// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * * # Compilation of match statements * * I will endeavor to explain the code as best I can. I have only a loose * understanding of some parts of it. * * ## Matching * * The basic state of the code is maintained in an array `m` of `Match` * objects. Each `Match` describes some list of patterns, all of which must * match against the current list of values. If those patterns match, then * the arm listed in the match is the correct arm. A given arm may have * multiple corresponding match entries, one for each alternative that * remains. As we proceed these sets of matches are adjusted by the various * `enter_XXX()` functions, each of which adjusts the set of options given * some information about the value which has been matched. * * So, initially, there is one value and N matches, each of which have one * constituent pattern. N here is usually the number of arms but may be * greater, if some arms have multiple alternatives. For example, here: * * enum Foo { A, B(int), C(uint, uint) } * match foo { * A => ..., * B(x) => ..., * C(1u, 2) => ..., * C(_) => ... * } * * The value would be `foo`. There would be four matches, each of which * contains one pattern (and, in one case, a guard). We could collect the * various options and then compile the code for the case where `foo` is an * `A`, a `B`, and a `C`. When we generate the code for `C`, we would (1) * drop the two matches that do not match a `C` and (2) expand the other two * into two patterns each. In the first case, the two patterns would be `1u` * and `2`, and the in the second case the _ pattern would be expanded into * `_` and `_`. The two values are of course the arguments to `C`. * * Here is a quick guide to the various functions: * * - `compile_submatch()`: The main workhouse. It takes a list of values and * a list of matches and finds the various possibilities that could occur. * * - `enter_XXX()`: modifies the list of matches based on some information * about the value that has been matched. For example, * `enter_rec_or_struct()` adjusts the values given that a record or struct * has been matched. This is an infallible pattern, so *all* of the matches * must be either wildcards or record/struct patterns. `enter_opt()` * handles the fallible cases, and it is correspondingly more complex. * * ## Bindings * * We store information about the bound variables for each arm as part of the * per-arm `ArmData` struct. There is a mapping from identifiers to * `BindingInfo` structs. These structs contain the mode/id/type of the * binding, but they also contain an LLVM value which points at an alloca * called `llmatch`. For by value bindings that are Copy, we also create * an extra alloca that we copy the matched value to so that any changes * we do to our copy is not reflected in the original and vice-versa. * We don't do this if it's a move since the original value can't be used * and thus allowing us to cheat in not creating an extra alloca. * * The `llmatch` binding always stores a pointer into the value being matched * which points at the data for the binding. If the value being matched has * type `T`, then, `llmatch` will point at an alloca of type `T*` (and hence * `llmatch` has type `T**`). So, if you have a pattern like: * * let a: A = ...; * let b: B = ...; * match (a, b) { (ref c, d) => { ... } } * * For `c` and `d`, we would generate allocas of type `C*` and `D*` * respectively. These are called the `llmatch`. As we match, when we come * up against an identifier, we store the current pointer into the * corresponding alloca. * * Once a pattern is completely matched, and assuming that there is no guard * pattern, we will branch to a block that leads to the body itself. For any * by-value bindings, this block will first load the ptr from `llmatch` (the * one of type `D*`) and then load a second time to get the actual value (the * one of type `D`). For by ref bindings, the value of the local variable is * simply the first alloca. * * So, for the example above, we would generate a setup kind of like this: * * +-------+ * | Entry | * +-------+ * | * +--------------------------------------------+ * | llmatch_c = (addr of first half of tuple) | * | llmatch_d = (addr of second half of tuple) | * +--------------------------------------------+ * | * +--------------------------------------+ * | *llbinding_d = **llmatch_d | * +--------------------------------------+ * * If there is a guard, the situation is slightly different, because we must * execute the guard code. Moreover, we need to do so once for each of the * alternatives that lead to the arm, because if the guard fails, they may * have different points from which to continue the search. Therefore, in that * case, we generate code that looks more like: * * +-------+ * | Entry | * +-------+ * | * +-------------------------------------------+ * | llmatch_c = (addr of first half of tuple) | * | llmatch_d = (addr of first half of tuple) | * +-------------------------------------------+ * | * +-------------------------------------------------+ * | *llbinding_d = **llmatch_d | * | check condition | * | if false { goto next case } | * | if true { goto body } | * +-------------------------------------------------+ * * The handling for the cleanups is a bit... sensitive. Basically, the body * is the one that invokes `add_clean()` for each binding. During the guard * evaluation, we add temporary cleanups and revoke them after the guard is * evaluated (it could fail, after all). Note that guards and moves are * just plain incompatible. * * Some relevant helper functions that manage bindings: * - `create_bindings_map()` * - `insert_lllocals()` * * * ## Notes on vector pattern matching. * * Vector pattern matching is surprisingly tricky. The problem is that * the structure of the vector isn't fully known, and slice matches * can be done on subparts of it. * * The way that vector pattern matches are dealt with, then, is as * follows. First, we make the actual condition associated with a * vector pattern simply a vector length comparison. So the pattern * [1, .. x] gets the condition "vec len >= 1", and the pattern * [.. x] gets the condition "vec len >= 0". The problem here is that * having the condition "vec len >= 1" hold clearly does not mean that * only a pattern that has exactly that condition will match. This * means that it may well be the case that a condition holds, but none * of the patterns matching that condition match; to deal with this, * when doing vector length matches, we have match failures proceed to * the next condition to check. * * There are a couple more subtleties to deal with. While the "actual" * condition associated with vector length tests is simply a test on * the vector length, the actual vec_len Opt entry contains more * information used to restrict which matches are associated with it. * So that all matches in a submatch are matching against the same * values from inside the vector, they are split up by how many * elements they match at the front and at the back of the vector. In * order to make sure that arms are properly checked in order, even * with the overmatching conditions, each vec_len Opt entry is * associated with a range of matches. * Consider the following: * * match &[1, 2, 3] { * [1, 1, .. _] => 0, * [1, 2, 2, .. _] => 1, * [1, 2, 3, .. _] => 2, * [1, 2, .. _] => 3, * _ => 4 * } * The proper arm to match is arm 2, but arms 0 and 3 both have the * condition "len >= 2". If arm 3 was lumped in with arm 0, then the * wrong branch would be taken. Instead, vec_len Opts are associated * with a contiguous range of matches that have the same "shape". * This is sort of ugly and requires a bunch of special handling of * vec_len options. * */ #![allow(non_camel_case_types)] use back::abi; use driver::config::FullDebugInfo; use lib::llvm::{llvm, ValueRef, BasicBlockRef}; use middle::const_eval; use middle::def; use middle::check_match; use middle::lang_items::StrEqFnLangItem; use middle::pat_util::*; use middle::resolve::DefMap; use middle::trans::adt; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::cleanup::CleanupMethods; use middle::trans::common::*; use middle::trans::consts; use middle::trans::controlflow; use middle::trans::datum::*; use middle::trans::expr::Dest; use middle::trans::expr; use middle::trans::tvec; use middle::trans::type_of; use middle::trans::debuginfo; use middle::ty; use util::common::indenter; use util::ppaux::{Repr, vec_map_to_str}; use std; use std::collections::HashMap; use std::cell::Cell; use std::rc::Rc; use std::gc::{Gc}; use syntax::ast; use syntax::ast::Ident; use syntax::codemap::Span; use syntax::parse::token::InternedString; // An option identifying a literal: either an expression or a DefId of a static expression. enum Lit { ExprLit(Gc), ConstLit(ast::DefId), // the def ID of the constant } #[deriving(PartialEq)] pub enum VecLenOpt { vec_len_eq, vec_len_ge(/* length of prefix */uint) } // An option identifying a branch (either a literal, an enum variant or a // range) enum Opt { lit(Lit), var(ty::Disr, Rc, ast::DefId), range(Gc, Gc), vec_len(/* length */ uint, VecLenOpt, /*range of matches*/(uint, uint)) } fn lit_to_expr(tcx: &ty::ctxt, a: &Lit) -> Gc { match *a { ExprLit(existing_a_expr) => existing_a_expr, ConstLit(a_const) => const_eval::lookup_const_by_id(tcx, a_const).unwrap() } } fn opt_eq(tcx: &ty::ctxt, a: &Opt, b: &Opt) -> bool { match (a, b) { (&lit(a), &lit(b)) => { let a_expr = lit_to_expr(tcx, &a); let b_expr = lit_to_expr(tcx, &b); match const_eval::compare_lit_exprs(tcx, &*a_expr, &*b_expr) { Some(val1) => val1 == 0, None => fail!("compare_list_exprs: type mismatch"), } } (&range(ref a1, ref a2), &range(ref b1, ref b2)) => { let m1 = const_eval::compare_lit_exprs(tcx, &**a1, &**b1); let m2 = const_eval::compare_lit_exprs(tcx, &**a2, &**b2); match (m1, m2) { (Some(val1), Some(val2)) => (val1 == 0 && val2 == 0), _ => fail!("compare_list_exprs: type mismatch"), } } (&var(a, _, _), &var(b, _, _)) => a == b, (&vec_len(a1, a2, _), &vec_len(b1, b2, _)) => a1 == b1 && a2 == b2, _ => false } } pub enum opt_result<'a> { single_result(Result<'a>), lower_bound(Result<'a>), range_result(Result<'a>, Result<'a>), } fn trans_opt<'a>(bcx: &'a Block<'a>, o: &Opt) -> opt_result<'a> { let _icx = push_ctxt("match::trans_opt"); let ccx = bcx.ccx(); let mut bcx = bcx; match *o { lit(ExprLit(ref lit_expr)) => { let lit_datum = unpack_datum!(bcx, expr::trans(bcx, &**lit_expr)); let lit_datum = lit_datum.assert_rvalue(bcx); // literals are rvalues let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx)); return single_result(Result::new(bcx, lit_datum.val)); } lit(l @ ConstLit(ref def_id)) => { let lit_ty = ty::node_id_to_type(bcx.tcx(), lit_to_expr(bcx.tcx(), &l).id); let (llval, _) = consts::get_const_val(bcx.ccx(), *def_id); let lit_datum = immediate_rvalue(llval, lit_ty); let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx)); return single_result(Result::new(bcx, lit_datum.val)); } var(disr_val, ref repr, _) => { return adt::trans_case(bcx, &**repr, disr_val); } range(ref l1, ref l2) => { let (l1, _) = consts::const_expr(ccx, &**l1, true); let (l2, _) = consts::const_expr(ccx, &**l2, true); return range_result(Result::new(bcx, l1), Result::new(bcx, l2)); } vec_len(n, vec_len_eq, _) => { return single_result(Result::new(bcx, C_int(ccx, n as int))); } vec_len(n, vec_len_ge(_), _) => { return lower_bound(Result::new(bcx, C_int(ccx, n as int))); } } } fn variant_opt(bcx: &Block, pat_id: ast::NodeId) -> Opt { let ccx = bcx.ccx(); let def = ccx.tcx.def_map.borrow().get_copy(&pat_id); match def { def::DefVariant(enum_id, var_id, _) => { let variant = ty::enum_variant_with_id(ccx.tcx(), enum_id, var_id); var(variant.disr_val, adt::represent_node(bcx, pat_id), var_id) } _ => { ccx.sess().bug("non-variant or struct in variant_opt()"); } } } #[deriving(Clone)] pub enum TransBindingMode { TrByCopy(/* llbinding */ ValueRef), TrByMove, TrByRef, } /** * Information about a pattern binding: * - `llmatch` is a pointer to a stack slot. The stack slot contains a * pointer into the value being matched. Hence, llmatch has type `T**` * where `T` is the value being matched. * - `trmode` is the trans binding mode * - `id` is the node id of the binding * - `ty` is the Rust type of the binding */ #[deriving(Clone)] pub struct BindingInfo { pub llmatch: ValueRef, pub trmode: TransBindingMode, pub id: ast::NodeId, pub span: Span, pub ty: ty::t, } type BindingsMap = HashMap; struct ArmData<'a, 'b> { bodycx: &'b Block<'b>, arm: &'a ast::Arm, bindings_map: BindingsMap } /** * Info about Match. * If all `pats` are matched then arm `data` will be executed. * As we proceed `bound_ptrs` are filled with pointers to values to be bound, * these pointers are stored in llmatch variables just before executing `data` arm. */ struct Match<'a, 'b> { pats: Vec>, data: &'a ArmData<'a, 'b>, bound_ptrs: Vec<(Ident, ValueRef)> } impl<'a, 'b> Repr for Match<'a, 'b> { fn repr(&self, tcx: &ty::ctxt) -> String { if tcx.sess.verbose() { // for many programs, this just take too long to serialize self.pats.repr(tcx) } else { format!("{} pats", self.pats.len()) } } } fn has_nested_bindings(m: &[Match], col: uint) -> bool { for br in m.iter() { match br.pats.get(col).node { ast::PatIdent(_, _, Some(_)) => return true, _ => () } } return false; } fn expand_nested_bindings<'a, 'b>( bcx: &'b Block<'b>, m: &'a [Match<'a, 'b>], col: uint, val: ValueRef) -> Vec> { debug!("expand_nested_bindings(bcx={}, m={}, col={}, val={})", bcx.to_str(), m.repr(bcx.tcx()), col, bcx.val_to_str(val)); let _indenter = indenter(); m.iter().map(|br| { match br.pats.get(col).node { ast::PatIdent(_, ref path1, Some(inner)) => { let pats = Vec::from_slice(br.pats.slice(0u, col)) .append((vec!(inner)) .append(br.pats.slice(col + 1u, br.pats.len())).as_slice()); let mut bound_ptrs = br.bound_ptrs.clone(); bound_ptrs.push((path1.node, val)); Match { pats: pats, data: &*br.data, bound_ptrs: bound_ptrs } } _ => Match { pats: br.pats.clone(), data: &*br.data, bound_ptrs: br.bound_ptrs.clone() } } }).collect() } type enter_pats<'a> = |&[Gc]|: 'a -> Option>>; fn enter_match<'a, 'b>( bcx: &'b Block<'b>, dm: &DefMap, m: &'a [Match<'a, 'b>], col: uint, val: ValueRef, e: enter_pats) -> Vec> { debug!("enter_match(bcx={}, m={}, col={}, val={})", bcx.to_str(), m.repr(bcx.tcx()), col, bcx.val_to_str(val)); let _indenter = indenter(); m.iter().filter_map(|br| { e(br.pats.as_slice()).map(|pats| { let this = *br.pats.get(col); let mut bound_ptrs = br.bound_ptrs.clone(); match this.node { ast::PatIdent(_, ref path1, None) => { if pat_is_binding(dm, &*this) { bound_ptrs.push((path1.node, val)); } } _ => {} } Match { pats: pats, data: br.data, bound_ptrs: bound_ptrs } }) }).collect() } fn enter_default<'a, 'b>( bcx: &'b Block<'b>, dm: &DefMap, m: &'a [Match<'a, 'b>], col: uint, val: ValueRef) -> Vec> { debug!("enter_default(bcx={}, m={}, col={}, val={})", bcx.to_str(), m.repr(bcx.tcx()), col, bcx.val_to_str(val)); let _indenter = indenter(); // Collect all of the matches that can match against anything. enter_match(bcx, dm, m, col, val, |pats| { if pat_is_binding_or_wild(dm, pats[col]) { Some(Vec::from_slice(pats.slice_to(col)).append(pats.slice_from(col + 1))) } else { None } }) } // nmatsakis: what does enter_opt do? // in trans/match // trans/match.rs is like stumbling around in a dark cave // pcwalton: the enter family of functions adjust the set of // patterns as needed // yeah, at some point I kind of achieved some level of // understanding // anyhow, they adjust the patterns given that something of that // kind has been found // pcwalton: ok, right, so enter_XXX() adjusts the patterns, as I // said // enter_match() kind of embodies the generic code // it is provided with a function that tests each pattern to see // if it might possibly apply and so forth // so, if you have a pattern like {a: _, b: _, _} and one like _ // then _ would be expanded to (_, _) // one spot for each of the sub-patterns // enter_opt() is one of the more complex; it covers the fallible // cases // enter_rec_or_struct() or enter_tuple() are simpler, since they // are infallible patterns // so all patterns must either be records (resp. tuples) or // wildcards /// The above is now outdated in that enter_match() now takes a function that /// takes the complete row of patterns rather than just the first one. /// Also, most of the enter_() family functions have been unified with /// the check_match specialization step. fn enter_opt<'a, 'b>( bcx: &'b Block<'b>, _: ast::NodeId, dm: &DefMap, m: &'a [Match<'a, 'b>], opt: &Opt, col: uint, variant_size: uint, val: ValueRef) -> Vec> { debug!("enter_opt(bcx={}, m={}, opt={:?}, col={}, val={})", bcx.to_str(), m.repr(bcx.tcx()), *opt, col, bcx.val_to_str(val)); let _indenter = indenter(); let ctor = match opt { &lit(x) => check_match::ConstantValue(const_eval::eval_const_expr( bcx.tcx(), lit_to_expr(bcx.tcx(), &x))), &range(ref lo, ref hi) => check_match::ConstantRange( const_eval::eval_const_expr(bcx.tcx(), &**lo), const_eval::eval_const_expr(bcx.tcx(), &**hi) ), &vec_len(len, _, _) => check_match::Slice(len), &var(_, _, def_id) => check_match::Variant(def_id) }; let mut i = 0; let tcx = bcx.tcx(); let mcx = check_match::MatchCheckCtxt { tcx: bcx.tcx() }; enter_match(bcx, dm, m, col, val, |pats| { let span = pats[col].span; let specialized = match pats[col].node { ast::PatVec(ref before, slice, ref after) => { let (lo, hi) = match *opt { vec_len(_, _, (lo, hi)) => (lo, hi), _ => tcx.sess.span_bug(span, "vec pattern but not vec opt") }; let elems = match slice { Some(slice) if i >= lo && i <= hi => { let n = before.len() + after.len(); let this_opt = vec_len(n, vec_len_ge(before.len()), (lo, hi)); if opt_eq(tcx, &this_opt, opt) { let mut new_before = Vec::new(); for pat in before.iter() { new_before.push(*pat); } new_before.push(slice); for pat in after.iter() { new_before.push(*pat); } Some(new_before) } else { None } } None if i >= lo && i <= hi => { let n = before.len(); if opt_eq(tcx, &vec_len(n, vec_len_eq, (lo,hi)), opt) { let mut new_before = Vec::new(); for pat in before.iter() { new_before.push(*pat); } Some(new_before) } else { None } } _ => None }; elems.map(|head| head.append(pats.slice_to(col)).append(pats.slice_from(col + 1))) } _ => { check_match::specialize(&mcx, pats.as_slice(), &ctor, col, variant_size) } }; i += 1; specialized }) } // Returns the options in one column of matches. An option is something that // needs to be conditionally matched at runtime; for example, the discriminant // on a set of enum variants or a literal. fn get_options(bcx: &Block, m: &[Match], col: uint) -> Vec { let ccx = bcx.ccx(); fn add_to_set(tcx: &ty::ctxt, set: &mut Vec, val: Opt) { if set.iter().any(|l| opt_eq(tcx, l, &val)) {return;} set.push(val); } // Vector comparisons are special in that since the actual // conditions over-match, we need to be careful about them. This // means that in order to properly handle things in order, we need // to not always merge conditions. fn add_veclen_to_set(set: &mut Vec , i: uint, len: uint, vlo: VecLenOpt) { match set.last() { // If the last condition in the list matches the one we want // to add, then extend its range. Otherwise, make a new // vec_len with a range just covering the new entry. Some(&vec_len(len2, vlo2, (start, end))) if len == len2 && vlo == vlo2 => { let length = set.len(); *set.get_mut(length - 1) = vec_len(len, vlo, (start, end+1)) } _ => set.push(vec_len(len, vlo, (i, i))) } } let mut found = Vec::new(); for (i, br) in m.iter().enumerate() { let cur = *br.pats.get(col); match cur.node { ast::PatLit(l) => { add_to_set(ccx.tcx(), &mut found, lit(ExprLit(l))); } ast::PatIdent(..) => { // This is either an enum variant or a variable binding. let opt_def = ccx.tcx.def_map.borrow().find_copy(&cur.id); match opt_def { Some(def::DefVariant(..)) => { add_to_set(ccx.tcx(), &mut found, variant_opt(bcx, cur.id)); } Some(def::DefStatic(const_did, false)) => { add_to_set(ccx.tcx(), &mut found, lit(ConstLit(const_did))); } _ => {} } } ast::PatEnum(..) | ast::PatStruct(..) => { // This could be one of: a tuple-like enum variant, a // struct-like enum variant, or a struct. let opt_def = ccx.tcx.def_map.borrow().find_copy(&cur.id); match opt_def { Some(def::DefFn(..)) | Some(def::DefVariant(..)) => { add_to_set(ccx.tcx(), &mut found, variant_opt(bcx, cur.id)); } Some(def::DefStatic(const_did, false)) => { add_to_set(ccx.tcx(), &mut found, lit(ConstLit(const_did))); } _ => {} } } ast::PatRange(l1, l2) => { add_to_set(ccx.tcx(), &mut found, range(l1, l2)); } ast::PatVec(ref before, slice, ref after) => { let (len, vec_opt) = match slice { None => (before.len(), vec_len_eq), Some(_) => (before.len() + after.len(), vec_len_ge(before.len())) }; add_veclen_to_set(&mut found, i, len, vec_opt); } _ => {} } } return found; } struct ExtractedBlock<'a> { vals: Vec , bcx: &'a Block<'a>, } fn extract_variant_args<'a>( bcx: &'a Block<'a>, repr: &adt::Repr, disr_val: ty::Disr, val: ValueRef) -> ExtractedBlock<'a> { let _icx = push_ctxt("match::extract_variant_args"); let args = Vec::from_fn(adt::num_args(repr, disr_val), |i| { adt::trans_field_ptr(bcx, repr, val, disr_val, i) }); ExtractedBlock { vals: args, bcx: bcx } } fn match_datum(bcx: &Block, val: ValueRef, pat_id: ast::NodeId) -> Datum { /*! * Helper for converting from the ValueRef that we pass around in * the match code, which is always an lvalue, into a Datum. Eventually * we should just pass around a Datum and be done with it. */ let ty = node_id_type(bcx, pat_id); Datum::new(val, ty, Lvalue) } fn extract_vec_elems<'a>( bcx: &'a Block<'a>, pat_id: ast::NodeId, elem_count: uint, slice: Option, val: ValueRef) -> ExtractedBlock<'a> { let _icx = push_ctxt("match::extract_vec_elems"); let vec_datum = match_datum(bcx, val, pat_id); let (base, len) = vec_datum.get_vec_base_and_len(bcx); let vec_ty = node_id_type(bcx, pat_id); let vt = tvec::vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty)); let mut elems = Vec::from_fn(elem_count, |i| { match slice { None => GEPi(bcx, base, [i]), Some(n) if i < n => GEPi(bcx, base, [i]), Some(n) if i > n => { InBoundsGEP(bcx, base, [ Sub(bcx, len, C_int(bcx.ccx(), (elem_count - i) as int))]) } _ => unsafe { llvm::LLVMGetUndef(vt.llunit_ty.to_ref()) } } }); if slice.is_some() { let n = slice.unwrap(); let slice_byte_offset = Mul(bcx, vt.llunit_size, C_uint(bcx.ccx(), n)); let slice_begin = tvec::pointer_add_byte(bcx, base, slice_byte_offset); let slice_len_offset = C_uint(bcx.ccx(), elem_count - 1u); let slice_len = Sub(bcx, len, slice_len_offset); let slice_ty = ty::mk_slice(bcx.tcx(), ty::ReStatic, ty::mt {ty: vt.unit_ty, mutbl: ast::MutImmutable}); let scratch = rvalue_scratch_datum(bcx, slice_ty, ""); Store(bcx, slice_begin, GEPi(bcx, scratch.val, [0u, abi::slice_elt_base])); Store(bcx, slice_len, GEPi(bcx, scratch.val, [0u, abi::slice_elt_len])); *elems.get_mut(n) = scratch.val; } ExtractedBlock { vals: elems, bcx: bcx } } // Macro for deciding whether any of the remaining matches fit a given kind of // pattern. Note that, because the macro is well-typed, either ALL of the // matches should fit that sort of pattern or NONE (however, some of the // matches may be wildcards like _ or identifiers). macro_rules! any_pat ( ($m:expr, $pattern:pat) => ( ($m).iter().any(|br| { match br.pats.get(col).node { $pattern => true, _ => false } }) ) ) fn any_uniq_pat(m: &[Match], col: uint) -> bool { any_pat!(m, ast::PatBox(_)) } fn any_region_pat(m: &[Match], col: uint) -> bool { any_pat!(m, ast::PatRegion(_)) } fn any_irrefutable_adt_pat(bcx: &Block, m: &[Match], col: uint) -> bool { m.iter().any(|br| { let pat = *br.pats.get(col); match pat.node { ast::PatTup(_) => true, ast::PatStruct(..) => { match bcx.tcx().def_map.borrow().find(&pat.id) { Some(&def::DefVariant(..)) => false, _ => true, } } ast::PatEnum(..) | ast::PatIdent(_, _, None) => { match bcx.tcx().def_map.borrow().find(&pat.id) { Some(&def::DefFn(..)) | Some(&def::DefStruct(..)) => true, _ => false } } _ => false } }) } struct DynamicFailureHandler<'a> { bcx: &'a Block<'a>, sp: Span, msg: InternedString, finished: Cell>, } impl<'a> DynamicFailureHandler<'a> { fn handle_fail(&self) -> BasicBlockRef { match self.finished.get() { Some(bb) => return bb, _ => (), } let fcx = self.bcx.fcx; let fail_cx = fcx.new_block(false, "case_fallthrough", None); controlflow::trans_fail(fail_cx, self.sp, self.msg.clone()); self.finished.set(Some(fail_cx.llbb)); fail_cx.llbb } } /// What to do when the pattern match fails. enum FailureHandler<'a> { Infallible, JumpToBasicBlock(BasicBlockRef), DynamicFailureHandlerClass(Box>), } impl<'a> FailureHandler<'a> { fn is_infallible(&self) -> bool { match *self { Infallible => true, _ => false, } } fn is_fallible(&self) -> bool { !self.is_infallible() } fn handle_fail(&self) -> BasicBlockRef { match *self { Infallible => { fail!("attempted to fail in infallible failure handler!") } JumpToBasicBlock(basic_block) => basic_block, DynamicFailureHandlerClass(ref dynamic_failure_handler) => { dynamic_failure_handler.handle_fail() } } } } fn pick_col(m: &[Match]) -> uint { fn score(p: &ast::Pat) -> uint { match p.node { ast::PatLit(_) | ast::PatEnum(_, _) | ast::PatRange(_, _) => 1u, ast::PatIdent(_, _, Some(ref p)) => score(&**p), _ => 0u } } let mut scores = Vec::from_elem(m[0].pats.len(), 0u); for br in m.iter() { for (i, ref p) in br.pats.iter().enumerate() { *scores.get_mut(i) += score(&***p); } } let mut max_score = 0u; let mut best_col = 0u; for (i, score) in scores.iter().enumerate() { let score = *score; // Irrefutable columns always go first, they'd only be duplicated in // the branches. if score == 0u { return i; } // If no irrefutable ones are found, we pick the one with the biggest // branching factor. if score > max_score { max_score = score; best_col = i; } } return best_col; } #[deriving(PartialEq)] pub enum branch_kind { no_branch, single, switch, compare, compare_vec_len } // Compiles a comparison between two things. fn compare_values<'a>( cx: &'a Block<'a>, lhs: ValueRef, rhs: ValueRef, rhs_t: ty::t) -> Result<'a> { fn compare_str<'a>(cx: &'a Block<'a>, lhs: ValueRef, rhs: ValueRef, rhs_t: ty::t) -> Result<'a> { let did = langcall(cx, None, format!("comparison of `{}`", cx.ty_to_str(rhs_t)).as_slice(), StrEqFnLangItem); callee::trans_lang_call(cx, did, [lhs, rhs], None) } let _icx = push_ctxt("compare_values"); if ty::type_is_scalar(rhs_t) { let rs = compare_scalar_types(cx, lhs, rhs, rhs_t, ast::BiEq); return Result::new(rs.bcx, rs.val); } match ty::get(rhs_t).sty { ty::ty_rptr(_, mt) => match ty::get(mt.ty).sty { ty::ty_str => compare_str(cx, lhs, rhs, rhs_t), ty::ty_vec(mt, _) => match ty::get(mt.ty).sty { ty::ty_uint(ast::TyU8) => { // NOTE: cast &[u8] to &str and abuse the str_eq lang item, // which calls memcmp(). let t = ty::mk_str_slice(cx.tcx(), ty::ReStatic, ast::MutImmutable); let lhs = BitCast(cx, lhs, type_of::type_of(cx.ccx(), t).ptr_to()); let rhs = BitCast(cx, rhs, type_of::type_of(cx.ccx(), t).ptr_to()); compare_str(cx, lhs, rhs, rhs_t) }, _ => cx.sess().bug("only byte strings supported in compare_values"), }, _ => cx.sess().bug("only string and byte strings supported in compare_values"), }, _ => cx.sess().bug("only scalars, byte strings, and strings supported in compare_values"), } } fn insert_lllocals<'a>(mut bcx: &'a Block<'a>, bindings_map: &BindingsMap) -> &'a Block<'a> { /*! * For each binding in `data.bindings_map`, adds an appropriate entry into * the `fcx.lllocals` map */ for (&ident, &binding_info) in bindings_map.iter() { let llval = match binding_info.trmode { // By value mut binding for a copy type: load from the ptr // into the matched value and copy to our alloca TrByCopy(llbinding) => { let llval = Load(bcx, binding_info.llmatch); let datum = Datum::new(llval, binding_info.ty, Lvalue); bcx = datum.store_to(bcx, llbinding); llbinding }, // By value move bindings: load from the ptr into the matched value TrByMove => Load(bcx, binding_info.llmatch), // By ref binding: use the ptr into the matched value TrByRef => binding_info.llmatch }; let datum = Datum::new(llval, binding_info.ty, Lvalue); debug!("binding {:?} to {}", binding_info.id, bcx.val_to_str(llval)); bcx.fcx.lllocals.borrow_mut().insert(binding_info.id, datum); if bcx.sess().opts.debuginfo == FullDebugInfo { debuginfo::create_match_binding_metadata(bcx, ident, binding_info); } } bcx } fn compile_guard<'a, 'b>( bcx: &'b Block<'b>, guard_expr: &ast::Expr, data: &ArmData, m: &'a [Match<'a, 'b>], vals: &[ValueRef], chk: &FailureHandler, has_genuine_default: bool) -> &'b Block<'b> { debug!("compile_guard(bcx={}, guard_expr={}, m={}, vals={})", bcx.to_str(), bcx.expr_to_str(guard_expr), m.repr(bcx.tcx()), vec_map_to_str(vals, |v| bcx.val_to_str(*v))); let _indenter = indenter(); let mut bcx = insert_lllocals(bcx, &data.bindings_map); let val = unpack_datum!(bcx, expr::trans(bcx, guard_expr)); let val = val.to_llbool(bcx); return with_cond(bcx, Not(bcx, val), |bcx| { // Guard does not match: remove all bindings from the lllocals table for (_, &binding_info) in data.bindings_map.iter() { bcx.fcx.lllocals.borrow_mut().remove(&binding_info.id); } match chk { // If the default arm is the only one left, move on to the next // condition explicitly rather than (possibly) falling back to // the default arm. &JumpToBasicBlock(_) if m.len() == 1 && has_genuine_default => { Br(bcx, chk.handle_fail()); } _ => { compile_submatch(bcx, m, vals, chk, has_genuine_default); } }; bcx }); } fn compile_submatch<'a, 'b>( bcx: &'b Block<'b>, m: &'a [Match<'a, 'b>], vals: &[ValueRef], chk: &FailureHandler, has_genuine_default: bool) { debug!("compile_submatch(bcx={}, m={}, vals={})", bcx.to_str(), m.repr(bcx.tcx()), vec_map_to_str(vals, |v| bcx.val_to_str(*v))); let _indenter = indenter(); let _icx = push_ctxt("match::compile_submatch"); let mut bcx = bcx; if m.len() == 0u { if chk.is_fallible() { Br(bcx, chk.handle_fail()); } return; } if m[0].pats.len() == 0u { let data = &m[0].data; for &(ref ident, ref value_ptr) in m[0].bound_ptrs.iter() { let llmatch = data.bindings_map.get(ident).llmatch; Store(bcx, *value_ptr, llmatch); } match data.arm.guard { Some(ref guard_expr) => { bcx = compile_guard(bcx, &**guard_expr, m[0].data, m.slice(1, m.len()), vals, chk, has_genuine_default); } _ => () } Br(bcx, data.bodycx.llbb); return; } let col = pick_col(m); let val = vals[col]; if has_nested_bindings(m, col) { let expanded = expand_nested_bindings(bcx, m, col, val); compile_submatch_continue(bcx, expanded.as_slice(), vals, chk, col, val, has_genuine_default) } else { compile_submatch_continue(bcx, m, vals, chk, col, val, has_genuine_default) } } fn compile_submatch_continue<'a, 'b>( mut bcx: &'b Block<'b>, m: &'a [Match<'a, 'b>], vals: &[ValueRef], chk: &FailureHandler, col: uint, val: ValueRef, has_genuine_default: bool) { let fcx = bcx.fcx; let tcx = bcx.tcx(); let dm = &tcx.def_map; let vals_left = Vec::from_slice(vals.slice(0u, col)).append(vals.slice(col + 1u, vals.len())); let ccx = bcx.fcx.ccx; // Find a real id (we're adding placeholder wildcard patterns, but // each column is guaranteed to have at least one real pattern) let pat_id = m.iter().map(|br| br.pats.get(col).id).find(|&id| id != 0).unwrap_or(0); let left_ty = if pat_id == 0 { ty::mk_nil() } else { node_id_type(bcx, pat_id) }; let mcx = check_match::MatchCheckCtxt { tcx: bcx.tcx() }; let adt_vals = if any_irrefutable_adt_pat(bcx, m, col) { let repr = adt::represent_type(bcx.ccx(), left_ty); let arg_count = adt::num_args(&*repr, 0); let field_vals: Vec = std::iter::range(0, arg_count).map(|ix| adt::trans_field_ptr(bcx, &*repr, val, 0, ix) ).collect(); Some(field_vals) } else if any_uniq_pat(m, col) || any_region_pat(m, col) { Some(vec!(Load(bcx, val))) } else { None }; match adt_vals { Some(field_vals) => { let pats = enter_match(bcx, dm, m, col, val, |pats| check_match::specialize(&mcx, pats, &check_match::Single, col, field_vals.len()) ); let vals = field_vals.append(vals_left.as_slice()); compile_submatch(bcx, pats.as_slice(), vals.as_slice(), chk, has_genuine_default); return; } _ => () } // Decide what kind of branch we need let opts = get_options(bcx, m, col); debug!("options={:?}", opts); let mut kind = no_branch; let mut test_val = val; debug!("test_val={}", bcx.val_to_str(test_val)); if opts.len() > 0u { match *opts.get(0) { var(_, ref repr, _) => { let (the_kind, val_opt) = adt::trans_switch(bcx, &**repr, val); kind = the_kind; for &tval in val_opt.iter() { test_val = tval; } } lit(_) => { test_val = load_if_immediate(bcx, val, left_ty); kind = if ty::type_is_integral(left_ty) { switch } else { compare }; } range(_, _) => { test_val = Load(bcx, val); kind = compare; }, vec_len(..) => { let (_, len) = tvec::get_base_and_len(bcx, val, left_ty); test_val = len; kind = compare_vec_len; } } } for o in opts.iter() { match *o { range(_, _) => { kind = compare; break } _ => () } } let else_cx = match kind { no_branch | single => bcx, _ => bcx.fcx.new_temp_block("match_else") }; let sw = if kind == switch { Switch(bcx, test_val, else_cx.llbb, opts.len()) } else { C_int(ccx, 0) // Placeholder for when not using a switch }; let defaults = enter_default(else_cx, dm, m, col, val); let exhaustive = chk.is_infallible() && defaults.len() == 0u; let len = opts.len(); // Compile subtrees for each option for (i, opt) in opts.iter().enumerate() { // In some cases of range and vector pattern matching, we need to // override the failure case so that instead of failing, it proceeds // to try more matching. branch_chk, then, is the proper failure case // for the current conditional branch. let mut branch_chk = None; let mut opt_cx = else_cx; if !exhaustive || i+1 < len { opt_cx = bcx.fcx.new_temp_block("match_case"); match kind { single => Br(bcx, opt_cx.llbb), switch => { match trans_opt(bcx, opt) { single_result(r) => { unsafe { llvm::LLVMAddCase(sw, r.val, opt_cx.llbb); bcx = r.bcx; } } _ => { bcx.sess().bug( "in compile_submatch, expected \ trans_opt to return a single_result") } } } compare | compare_vec_len => { let t = if kind == compare { left_ty } else { ty::mk_uint() // vector length }; let Result {bcx: after_cx, val: matches} = { match trans_opt(bcx, opt) { single_result(Result {bcx, val}) => { compare_values(bcx, test_val, val, t) } lower_bound(Result {bcx, val}) => { compare_scalar_types(bcx, test_val, val, t, ast::BiGe) } range_result(Result {val: vbegin, ..}, Result {bcx, val: vend}) => { let Result {bcx, val: llge} = compare_scalar_types( bcx, test_val, vbegin, t, ast::BiGe); let Result {bcx, val: llle} = compare_scalar_types( bcx, test_val, vend, t, ast::BiLe); Result::new(bcx, And(bcx, llge, llle)) } } }; bcx = fcx.new_temp_block("compare_next"); // If none of the sub-cases match, and the current condition // is guarded or has multiple patterns, move on to the next // condition, if there is any, rather than falling back to // the default. let guarded = m[i].data.arm.guard.is_some(); let multi_pats = m[i].pats.len() > 1; if i + 1 < len && (guarded || multi_pats || kind == compare_vec_len) { branch_chk = Some(JumpToBasicBlock(bcx.llbb)); } CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb); } _ => () } } else if kind == compare || kind == compare_vec_len { Br(bcx, else_cx.llbb); } let mut size = 0u; let mut unpacked = Vec::new(); match *opt { var(disr_val, ref repr, _) => { let ExtractedBlock {vals: argvals, bcx: new_bcx} = extract_variant_args(opt_cx, &**repr, disr_val, val); size = argvals.len(); unpacked = argvals; opt_cx = new_bcx; } vec_len(n, vt, _) => { let (n, slice) = match vt { vec_len_ge(i) => (n + 1u, Some(i)), vec_len_eq => (n, None) }; let args = extract_vec_elems(opt_cx, pat_id, n, slice, val); size = args.vals.len(); unpacked = args.vals.clone(); opt_cx = args.bcx; } lit(_) | range(_, _) => () } let opt_ms = enter_opt(opt_cx, pat_id, dm, m, opt, col, size, val); let opt_vals = unpacked.append(vals_left.as_slice()); match branch_chk { None => { compile_submatch(opt_cx, opt_ms.as_slice(), opt_vals.as_slice(), chk, has_genuine_default) } Some(branch_chk) => { compile_submatch(opt_cx, opt_ms.as_slice(), opt_vals.as_slice(), &branch_chk, has_genuine_default) } } } // Compile the fall-through case, if any if !exhaustive && kind != single { if kind == compare || kind == compare_vec_len { Br(bcx, else_cx.llbb); } match chk { // If there is only one default arm left, move on to the next // condition explicitly rather than (eventually) falling back to // the last default arm. &JumpToBasicBlock(_) if defaults.len() == 1 && has_genuine_default => { Br(else_cx, chk.handle_fail()); } _ => { compile_submatch(else_cx, defaults.as_slice(), vals_left.as_slice(), chk, has_genuine_default); } } } } pub fn trans_match<'a>( bcx: &'a Block<'a>, match_expr: &ast::Expr, discr_expr: &ast::Expr, arms: &[ast::Arm], dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("match::trans_match"); trans_match_inner(bcx, match_expr.id, discr_expr, arms, dest) } fn create_bindings_map(bcx: &Block, pat: Gc) -> BindingsMap { // Create the bindings map, which is a mapping from each binding name // to an alloca() that will be the value for that local variable. // Note that we use the names because each binding will have many ids // from the various alternatives. let ccx = bcx.ccx(); let tcx = bcx.tcx(); let mut bindings_map = HashMap::new(); pat_bindings(&tcx.def_map, &*pat, |bm, p_id, span, path1| { let ident = path1.node; let variable_ty = node_id_type(bcx, p_id); let llvariable_ty = type_of::type_of(ccx, variable_ty); let tcx = bcx.tcx(); let llmatch; let trmode; match bm { ast::BindByValue(_) if !ty::type_moves_by_default(tcx, variable_ty) => { llmatch = alloca(bcx, llvariable_ty.ptr_to(), "__llmatch"); trmode = TrByCopy(alloca(bcx, llvariable_ty, bcx.ident(ident).as_slice())); } ast::BindByValue(_) => { // in this case, the final type of the variable will be T, // but during matching we need to store a *T as explained // above llmatch = alloca(bcx, llvariable_ty.ptr_to(), bcx.ident(ident).as_slice()); trmode = TrByMove; } ast::BindByRef(_) => { llmatch = alloca(bcx, llvariable_ty, bcx.ident(ident).as_slice()); trmode = TrByRef; } }; bindings_map.insert(ident, BindingInfo { llmatch: llmatch, trmode: trmode, id: p_id, span: span, ty: variable_ty }); }); return bindings_map; } fn trans_match_inner<'a>(scope_cx: &'a Block<'a>, match_id: ast::NodeId, discr_expr: &ast::Expr, arms: &[ast::Arm], dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("match::trans_match_inner"); let fcx = scope_cx.fcx; let mut bcx = scope_cx; let tcx = bcx.tcx(); let discr_datum = unpack_datum!(bcx, expr::trans_to_lvalue(bcx, discr_expr, "match")); if bcx.unreachable.get() { return bcx; } let t = node_id_type(bcx, discr_expr.id); let chk = { if ty::type_is_empty(tcx, t) { // Special case for empty types let fail_cx = Cell::new(None); let fail_handler = box DynamicFailureHandler { bcx: scope_cx, sp: discr_expr.span, msg: InternedString::new("scrutinizing value that can't \ exist"), finished: fail_cx, }; DynamicFailureHandlerClass(fail_handler) } else { Infallible } }; let arm_datas: Vec = arms.iter().map(|arm| ArmData { bodycx: fcx.new_id_block("case_body", arm.body.id), arm: arm, bindings_map: create_bindings_map(bcx, *arm.pats.get(0)) }).collect(); let mut matches = Vec::new(); for arm_data in arm_datas.iter() { matches.extend(arm_data.arm.pats.iter().map(|p| Match { pats: vec!(*p), data: arm_data, bound_ptrs: Vec::new(), })); } // `compile_submatch` works one column of arm patterns a time and // then peels that column off. So as we progress, it may become // impossible to tell whether we have a genuine default arm, i.e. // `_ => foo` or not. Sometimes it is important to know that in order // to decide whether moving on to the next condition or falling back // to the default arm. let has_default = arms.last().map_or(false, |arm| { arm.pats.len() == 1 && arm.pats.last().unwrap().node == ast::PatWild }); compile_submatch(bcx, matches.as_slice(), [discr_datum.val], &chk, has_default); let mut arm_cxs = Vec::new(); for arm_data in arm_datas.iter() { let mut bcx = arm_data.bodycx; // insert bindings into the lllocals map bcx = insert_lllocals(bcx, &arm_data.bindings_map); bcx = expr::trans_into(bcx, &*arm_data.arm.body, dest); arm_cxs.push(bcx); } bcx = scope_cx.fcx.join_blocks(match_id, arm_cxs.as_slice()); return bcx; } enum IrrefutablePatternBindingMode { // Stores the association between node ID and LLVM value in `lllocals`. BindLocal, // Stores the association between node ID and LLVM value in `llargs`. BindArgument } pub fn store_local<'a>(bcx: &'a Block<'a>, local: &ast::Local) -> &'a Block<'a> { /*! * Generates code for a local variable declaration like * `let ;` or `let = `. */ let _icx = push_ctxt("match::store_local"); let mut bcx = bcx; let tcx = bcx.tcx(); let pat = local.pat; let opt_init_expr = local.init; return match opt_init_expr { Some(init_expr) => { // Optimize the "let x = expr" case. This just writes // the result of evaluating `expr` directly into the alloca // for `x`. Often the general path results in similar or the // same code post-optimization, but not always. In particular, // in unsafe code, you can have expressions like // // let x = intrinsics::uninit(); // // In such cases, the more general path is unsafe, because // it assumes it is matching against a valid value. match simple_identifier(&*pat) { Some(ident) => { let var_scope = cleanup::var_scope(tcx, local.id); return mk_binding_alloca( bcx, pat.id, ident, BindLocal, var_scope, (), |(), bcx, v, _| expr::trans_into(bcx, &*init_expr, expr::SaveIn(v))); } None => {} } // General path. let init_datum = unpack_datum!(bcx, expr::trans_to_lvalue(bcx, &*init_expr, "let")); if ty::type_is_bot(expr_ty(bcx, &*init_expr)) { create_dummy_locals(bcx, pat) } else { if bcx.sess().asm_comments() { add_comment(bcx, "creating zeroable ref llval"); } let var_scope = cleanup::var_scope(tcx, local.id); bind_irrefutable_pat(bcx, pat, init_datum.val, BindLocal, var_scope) } } None => { create_dummy_locals(bcx, pat) } }; fn create_dummy_locals<'a>(mut bcx: &'a Block<'a>, pat: Gc) -> &'a Block<'a> { // create dummy memory for the variables if we have no // value to store into them immediately let tcx = bcx.tcx(); pat_bindings(&tcx.def_map, &*pat, |_, p_id, _, path1| { let scope = cleanup::var_scope(tcx, p_id); bcx = mk_binding_alloca( bcx, p_id, &path1.node, BindLocal, scope, (), |(), bcx, llval, ty| { zero_mem(bcx, llval, ty); bcx }); }); bcx } } pub fn store_arg<'a>(mut bcx: &'a Block<'a>, pat: Gc, arg: Datum, arg_scope: cleanup::ScopeId) -> &'a Block<'a> { /*! * Generates code for argument patterns like `fn foo(: T)`. * Creates entries in the `llargs` map for each of the bindings * in `pat`. * * # Arguments * * - `pat` is the argument pattern * - `llval` is a pointer to the argument value (in other words, * if the argument type is `T`, then `llval` is a `T*`). In some * cases, this code may zero out the memory `llval` points at. */ let _icx = push_ctxt("match::store_arg"); match simple_identifier(&*pat) { Some(ident) => { // Generate nicer LLVM for the common case of fn a pattern // like `x: T` let arg_ty = node_id_type(bcx, pat.id); if type_of::arg_is_indirect(bcx.ccx(), arg_ty) && bcx.sess().opts.debuginfo != FullDebugInfo { // Don't copy an indirect argument to an alloca, the caller // already put it in a temporary alloca and gave it up, unless // we emit extra-debug-info, which requires local allocas :(. let arg_val = arg.add_clean(bcx.fcx, arg_scope); bcx.fcx.llargs.borrow_mut() .insert(pat.id, Datum::new(arg_val, arg_ty, Lvalue)); bcx } else { mk_binding_alloca( bcx, pat.id, ident, BindArgument, arg_scope, arg, |arg, bcx, llval, _| arg.store_to(bcx, llval)) } } None => { // General path. Copy out the values that are used in the // pattern. let arg = unpack_datum!( bcx, arg.to_lvalue_datum_in_scope(bcx, "__arg", arg_scope)); bind_irrefutable_pat(bcx, pat, arg.val, BindArgument, arg_scope) } } } fn mk_binding_alloca<'a,A>(bcx: &'a Block<'a>, p_id: ast::NodeId, ident: &ast::Ident, binding_mode: IrrefutablePatternBindingMode, cleanup_scope: cleanup::ScopeId, arg: A, populate: |A, &'a Block<'a>, ValueRef, ty::t| -> &'a Block<'a>) -> &'a Block<'a> { let var_ty = node_id_type(bcx, p_id); // Allocate memory on stack for the binding. let llval = alloc_ty(bcx, var_ty, bcx.ident(*ident).as_slice()); // Subtle: be sure that we *populate* the memory *before* // we schedule the cleanup. let bcx = populate(arg, bcx, llval, var_ty); bcx.fcx.schedule_drop_mem(cleanup_scope, llval, var_ty); // Now that memory is initialized and has cleanup scheduled, // create the datum and insert into the local variable map. let datum = Datum::new(llval, var_ty, Lvalue); let mut llmap = match binding_mode { BindLocal => bcx.fcx.lllocals.borrow_mut(), BindArgument => bcx.fcx.llargs.borrow_mut() }; llmap.insert(p_id, datum); bcx } fn bind_irrefutable_pat<'a>( bcx: &'a Block<'a>, pat: Gc, val: ValueRef, binding_mode: IrrefutablePatternBindingMode, cleanup_scope: cleanup::ScopeId) -> &'a Block<'a> { /*! * A simple version of the pattern matching code that only handles * irrefutable patterns. This is used in let/argument patterns, * not in match statements. Unifying this code with the code above * sounds nice, but in practice it produces very inefficient code, * since the match code is so much more general. In most cases, * LLVM is able to optimize the code, but it causes longer compile * times and makes the generated code nigh impossible to read. * * # Arguments * - bcx: starting basic block context * - pat: the irrefutable pattern being matched. * - val: the value being matched -- must be an lvalue (by ref, with cleanup) * - binding_mode: is this for an argument or a local variable? */ debug!("bind_irrefutable_pat(bcx={}, pat={}, binding_mode={:?})", bcx.to_str(), pat.repr(bcx.tcx()), binding_mode); if bcx.sess().asm_comments() { add_comment(bcx, format!("bind_irrefutable_pat(pat={})", pat.repr(bcx.tcx())).as_slice()); } let _indenter = indenter(); let _icx = push_ctxt("match::bind_irrefutable_pat"); let mut bcx = bcx; let tcx = bcx.tcx(); let ccx = bcx.ccx(); match pat.node { ast::PatIdent(pat_binding_mode, ref path1, inner) => { if pat_is_binding(&tcx.def_map, &*pat) { // Allocate the stack slot where the value of this // binding will live and place it into the appropriate // map. bcx = mk_binding_alloca( bcx, pat.id, &path1.node, binding_mode, cleanup_scope, (), |(), bcx, llval, ty| { match pat_binding_mode { ast::BindByValue(_) => { // By value binding: move the value that `val` // points at into the binding's stack slot. let d = Datum::new(val, ty, Lvalue); d.store_to(bcx, llval) } ast::BindByRef(_) => { // By ref binding: the value of the variable // is the pointer `val` itself. Store(bcx, val, llval); bcx } } }); } for &inner_pat in inner.iter() { bcx = bind_irrefutable_pat(bcx, inner_pat, val, binding_mode, cleanup_scope); } } ast::PatEnum(_, ref sub_pats) => { let opt_def = bcx.tcx().def_map.borrow().find_copy(&pat.id); match opt_def { Some(def::DefVariant(enum_id, var_id, _)) => { let repr = adt::represent_node(bcx, pat.id); let vinfo = ty::enum_variant_with_id(ccx.tcx(), enum_id, var_id); let args = extract_variant_args(bcx, &*repr, vinfo.disr_val, val); for sub_pat in sub_pats.iter() { for (i, argval) in args.vals.iter().enumerate() { bcx = bind_irrefutable_pat(bcx, *sub_pat.get(i), *argval, binding_mode, cleanup_scope); } } } Some(def::DefFn(..)) | Some(def::DefStruct(..)) => { match *sub_pats { None => { // This is a unit-like struct. Nothing to do here. } Some(ref elems) => { // This is the tuple struct case. let repr = adt::represent_node(bcx, pat.id); for (i, elem) in elems.iter().enumerate() { let fldptr = adt::trans_field_ptr(bcx, &*repr, val, 0, i); bcx = bind_irrefutable_pat(bcx, *elem, fldptr, binding_mode, cleanup_scope); } } } } Some(def::DefStatic(_, false)) => { } _ => { // Nothing to do here. } } } ast::PatStruct(_, ref fields, _) => { let tcx = bcx.tcx(); let pat_ty = node_id_type(bcx, pat.id); let pat_repr = adt::represent_type(bcx.ccx(), pat_ty); expr::with_field_tys(tcx, pat_ty, Some(pat.id), |discr, field_tys| { for f in fields.iter() { let ix = ty::field_idx_strict(tcx, f.ident.name, field_tys); let fldptr = adt::trans_field_ptr(bcx, &*pat_repr, val, discr, ix); bcx = bind_irrefutable_pat(bcx, f.pat, fldptr, binding_mode, cleanup_scope); } }) } ast::PatTup(ref elems) => { let repr = adt::represent_node(bcx, pat.id); for (i, elem) in elems.iter().enumerate() { let fldptr = adt::trans_field_ptr(bcx, &*repr, val, 0, i); bcx = bind_irrefutable_pat(bcx, *elem, fldptr, binding_mode, cleanup_scope); } } ast::PatBox(inner) => { let llbox = Load(bcx, val); bcx = bind_irrefutable_pat(bcx, inner, llbox, binding_mode, cleanup_scope); } ast::PatRegion(inner) => { let loaded_val = Load(bcx, val); bcx = bind_irrefutable_pat(bcx, inner, loaded_val, binding_mode, cleanup_scope); } ast::PatVec(ref before, ref slice, ref after) => { let extracted = extract_vec_elems( bcx, pat.id, before.len() + 1u + after.len(), slice.map(|_| before.len()), val ); bcx = before .iter().map(|v| Some(*v)) .chain(Some(*slice).move_iter()) .chain(after.iter().map(|v| Some(*v))) .zip(extracted.vals.iter()) .fold(bcx, |bcx, (inner, elem)| { inner.map_or(bcx, |inner| { bind_irrefutable_pat(bcx, inner, *elem, binding_mode, cleanup_scope) }) }); } ast::PatMac(..) => { bcx.sess().span_bug(pat.span, "unexpanded macro"); } ast::PatWild | ast::PatWildMulti | ast::PatLit(_) | ast::PatRange(_, _) => () } return bcx; }