rust/src/doc/trpl/match.md
2015-05-14 14:43:50 -04:00

101 lines
3.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% Match
Often, a simple [`if`][if]/`else` isnt enough, because you have more than two
possible options. Also, conditions can get quite complex. Rust
has a keyword, `match`, that allows you to replace complicated `if`/`else`
groupings with something more powerful. Check it out:
```rust
let x = 5;
match x {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"),
4 => println!("four"),
5 => println!("five"),
_ => println!("something else"),
}
```
[if]: if.html
`match` takes an expression and then branches based on its value. Each arm of
the branch is of the form `val => expression`. When the value matches, that arms
expression will be evaluated. Its called `match` because of the term pattern
matching, which `match` is an implementation of. Theres an [entire section on
patterns][patterns] that covers all the patterns that are possible here.
[patterns]: patterns.html
So whats the big advantage? Well, there are a few. First of all, `match`
enforces exhaustiveness checking. Do you see that last arm, the one with the
underscore (`_`)? If we remove that arm, Rust will give us an error:
```text
error: non-exhaustive patterns: `_` not covered
```
In other words, Rust is trying to tell us we forgot a value. Because `x` is an
integer, Rust knows that it can have a number of different values for
example, `6`. Without the `_`, however, there is no arm that could match, and
so Rust refuses to compile the code. `_` acts like a catch-all arm. If none
of the other arms match, the arm with `_` will, and since we have this
catch-all arm, we now have an arm for every possible value of `x`, and so our
program will compile successfully.
`match` is also an expression, which means we can use it on the right-hand
side of a `let` binding or directly where an expression is used:
```rust
let x = 5;
let number = match x {
1 => "one",
2 => "two",
3 => "three",
4 => "four",
5 => "five",
_ => "something else",
};
```
Sometimes its a nice way of converting something from one type to another.
# Matching on enums
Another important use of the `match` keyword is to process the possible
variants of an enum:
```rust
enum Message {
Quit,
ChangeColor(i32, i32, i32),
Move { x: i32, y: i32 },
Write(String),
}
fn quit() { /* ... */ }
fn change_color(r: i32, g: i32, b: i32) { /* ... */ }
fn move_cursor(x: i32, y: i32) { /* ... */ }
fn process_message(msg: Message) {
match msg {
Message::Quit => quit(),
Message::ChangeColor(r, g, b) => change_color(r, g, b),
Message::Move { x: x, y: y } => move_cursor(x, y),
Message::Write(s) => println!("{}", s),
};
}
```
Again, the Rust compiler checks exhaustiveness, so it demands that you
have a match arm for every variant of the enum. If you leave one off, it
will give you a compile-time error unless you use `_`.
Unlike the previous uses of `match`, you cant use the normal `if`
statement to do this. You can use the [`if let`][if-let] statement,
which can be seen as an abbreviated form of `match`.
[if-let]: if-let.html