = match vt {
|
|
vec_len_ge(i) => (n + 1u, Some(i)),
|
|
vec_len_eq => (n, None)
|
|
};
|
|
let args = extract_vec_elems(opt_cx, pat_id, n,
|
|
slice, val);
|
|
size = args.vals.len();
|
|
unpacked = args.vals.clone();
|
|
opt_cx = args.bcx;
|
|
}
|
|
lit(_) | range(_, _) => ()
|
|
}
|
|
let opt_ms = enter_opt(opt_cx, pat_id, dm, m, opt, col, size, val);
|
|
let opt_vals = unpacked.append(vals_left.as_slice());
|
|
|
|
match branch_chk {
|
|
None => {
|
|
compile_submatch(opt_cx,
|
|
opt_ms.as_slice(),
|
|
opt_vals.as_slice(),
|
|
chk,
|
|
has_genuine_default)
|
|
}
|
|
Some(branch_chk) => {
|
|
compile_submatch(opt_cx,
|
|
opt_ms.as_slice(),
|
|
opt_vals.as_slice(),
|
|
&branch_chk,
|
|
has_genuine_default)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compile the fall-through case, if any
|
|
if !exhaustive && kind != single {
|
|
if kind == compare || kind == compare_vec_len {
|
|
Br(bcx, else_cx.llbb);
|
|
}
|
|
match chk {
|
|
// If there is only one default arm left, move on to the next
|
|
// condition explicitly rather than (eventually) falling back to
|
|
// the last default arm.
|
|
&JumpToBasicBlock(_) if defaults.len() == 1 && has_genuine_default => {
|
|
Br(else_cx, chk.handle_fail());
|
|
}
|
|
_ => {
|
|
compile_submatch(else_cx,
|
|
defaults.as_slice(),
|
|
vals_left.as_slice(),
|
|
chk,
|
|
has_genuine_default);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn trans_match<'a>(
|
|
bcx: &'a Block<'a>,
|
|
match_expr: &ast::Expr,
|
|
discr_expr: &ast::Expr,
|
|
arms: &[ast::Arm],
|
|
dest: Dest)
|
|
-> &'a Block<'a> {
|
|
let _icx = push_ctxt("match::trans_match");
|
|
trans_match_inner(bcx, match_expr.id, discr_expr, arms, dest)
|
|
}
|
|
|
|
fn create_bindings_map(bcx: &Block, pat: Gc<ast::Pat>) -> BindingsMap {
|
|
// Create the bindings map, which is a mapping from each binding name
|
|
// to an alloca() that will be the value for that local variable.
|
|
// Note that we use the names because each binding will have many ids
|
|
// from the various alternatives.
|
|
let ccx = bcx.ccx();
|
|
let tcx = bcx.tcx();
|
|
let mut bindings_map = HashMap::new();
|
|
pat_bindings(&tcx.def_map, &*pat, |bm, p_id, span, path1| {
|
|
let ident = path1.node;
|
|
let variable_ty = node_id_type(bcx, p_id);
|
|
let llvariable_ty = type_of::type_of(ccx, variable_ty);
|
|
let tcx = bcx.tcx();
|
|
|
|
let llmatch;
|
|
let trmode;
|
|
match bm {
|
|
ast::BindByValue(_)
|
|
if !ty::type_moves_by_default(tcx, variable_ty) => {
|
|
llmatch = alloca(bcx,
|
|
llvariable_ty.ptr_to(),
|
|
"__llmatch");
|
|
trmode = TrByCopy(alloca(bcx,
|
|
llvariable_ty,
|
|
bcx.ident(ident).as_slice()));
|
|
}
|
|
ast::BindByValue(_) => {
|
|
// in this case, the final type of the variable will be T,
|
|
// but during matching we need to store a *T as explained
|
|
// above
|
|
llmatch = alloca(bcx,
|
|
llvariable_ty.ptr_to(),
|
|
bcx.ident(ident).as_slice());
|
|
trmode = TrByMove;
|
|
}
|
|
ast::BindByRef(_) => {
|
|
llmatch = alloca(bcx,
|
|
llvariable_ty,
|
|
bcx.ident(ident).as_slice());
|
|
trmode = TrByRef;
|
|
}
|
|
};
|
|
bindings_map.insert(ident, BindingInfo {
|
|
llmatch: llmatch,
|
|
trmode: trmode,
|
|
id: p_id,
|
|
span: span,
|
|
ty: variable_ty
|
|
});
|
|
});
|
|
return bindings_map;
|
|
}
|
|
|
|
fn trans_match_inner<'a>(scope_cx: &'a Block<'a>,
|
|
match_id: ast::NodeId,
|
|
discr_expr: &ast::Expr,
|
|
arms: &[ast::Arm],
|
|
dest: Dest) -> &'a Block<'a> {
|
|
let _icx = push_ctxt("match::trans_match_inner");
|
|
let fcx = scope_cx.fcx;
|
|
let mut bcx = scope_cx;
|
|
let tcx = bcx.tcx();
|
|
|
|
let discr_datum = unpack_datum!(bcx, expr::trans_to_lvalue(bcx, discr_expr,
|
|
"match"));
|
|
if bcx.unreachable.get() {
|
|
return bcx;
|
|
}
|
|
|
|
let t = node_id_type(bcx, discr_expr.id);
|
|
let chk = {
|
|
if ty::type_is_empty(tcx, t) {
|
|
// Special case for empty types
|
|
let fail_cx = Cell::new(None);
|
|
let fail_handler = box DynamicFailureHandler {
|
|
bcx: scope_cx,
|
|
sp: discr_expr.span,
|
|
msg: InternedString::new("scrutinizing value that can't \
|
|
exist"),
|
|
finished: fail_cx,
|
|
};
|
|
DynamicFailureHandlerClass(fail_handler)
|
|
} else {
|
|
Infallible
|
|
}
|
|
};
|
|
|
|
let arm_datas: Vec<ArmData> = arms.iter().map(|arm| ArmData {
|
|
bodycx: fcx.new_id_block("case_body", arm.body.id),
|
|
arm: arm,
|
|
bindings_map: create_bindings_map(bcx, *arm.pats.get(0))
|
|
}).collect();
|
|
|
|
let mut matches = Vec::new();
|
|
for arm_data in arm_datas.iter() {
|
|
matches.extend(arm_data.arm.pats.iter().map(|p| Match {
|
|
pats: vec!(*p),
|
|
data: arm_data,
|
|
bound_ptrs: Vec::new(),
|
|
}));
|
|
}
|
|
|
|
// `compile_submatch` works one column of arm patterns a time and
|
|
// then peels that column off. So as we progress, it may become
|
|
// impossible to tell whether we have a genuine default arm, i.e.
|
|
// `_ => foo` or not. Sometimes it is important to know that in order
|
|
// to decide whether moving on to the next condition or falling back
|
|
// to the default arm.
|
|
let has_default = arms.last().map_or(false, |arm| {
|
|
arm.pats.len() == 1
|
|
&& arm.pats.last().unwrap().node == ast::PatWild
|
|
});
|
|
|
|
compile_submatch(bcx, matches.as_slice(), [discr_datum.val], &chk, has_default);
|
|
|
|
let mut arm_cxs = Vec::new();
|
|
for arm_data in arm_datas.iter() {
|
|
let mut bcx = arm_data.bodycx;
|
|
|
|
// insert bindings into the lllocals map
|
|
bcx = insert_lllocals(bcx, &arm_data.bindings_map);
|
|
bcx = expr::trans_into(bcx, &*arm_data.arm.body, dest);
|
|
arm_cxs.push(bcx);
|
|
}
|
|
|
|
bcx = scope_cx.fcx.join_blocks(match_id, arm_cxs.as_slice());
|
|
return bcx;
|
|
}
|
|
|
|
enum IrrefutablePatternBindingMode {
|
|
// Stores the association between node ID and LLVM value in `lllocals`.
|
|
BindLocal,
|
|
// Stores the association between node ID and LLVM value in `llargs`.
|
|
BindArgument
|
|
}
|
|
|
|
pub fn store_local<'a>(bcx: &'a Block<'a>,
|
|
local: &ast::Local)
|
|
-> &'a Block<'a> {
|
|
/*!
|
|
* Generates code for a local variable declaration like
|
|
* `let <pat>;` or `let <pat> = <opt_init_expr>`.
|
|
*/
|
|
let _icx = push_ctxt("match::store_local");
|
|
let mut bcx = bcx;
|
|
let tcx = bcx.tcx();
|
|
let pat = local.pat;
|
|
let opt_init_expr = local.init;
|
|
|
|
return match opt_init_expr {
|
|
Some(init_expr) => {
|
|
// Optimize the "let x = expr" case. This just writes
|
|
// the result of evaluating `expr` directly into the alloca
|
|
// for `x`. Often the general path results in similar or the
|
|
// same code post-optimization, but not always. In particular,
|
|
// in unsafe code, you can have expressions like
|
|
//
|
|
// let x = intrinsics::uninit();
|
|
//
|
|
// In such cases, the more general path is unsafe, because
|
|
// it assumes it is matching against a valid value.
|
|
match simple_identifier(&*pat) {
|
|
Some(ident) => {
|
|
let var_scope = cleanup::var_scope(tcx, local.id);
|
|
return mk_binding_alloca(
|
|
bcx, pat.id, ident, BindLocal, var_scope, (),
|
|
|(), bcx, v, _| expr::trans_into(bcx, &*init_expr,
|
|
expr::SaveIn(v)));
|
|
}
|
|
|
|
None => {}
|
|
}
|
|
|
|
// General path.
|
|
let init_datum =
|
|
unpack_datum!(bcx, expr::trans_to_lvalue(bcx, &*init_expr, "let"));
|
|
if ty::type_is_bot(expr_ty(bcx, &*init_expr)) {
|
|
create_dummy_locals(bcx, pat)
|
|
} else {
|
|
if bcx.sess().asm_comments() {
|
|
add_comment(bcx, "creating zeroable ref llval");
|
|
}
|
|
let var_scope = cleanup::var_scope(tcx, local.id);
|
|
bind_irrefutable_pat(bcx, pat, init_datum.val, BindLocal, var_scope)
|
|
}
|
|
}
|
|
None => {
|
|
create_dummy_locals(bcx, pat)
|
|
}
|
|
};
|
|
|
|
fn create_dummy_locals<'a>(mut bcx: &'a Block<'a>,
|
|
pat: Gc<ast::Pat>)
|
|
-> &'a Block<'a> {
|
|
// create dummy memory for the variables if we have no
|
|
// value to store into them immediately
|
|
let tcx = bcx.tcx();
|
|
pat_bindings(&tcx.def_map, &*pat, |_, p_id, _, path1| {
|
|
let scope = cleanup::var_scope(tcx, p_id);
|
|
bcx = mk_binding_alloca(
|
|
bcx, p_id, &path1.node, BindLocal, scope, (),
|
|
|(), bcx, llval, ty| { zero_mem(bcx, llval, ty); bcx });
|
|
});
|
|
bcx
|
|
}
|
|
}
|
|
|
|
pub fn store_arg<'a>(mut bcx: &'a Block<'a>,
|
|
pat: Gc<ast::Pat>,
|
|
arg: Datum<Rvalue>,
|
|
arg_scope: cleanup::ScopeId)
|
|
-> &'a Block<'a> {
|
|
/*!
|
|
* Generates code for argument patterns like `fn foo(<pat>: T)`.
|
|
* Creates entries in the `llargs` map for each of the bindings
|
|
* in `pat`.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* - `pat` is the argument pattern
|
|
* - `llval` is a pointer to the argument value (in other words,
|
|
* if the argument type is `T`, then `llval` is a `T*`). In some
|
|
* cases, this code may zero out the memory `llval` points at.
|
|
*/
|
|
|
|
let _icx = push_ctxt("match::store_arg");
|
|
|
|
match simple_identifier(&*pat) {
|
|
Some(ident) => {
|
|
// Generate nicer LLVM for the common case of fn a pattern
|
|
// like `x: T`
|
|
let arg_ty = node_id_type(bcx, pat.id);
|
|
if type_of::arg_is_indirect(bcx.ccx(), arg_ty)
|
|
&& bcx.sess().opts.debuginfo != FullDebugInfo {
|
|
// Don't copy an indirect argument to an alloca, the caller
|
|
// already put it in a temporary alloca and gave it up, unless
|
|
// we emit extra-debug-info, which requires local allocas :(.
|
|
let arg_val = arg.add_clean(bcx.fcx, arg_scope);
|
|
bcx.fcx.llargs.borrow_mut()
|
|
.insert(pat.id, Datum::new(arg_val, arg_ty, Lvalue));
|
|
bcx
|
|
} else {
|
|
mk_binding_alloca(
|
|
bcx, pat.id, ident, BindArgument, arg_scope, arg,
|
|
|arg, bcx, llval, _| arg.store_to(bcx, llval))
|
|
}
|
|
}
|
|
|
|
None => {
|
|
// General path. Copy out the values that are used in the
|
|
// pattern.
|
|
let arg = unpack_datum!(
|
|
bcx, arg.to_lvalue_datum_in_scope(bcx, "__arg", arg_scope));
|
|
bind_irrefutable_pat(bcx, pat, arg.val,
|
|
BindArgument, arg_scope)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn mk_binding_alloca<'a,A>(bcx: &'a Block<'a>,
|
|
p_id: ast::NodeId,
|
|
ident: &ast::Ident,
|
|
binding_mode: IrrefutablePatternBindingMode,
|
|
cleanup_scope: cleanup::ScopeId,
|
|
arg: A,
|
|
populate: |A, &'a Block<'a>, ValueRef, ty::t| -> &'a Block<'a>)
|
|
-> &'a Block<'a> {
|
|
let var_ty = node_id_type(bcx, p_id);
|
|
|
|
// Allocate memory on stack for the binding.
|
|
let llval = alloc_ty(bcx, var_ty, bcx.ident(*ident).as_slice());
|
|
|
|
// Subtle: be sure that we *populate* the memory *before*
|
|
// we schedule the cleanup.
|
|
let bcx = populate(arg, bcx, llval, var_ty);
|
|
bcx.fcx.schedule_drop_mem(cleanup_scope, llval, var_ty);
|
|
|
|
// Now that memory is initialized and has cleanup scheduled,
|
|
// create the datum and insert into the local variable map.
|
|
let datum = Datum::new(llval, var_ty, Lvalue);
|
|
let mut llmap = match binding_mode {
|
|
BindLocal => bcx.fcx.lllocals.borrow_mut(),
|
|
BindArgument => bcx.fcx.llargs.borrow_mut()
|
|
};
|
|
llmap.insert(p_id, datum);
|
|
bcx
|
|
}
|
|
|
|
fn bind_irrefutable_pat<'a>(
|
|
bcx: &'a Block<'a>,
|
|
pat: Gc<ast::Pat>,
|
|
val: ValueRef,
|
|
binding_mode: IrrefutablePatternBindingMode,
|
|
cleanup_scope: cleanup::ScopeId)
|
|
-> &'a Block<'a> {
|
|
/*!
|
|
* A simple version of the pattern matching code that only handles
|
|
* irrefutable patterns. This is used in let/argument patterns,
|
|
* not in match statements. Unifying this code with the code above
|
|
* sounds nice, but in practice it produces very inefficient code,
|
|
* since the match code is so much more general. In most cases,
|
|
* LLVM is able to optimize the code, but it causes longer compile
|
|
* times and makes the generated code nigh impossible to read.
|
|
*
|
|
* # Arguments
|
|
* - bcx: starting basic block context
|
|
* - pat: the irrefutable pattern being matched.
|
|
* - val: the value being matched -- must be an lvalue (by ref, with cleanup)
|
|
* - binding_mode: is this for an argument or a local variable?
|
|
*/
|
|
|
|
debug!("bind_irrefutable_pat(bcx={}, pat={}, binding_mode={:?})",
|
|
bcx.to_str(),
|
|
pat.repr(bcx.tcx()),
|
|
binding_mode);
|
|
|
|
if bcx.sess().asm_comments() {
|
|
add_comment(bcx, format!("bind_irrefutable_pat(pat={})",
|
|
pat.repr(bcx.tcx())).as_slice());
|
|
}
|
|
|
|
let _indenter = indenter();
|
|
|
|
let _icx = push_ctxt("match::bind_irrefutable_pat");
|
|
let mut bcx = bcx;
|
|
let tcx = bcx.tcx();
|
|
let ccx = bcx.ccx();
|
|
match pat.node {
|
|
ast::PatIdent(pat_binding_mode, ref path1, inner) => {
|
|
if pat_is_binding(&tcx.def_map, &*pat) {
|
|
// Allocate the stack slot where the value of this
|
|
// binding will live and place it into the appropriate
|
|
// map.
|
|
bcx = mk_binding_alloca(
|
|
bcx, pat.id, &path1.node, binding_mode, cleanup_scope, (),
|
|
|(), bcx, llval, ty| {
|
|
match pat_binding_mode {
|
|
ast::BindByValue(_) => {
|
|
// By value binding: move the value that `val`
|
|
// points at into the binding's stack slot.
|
|
let d = Datum::new(val, ty, Lvalue);
|
|
d.store_to(bcx, llval)
|
|
}
|
|
|
|
ast::BindByRef(_) => {
|
|
// By ref binding: the value of the variable
|
|
// is the pointer `val` itself.
|
|
Store(bcx, val, llval);
|
|
bcx
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
for &inner_pat in inner.iter() {
|
|
bcx = bind_irrefutable_pat(bcx, inner_pat, val,
|
|
binding_mode, cleanup_scope);
|
|
}
|
|
}
|
|
ast::PatEnum(_, ref sub_pats) => {
|
|
let opt_def = bcx.tcx().def_map.borrow().find_copy(&pat.id);
|
|
match opt_def {
|
|
Some(def::DefVariant(enum_id, var_id, _)) => {
|
|
let repr = adt::represent_node(bcx, pat.id);
|
|
let vinfo = ty::enum_variant_with_id(ccx.tcx(),
|
|
enum_id,
|
|
var_id);
|
|
let args = extract_variant_args(bcx,
|
|
&*repr,
|
|
vinfo.disr_val,
|
|
val);
|
|
for sub_pat in sub_pats.iter() {
|
|
for (i, argval) in args.vals.iter().enumerate() {
|
|
bcx = bind_irrefutable_pat(bcx, *sub_pat.get(i),
|
|
*argval, binding_mode,
|
|
cleanup_scope);
|
|
}
|
|
}
|
|
}
|
|
Some(def::DefFn(..)) |
|
|
Some(def::DefStruct(..)) => {
|
|
match *sub_pats {
|
|
None => {
|
|
// This is a unit-like struct. Nothing to do here.
|
|
}
|
|
Some(ref elems) => {
|
|
// This is the tuple struct case.
|
|
let repr = adt::represent_node(bcx, pat.id);
|
|
for (i, elem) in elems.iter().enumerate() {
|
|
let fldptr = adt::trans_field_ptr(bcx, &*repr,
|
|
val, 0, i);
|
|
bcx = bind_irrefutable_pat(bcx, *elem,
|
|
fldptr, binding_mode,
|
|
cleanup_scope);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(def::DefStatic(_, false)) => {
|
|
}
|
|
_ => {
|
|
// Nothing to do here.
|
|
}
|
|
}
|
|
}
|
|
ast::PatStruct(_, ref fields, _) => {
|
|
let tcx = bcx.tcx();
|
|
let pat_ty = node_id_type(bcx, pat.id);
|
|
let pat_repr = adt::represent_type(bcx.ccx(), pat_ty);
|
|
expr::with_field_tys(tcx, pat_ty, Some(pat.id), |discr, field_tys| {
|
|
for f in fields.iter() {
|
|
let ix = ty::field_idx_strict(tcx, f.ident.name, field_tys);
|
|
let fldptr = adt::trans_field_ptr(bcx, &*pat_repr, val,
|
|
discr, ix);
|
|
bcx = bind_irrefutable_pat(bcx, f.pat, fldptr,
|
|
binding_mode, cleanup_scope);
|
|
}
|
|
})
|
|
}
|
|
ast::PatTup(ref elems) => {
|
|
let repr = adt::represent_node(bcx, pat.id);
|
|
for (i, elem) in elems.iter().enumerate() {
|
|
let fldptr = adt::trans_field_ptr(bcx, &*repr, val, 0, i);
|
|
bcx = bind_irrefutable_pat(bcx, *elem, fldptr,
|
|
binding_mode, cleanup_scope);
|
|
}
|
|
}
|
|
ast::PatBox(inner) => {
|
|
let llbox = Load(bcx, val);
|
|
bcx = bind_irrefutable_pat(bcx, inner, llbox, binding_mode, cleanup_scope);
|
|
}
|
|
ast::PatRegion(inner) => {
|
|
let loaded_val = Load(bcx, val);
|
|
bcx = bind_irrefutable_pat(bcx, inner, loaded_val, binding_mode, cleanup_scope);
|
|
}
|
|
ast::PatVec(ref before, ref slice, ref after) => {
|
|
let extracted = extract_vec_elems(
|
|
bcx, pat.id, before.len() + 1u + after.len(),
|
|
slice.map(|_| before.len()), val
|
|
);
|
|
bcx = before
|
|
.iter().map(|v| Some(*v))
|
|
.chain(Some(*slice).move_iter())
|
|
.chain(after.iter().map(|v| Some(*v)))
|
|
.zip(extracted.vals.iter())
|
|
.fold(bcx, |bcx, (inner, elem)| {
|
|
inner.map_or(bcx, |inner| {
|
|
bind_irrefutable_pat(bcx, inner, *elem, binding_mode, cleanup_scope)
|
|
})
|
|
});
|
|
}
|
|
ast::PatMac(..) => {
|
|
bcx.sess().span_bug(pat.span, "unexpanded macro");
|
|
}
|
|
ast::PatWild | ast::PatWildMulti | ast::PatLit(_) | ast::PatRange(_, _) => ()
|
|
}
|
|
return bcx;
|
|
}
|