rust/src/librustc/middle/astencode.rs
2013-01-24 16:45:20 -08:00

1236 lines
41 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use c = metadata::common;
use cstore = metadata::cstore;
use driver::session::Session;
use e = metadata::encoder;
use metadata::decoder;
use metadata::encoder;
use metadata::tydecode;
use metadata::tydecode::{DefIdSource, NominalType, TypeWithId, TypeParameter};
use metadata::tyencode;
use middle::freevars::freevar_entry;
use middle::typeck::{method_origin, method_map_entry, vtable_res};
use middle::typeck::{vtable_origin};
use middle::{ty, typeck};
use middle;
use util::ppaux::ty_to_str;
use core::{dvec, io, option, vec};
use std::ebml::reader::get_doc;
use std::ebml::reader;
use std::ebml::writer::Encoder;
use std::ebml;
use std::map::HashMap;
use std::prettyprint;
use std::serialize;
use std::serialize::{Encodable, EncoderHelpers, DecoderHelpers};
use std::serialize::Decodable;
use syntax::ast;
use syntax::ast_map;
use syntax::ast_util;
use syntax::codemap::span;
use syntax::codemap;
use syntax::diagnostic;
use syntax::fold::*;
use syntax::fold;
use syntax::parse;
use syntax::print::pprust;
use syntax::visit;
use syntax;
use writer = std::ebml::writer;
export maps;
export encode_inlined_item;
export decode_inlined_item;
// Auxiliary maps of things to be encoded
type maps = {
mutbl_map: middle::borrowck::mutbl_map,
root_map: middle::borrowck::root_map,
last_use_map: middle::liveness::last_use_map,
method_map: middle::typeck::method_map,
vtable_map: middle::typeck::vtable_map,
write_guard_map: middle::borrowck::write_guard_map,
};
type decode_ctxt = @{
cdata: cstore::crate_metadata,
tcx: ty::ctxt,
maps: maps
};
type extended_decode_ctxt_ = {
dcx: decode_ctxt,
from_id_range: ast_util::id_range,
to_id_range: ast_util::id_range
};
enum extended_decode_ctxt {
extended_decode_ctxt_(@extended_decode_ctxt_)
}
trait tr {
fn tr(xcx: extended_decode_ctxt) -> self;
}
trait tr_intern {
fn tr_intern(xcx: extended_decode_ctxt) -> ast::def_id;
}
// ______________________________________________________________________
// Top-level methods.
fn encode_inlined_item(ecx: @e::encode_ctxt,
ebml_w: writer::Encoder,
path: &[ast_map::path_elt],
ii: ast::inlined_item,
maps: maps) {
debug!("> Encoding inlined item: %s::%s (%u)",
ast_map::path_to_str(path, ecx.tcx.sess.parse_sess.interner),
ecx.tcx.sess.str_of(ii.ident()),
ebml_w.writer.tell());
let id_range = ast_util::compute_id_range_for_inlined_item(ii);
do ebml_w.wr_tag(c::tag_ast as uint) {
id_range.encode(&ebml_w);
encode_ast(ebml_w, simplify_ast(ii));
encode_side_tables_for_ii(ecx, maps, ebml_w, ii);
}
debug!("< Encoded inlined fn: %s::%s (%u)",
ast_map::path_to_str(path, ecx.tcx.sess.parse_sess.interner),
ecx.tcx.sess.str_of(ii.ident()),
ebml_w.writer.tell());
}
fn decode_inlined_item(cdata: cstore::crate_metadata,
tcx: ty::ctxt,
maps: maps,
+path: ast_map::path,
par_doc: ebml::Doc) -> Option<ast::inlined_item> {
let dcx = @{cdata: cdata, tcx: tcx, maps: maps};
match par_doc.opt_child(c::tag_ast) {
None => None,
Some(ast_doc) => {
debug!("> Decoding inlined fn: %s::?",
ast_map::path_to_str(path, tcx.sess.parse_sess.interner));
let ast_dsr = &reader::Decoder(ast_doc);
let from_id_range = Decodable::decode(ast_dsr);
let to_id_range = reserve_id_range(dcx.tcx.sess, from_id_range);
let xcx = extended_decode_ctxt_(@{dcx: dcx,
from_id_range: from_id_range,
to_id_range: to_id_range});
let raw_ii = decode_ast(ast_doc);
let ii = renumber_ast(xcx, raw_ii);
debug!("Fn named: %s", tcx.sess.str_of(ii.ident()));
debug!("< Decoded inlined fn: %s::%s",
ast_map::path_to_str(path, tcx.sess.parse_sess.interner),
tcx.sess.str_of(ii.ident()));
ast_map::map_decoded_item(tcx.sess.diagnostic(),
dcx.tcx.items, path, ii);
decode_side_tables(xcx, ast_doc);
match ii {
ast::ii_item(i) => {
debug!(">>> DECODED ITEM >>>\n%s\n<<< DECODED ITEM <<<",
syntax::print::pprust::item_to_str(i, tcx.sess.intr()));
}
_ => { }
}
Some(ii)
}
}
}
// ______________________________________________________________________
// Enumerating the IDs which appear in an AST
fn reserve_id_range(sess: Session,
from_id_range: ast_util::id_range) -> ast_util::id_range {
// Handle the case of an empty range:
if ast_util::empty(from_id_range) { return from_id_range; }
let cnt = from_id_range.max - from_id_range.min;
let to_id_min = sess.parse_sess.next_id;
let to_id_max = sess.parse_sess.next_id + cnt;
sess.parse_sess.next_id = to_id_max;
ast_util::id_range { min: to_id_min, max: to_id_min }
}
impl extended_decode_ctxt {
fn tr_id(id: ast::node_id) -> ast::node_id {
/*!
*
* Translates an internal id, meaning a node id that is known
* to refer to some part of the item currently being inlined,
* such as a local variable or argument. All naked node-ids
* that appear in types have this property, since if something
* might refer to an external item we would use a def-id to
* allow for the possibility that the item resides in another
* crate.
*/
// from_id_range should be non-empty
assert !ast_util::empty(self.from_id_range);
(id - self.from_id_range.min + self.to_id_range.min)
}
fn tr_def_id(did: ast::def_id) -> ast::def_id {
/*!
*
* Translates an EXTERNAL def-id, converting the crate number
* from the one used in the encoded data to the current crate
* numbers.. By external, I mean that it be translated to a
* reference to the item in its original crate, as opposed to
* being translated to a reference to the inlined version of
* the item. This is typically, but not always, what you
* want, because most def-ids refer to external things like
* types or other fns that may or may not be inlined. Note
* that even when the inlined function is referencing itself
* recursively, we would want `tr_def_id` for that
* reference--- conceptually the function calls the original,
* non-inlined version, and trans deals with linking that
* recursive call to the inlined copy.
*
* However, there are a *few* cases where def-ids are used but
* we know that the thing being referenced is in fact *internal*
* to the item being inlined. In those cases, you should use
* `tr_intern_def_id()` below.
*/
decoder::translate_def_id(self.dcx.cdata, did)
}
fn tr_intern_def_id(did: ast::def_id) -> ast::def_id {
/*!
*
* Translates an INTERNAL def-id, meaning a def-id that is
* known to refer to some part of the item currently being
* inlined. In that case, we want to convert the def-id to
* refer to the current crate and to the new, inlined node-id.
*/
assert did.crate == ast::local_crate;
ast::def_id { crate: ast::local_crate, node: self.tr_id(did.node) }
}
fn tr_span(_span: span) -> span {
ast_util::dummy_sp() // FIXME (#1972): handle span properly
}
}
impl ast::def_id: tr_intern {
fn tr_intern(xcx: extended_decode_ctxt) -> ast::def_id {
xcx.tr_intern_def_id(self)
}
}
impl ast::def_id: tr {
fn tr(xcx: extended_decode_ctxt) -> ast::def_id {
xcx.tr_def_id(self)
}
}
impl span: tr {
fn tr(xcx: extended_decode_ctxt) -> span {
xcx.tr_span(self)
}
}
trait def_id_encoder_helpers {
fn emit_def_id(did: ast::def_id);
}
impl<S: serialize::Encoder> S: def_id_encoder_helpers {
fn emit_def_id(did: ast::def_id) {
did.encode(&self)
}
}
trait def_id_decoder_helpers {
fn read_def_id(xcx: extended_decode_ctxt) -> ast::def_id;
}
impl<D: serialize::Decoder> D: def_id_decoder_helpers {
fn read_def_id(xcx: extended_decode_ctxt) -> ast::def_id {
let did: ast::def_id = Decodable::decode(&self);
did.tr(xcx)
}
}
// ______________________________________________________________________
// Encoding and decoding the AST itself
//
// The hard work is done by an autogenerated module astencode_gen. To
// regenerate astencode_gen, run src/etc/gen-astencode. It will
// replace astencode_gen with a dummy file and regenerate its
// contents. If you get compile errors, the dummy file
// remains---resolve the errors and then rerun astencode_gen.
// Annoying, I know, but hopefully only temporary.
//
// When decoding, we have to renumber the AST so that the node ids that
// appear within are disjoint from the node ids in our existing ASTs.
// We also have to adjust the spans: for now we just insert a dummy span,
// but eventually we should add entries to the local codemap as required.
fn encode_ast(ebml_w: writer::Encoder, item: ast::inlined_item) {
do ebml_w.wr_tag(c::tag_tree as uint) {
item.encode(&ebml_w)
}
}
// Produces a simplified copy of the AST which does not include things
// that we do not need to or do not want to export. For example, we
// do not include any nested items: if these nested items are to be
// inlined, their AST will be exported separately (this only makes
// sense because, in Rust, nested items are independent except for
// their visibility).
//
// As it happens, trans relies on the fact that we do not export
// nested items, as otherwise it would get confused when translating
// inlined items.
fn simplify_ast(ii: ast::inlined_item) -> ast::inlined_item {
fn drop_nested_items(blk: ast::blk_, fld: fold::ast_fold) -> ast::blk_ {
let stmts_sans_items = do blk.stmts.filtered |stmt| {
match stmt.node {
ast::stmt_expr(_, _) | ast::stmt_semi(_, _) |
ast::stmt_decl(@ast::spanned { node: ast::decl_local(_),
span: _}, _) => true,
ast::stmt_decl(@ast::spanned { node: ast::decl_item(_),
span: _}, _) => false,
ast::stmt_mac(*) => fail ~"unexpanded macro in astencode"
}
};
let blk_sans_items = ast::blk_ {
view_items: ~[], // I don't know if we need the view_items here,
// but it doesn't break tests!
stmts: stmts_sans_items,
expr: blk.expr,
id: blk.id,
rules: blk.rules
};
fold::noop_fold_block(blk_sans_items, fld)
}
let fld = fold::make_fold(@fold::AstFoldFns {
fold_block: fold::wrap(drop_nested_items),
.. *fold::default_ast_fold()
});
match ii {
ast::ii_item(i) => {
ast::ii_item(fld.fold_item(i).get()) //hack: we're not dropping items
}
ast::ii_method(d, m) => {
ast::ii_method(d, fld.fold_method(m))
}
ast::ii_foreign(i) => {
ast::ii_foreign(fld.fold_foreign_item(i))
}
ast::ii_dtor(ref dtor, nm, ref tps, parent_id) => {
let dtor_body = fld.fold_block((*dtor).node.body);
ast::ii_dtor(
ast::spanned {
node: ast::struct_dtor_ { body: dtor_body,
.. /*bad*/copy (*dtor).node },
.. (/*bad*/copy *dtor) },
nm, /*bad*/copy *tps, parent_id)
}
}
}
fn decode_ast(par_doc: ebml::Doc) -> ast::inlined_item {
let chi_doc = par_doc[c::tag_tree as uint];
let d = &reader::Decoder(chi_doc);
Decodable::decode(d)
}
fn renumber_ast(xcx: extended_decode_ctxt, ii: ast::inlined_item)
-> ast::inlined_item {
let fld = fold::make_fold(@fold::AstFoldFns{
new_id: |a| xcx.tr_id(a),
new_span: |a| xcx.tr_span(a),
.. *fold::default_ast_fold()
});
match ii {
ast::ii_item(i) => {
ast::ii_item(fld.fold_item(i).get())
}
ast::ii_method(d, m) => {
ast::ii_method(xcx.tr_def_id(d), fld.fold_method(m))
}
ast::ii_foreign(i) => {
ast::ii_foreign(fld.fold_foreign_item(i))
}
ast::ii_dtor(ref dtor, nm, ref tps, parent_id) => {
let dtor_body = fld.fold_block((*dtor).node.body);
let dtor_attrs = fld.fold_attributes(/*bad*/copy (*dtor).node.attrs);
let new_params = fold::fold_ty_params(/*bad*/copy *tps, fld);
let dtor_id = fld.new_id((*dtor).node.id);
let new_parent = xcx.tr_def_id(parent_id);
let new_self = fld.new_id((*dtor).node.self_id);
ast::ii_dtor(
ast::spanned {
node: ast::struct_dtor_ { id: dtor_id,
attrs: dtor_attrs,
self_id: new_self,
body: dtor_body },
.. (/*bad*/copy *dtor)
},
nm, new_params, new_parent)
}
}
}
// ______________________________________________________________________
// Encoding and decoding of ast::def
fn encode_def(ebml_w: writer::Encoder, def: ast::def) {
def.encode(&ebml_w)
}
fn decode_def(xcx: extended_decode_ctxt, doc: ebml::Doc) -> ast::def {
let dsr = &reader::Decoder(doc);
let def: ast::def = Decodable::decode(dsr);
def.tr(xcx)
}
impl ast::def: tr {
fn tr(xcx: extended_decode_ctxt) -> ast::def {
match self {
ast::def_fn(did, p) => { ast::def_fn(did.tr(xcx), p) }
ast::def_static_method(did, did2_opt, p) => {
ast::def_static_method(did.tr(xcx),
did2_opt.map(|did2| did2.tr(xcx)),
p)
}
ast::def_self_ty(nid) => { ast::def_self_ty(xcx.tr_id(nid)) }
ast::def_self(nid, i) => { ast::def_self(xcx.tr_id(nid), i) }
ast::def_mod(did) => { ast::def_mod(did.tr(xcx)) }
ast::def_foreign_mod(did) => { ast::def_foreign_mod(did.tr(xcx)) }
ast::def_const(did) => { ast::def_const(did.tr(xcx)) }
ast::def_arg(nid, m, b) => { ast::def_arg(xcx.tr_id(nid), m, b) }
ast::def_local(nid, b) => { ast::def_local(xcx.tr_id(nid), b) }
ast::def_variant(e_did, v_did) => {
ast::def_variant(e_did.tr(xcx), v_did.tr(xcx))
}
ast::def_ty(did) => ast::def_ty(did.tr(xcx)),
ast::def_prim_ty(p) => ast::def_prim_ty(p),
ast::def_ty_param(did, v) => ast::def_ty_param(did.tr(xcx), v),
ast::def_binding(nid, bm) => ast::def_binding(xcx.tr_id(nid), bm),
ast::def_use(did) => ast::def_use(did.tr(xcx)),
ast::def_upvar(nid1, def, nid2, nid3) => {
ast::def_upvar(xcx.tr_id(nid1),
@(*def).tr(xcx),
xcx.tr_id(nid2),
xcx.tr_id(nid3))
}
ast::def_struct(did) => {
ast::def_struct(did.tr(xcx))
}
ast::def_region(nid) => ast::def_region(xcx.tr_id(nid)),
ast::def_typaram_binder(nid) => {
ast::def_typaram_binder(xcx.tr_id(nid))
}
ast::def_label(nid) => ast::def_label(xcx.tr_id(nid))
}
}
}
// ______________________________________________________________________
// Encoding and decoding of adjustment information
impl ty::AutoAdjustment: tr {
fn tr(xcx: extended_decode_ctxt) -> ty::AutoAdjustment {
ty::AutoAdjustment {
autoderefs: self.autoderefs,
autoref: self.autoref.map(|ar| ar.tr(xcx)),
}
}
}
impl ty::AutoRef: tr {
fn tr(xcx: extended_decode_ctxt) -> ty::AutoRef {
ty::AutoRef {
kind: self.kind,
region: self.region.tr(xcx),
mutbl: self.mutbl,
}
}
}
impl ty::Region: tr {
fn tr(xcx: extended_decode_ctxt) -> ty::Region {
match self {
ty::re_bound(br) => ty::re_bound(br.tr(xcx)),
ty::re_free(id, br) => ty::re_free(xcx.tr_id(id), br.tr(xcx)),
ty::re_scope(id) => ty::re_scope(xcx.tr_id(id)),
ty::re_static | ty::re_infer(*) => self,
}
}
}
impl ty::bound_region: tr {
fn tr(xcx: extended_decode_ctxt) -> ty::bound_region {
match self {
ty::br_anon(_) | ty::br_named(_) | ty::br_self |
ty::br_fresh(_) => self,
ty::br_cap_avoid(id, br) => ty::br_cap_avoid(xcx.tr_id(id),
@br.tr(xcx))
}
}
}
// ______________________________________________________________________
// Encoding and decoding of freevar information
fn encode_freevar_entry(ebml_w: writer::Encoder, fv: @freevar_entry) {
(*fv).encode(&ebml_w)
}
trait ebml_decoder_helper {
fn read_freevar_entry(xcx: extended_decode_ctxt) -> freevar_entry;
}
impl reader::Decoder: ebml_decoder_helper {
fn read_freevar_entry(xcx: extended_decode_ctxt) -> freevar_entry {
let fv: freevar_entry = Decodable::decode(&self);
fv.tr(xcx)
}
}
impl freevar_entry: tr {
fn tr(xcx: extended_decode_ctxt) -> freevar_entry {
freevar_entry {
def: self.def.tr(xcx),
span: self.span.tr(xcx),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of method_map_entry
trait read_method_map_entry_helper {
fn read_method_map_entry(xcx: extended_decode_ctxt) -> method_map_entry;
}
fn encode_method_map_entry(ecx: @e::encode_ctxt,
ebml_w: writer::Encoder,
mme: method_map_entry) {
do ebml_w.emit_rec {
do ebml_w.emit_field(~"self_arg", 0u) {
ebml_w.emit_arg(ecx, mme.self_arg);
}
do ebml_w.emit_field(~"explicit_self", 2u) {
mme.explicit_self.encode(&ebml_w);
}
do ebml_w.emit_field(~"origin", 1u) {
mme.origin.encode(&ebml_w);
}
}
}
impl reader::Decoder: read_method_map_entry_helper {
fn read_method_map_entry(xcx: extended_decode_ctxt) -> method_map_entry {
do self.read_rec {
method_map_entry {
self_arg: self.read_field(~"self_arg", 0u, || {
self.read_arg(xcx)
}),
explicit_self: self.read_field(~"explicit_self", 2u, || {
let self_type: ast::self_ty_ = Decodable::decode(&self);
self_type
}),
origin: self.read_field(~"origin", 1u, || {
let method_origin: method_origin =
Decodable::decode(&self);
method_origin.tr(xcx)
}),
}
}
}
}
impl method_origin: tr {
fn tr(xcx: extended_decode_ctxt) -> method_origin {
match self {
typeck::method_static(did) => {
typeck::method_static(did.tr(xcx))
}
typeck::method_param(ref mp) => {
typeck::method_param(
typeck::method_param {
trait_id: mp.trait_id.tr(xcx),
.. *mp
}
)
}
typeck::method_trait(did, m, vstore) => {
typeck::method_trait(did.tr(xcx), m, vstore)
}
typeck::method_self(did, m) => {
typeck::method_self(did.tr(xcx), m)
}
}
}
}
// ______________________________________________________________________
// Encoding and decoding vtable_res
fn encode_vtable_res(ecx: @e::encode_ctxt,
ebml_w: writer::Encoder,
dr: typeck::vtable_res) {
// can't autogenerate this code because automatic code of
// ty::t doesn't work, and there is no way (atm) to have
// hand-written encoding routines combine with auto-generated
// ones. perhaps we should fix this.
do ebml_w.emit_from_vec(*dr) |vtable_origin| {
encode_vtable_origin(ecx, ebml_w, *vtable_origin)
}
}
fn encode_vtable_origin(ecx: @e::encode_ctxt,
ebml_w: writer::Encoder,
vtable_origin: typeck::vtable_origin) {
do ebml_w.emit_enum(~"vtable_origin") {
match /*bad*/copy vtable_origin {
typeck::vtable_static(def_id, tys, vtable_res) => {
do ebml_w.emit_enum_variant(~"vtable_static", 0u, 3u) {
do ebml_w.emit_enum_variant_arg(0u) {
ebml_w.emit_def_id(def_id)
}
do ebml_w.emit_enum_variant_arg(1u) {
ebml_w.emit_tys(ecx, /*bad*/copy tys);
}
do ebml_w.emit_enum_variant_arg(2u) {
encode_vtable_res(ecx, ebml_w, vtable_res);
}
}
}
typeck::vtable_param(pn, bn) => {
do ebml_w.emit_enum_variant(~"vtable_param", 1u, 2u) {
do ebml_w.emit_enum_variant_arg(0u) {
ebml_w.emit_uint(pn);
}
do ebml_w.emit_enum_variant_arg(1u) {
ebml_w.emit_uint(bn);
}
}
}
typeck::vtable_trait(def_id, tys) => {
do ebml_w.emit_enum_variant(~"vtable_trait", 1u, 3u) {
do ebml_w.emit_enum_variant_arg(0u) {
ebml_w.emit_def_id(def_id)
}
do ebml_w.emit_enum_variant_arg(1u) {
ebml_w.emit_tys(ecx, /*bad*/copy tys);
}
}
}
}
}
}
trait vtable_decoder_helpers {
fn read_vtable_res(xcx: extended_decode_ctxt) -> typeck::vtable_res;
fn read_vtable_origin(xcx: extended_decode_ctxt) -> typeck::vtable_origin;
}
impl reader::Decoder: vtable_decoder_helpers {
fn read_vtable_res(xcx: extended_decode_ctxt) -> typeck::vtable_res {
@self.read_to_vec(|| self.read_vtable_origin(xcx) )
}
fn read_vtable_origin(xcx: extended_decode_ctxt)
-> typeck::vtable_origin {
do self.read_enum(~"vtable_origin") {
do self.read_enum_variant |i| {
match i {
0 => {
typeck::vtable_static(
do self.read_enum_variant_arg(0u) {
self.read_def_id(xcx)
},
do self.read_enum_variant_arg(1u) {
self.read_tys(xcx)
},
do self.read_enum_variant_arg(2u) {
self.read_vtable_res(xcx)
}
)
}
1 => {
typeck::vtable_param(
do self.read_enum_variant_arg(0u) {
self.read_uint()
},
do self.read_enum_variant_arg(1u) {
self.read_uint()
}
)
}
2 => {
typeck::vtable_trait(
do self.read_enum_variant_arg(0u) {
self.read_def_id(xcx)
},
do self.read_enum_variant_arg(1u) {
self.read_tys(xcx)
}
)
}
// hard to avoid - user input
_ => fail ~"bad enum variant"
}
}
}
}
}
// ______________________________________________________________________
// Encoding and decoding the side tables
trait get_ty_str_ctxt {
fn ty_str_ctxt() -> @tyencode::ctxt;
}
impl @e::encode_ctxt: get_ty_str_ctxt {
fn ty_str_ctxt() -> @tyencode::ctxt {
@tyencode::ctxt {diag: self.tcx.sess.diagnostic(),
ds: e::def_to_str,
tcx: self.tcx,
reachable: |a| encoder::reachable(self, a),
abbrevs: tyencode::ac_use_abbrevs(self.type_abbrevs)}
}
}
trait ebml_writer_helpers {
fn emit_arg(ecx: @e::encode_ctxt, arg: ty::arg);
fn emit_ty(ecx: @e::encode_ctxt, ty: ty::t);
fn emit_vstore(ecx: @e::encode_ctxt, vstore: ty::vstore);
fn emit_tys(ecx: @e::encode_ctxt, tys: ~[ty::t]);
fn emit_bounds(ecx: @e::encode_ctxt, bs: ty::param_bounds);
fn emit_tpbt(ecx: @e::encode_ctxt, tpbt: ty::ty_param_bounds_and_ty);
}
impl writer::Encoder: ebml_writer_helpers {
fn emit_ty(ecx: @e::encode_ctxt, ty: ty::t) {
do self.emit_opaque {
e::write_type(ecx, self, ty)
}
}
fn emit_vstore(ecx: @e::encode_ctxt, vstore: ty::vstore) {
do self.emit_opaque {
e::write_vstore(ecx, self, vstore)
}
}
fn emit_arg(ecx: @e::encode_ctxt, arg: ty::arg) {
do self.emit_opaque {
tyencode::enc_arg(self.writer, ecx.ty_str_ctxt(), arg);
}
}
fn emit_tys(ecx: @e::encode_ctxt, tys: ~[ty::t]) {
do self.emit_from_vec(tys) |ty| {
self.emit_ty(ecx, *ty)
}
}
fn emit_bounds(ecx: @e::encode_ctxt, bs: ty::param_bounds) {
do self.emit_opaque {
tyencode::enc_bounds(self.writer, ecx.ty_str_ctxt(), bs)
}
}
fn emit_tpbt(ecx: @e::encode_ctxt, tpbt: ty::ty_param_bounds_and_ty) {
do self.emit_rec {
do self.emit_field(~"bounds", 0) {
do self.emit_from_vec(*tpbt.bounds) |bs| {
self.emit_bounds(ecx, *bs);
}
}
do self.emit_field(~"region_param", 1u) {
tpbt.region_param.encode(&self);
}
do self.emit_field(~"ty", 2u) {
self.emit_ty(ecx, tpbt.ty);
}
}
}
}
trait write_tag_and_id {
fn tag(tag_id: c::astencode_tag, f: fn());
fn id(id: ast::node_id);
}
impl writer::Encoder: write_tag_and_id {
fn tag(tag_id: c::astencode_tag, f: fn()) {
do self.wr_tag(tag_id as uint) { f() }
}
fn id(id: ast::node_id) {
self.wr_tagged_u64(c::tag_table_id as uint, id as u64)
}
}
fn encode_side_tables_for_ii(ecx: @e::encode_ctxt,
maps: maps,
ebml_w: writer::Encoder,
ii: ast::inlined_item) {
do ebml_w.wr_tag(c::tag_table as uint) {
ast_util::visit_ids_for_inlined_item(
ii,
fn@(id: ast::node_id, copy ebml_w) {
// Note: this will cause a copy of ebml_w, which is bad as
// it has mut fields. But I believe it's harmless since
// we generate balanced EBML.
encode_side_tables_for_id(ecx, maps, ebml_w, id)
});
}
}
fn encode_side_tables_for_id(ecx: @e::encode_ctxt,
maps: maps,
ebml_w: writer::Encoder,
id: ast::node_id) {
let tcx = ecx.tcx;
debug!("Encoding side tables for id %d", id);
do option::iter(&tcx.def_map.find(id)) |def| {
do ebml_w.tag(c::tag_table_def) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
(*def).encode(&ebml_w)
}
}
}
do option::iter(&(*tcx.node_types).find(id as uint)) |ty| {
do ebml_w.tag(c::tag_table_node_type) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
ebml_w.emit_ty(ecx, *ty);
}
}
}
do option::iter(&tcx.node_type_substs.find(id)) |tys| {
do ebml_w.tag(c::tag_table_node_type_subst) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
ebml_w.emit_tys(ecx, /*bad*/copy *tys)
}
}
}
do option::iter(&tcx.freevars.find(id)) |fv| {
do ebml_w.tag(c::tag_table_freevars) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
do ebml_w.emit_from_vec(**fv) |fv_entry| {
encode_freevar_entry(ebml_w, *fv_entry)
}
}
}
}
let lid = ast::def_id { crate: ast::local_crate, node: id };
do option::iter(&tcx.tcache.find(lid)) |tpbt| {
do ebml_w.tag(c::tag_table_tcache) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
ebml_w.emit_tpbt(ecx, *tpbt);
}
}
}
do option::iter(&tcx.ty_param_bounds.find(id)) |pbs| {
do ebml_w.tag(c::tag_table_param_bounds) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
ebml_w.emit_bounds(ecx, *pbs)
}
}
}
// I believe it is not necessary to encode this information. The
// ids will appear in the AST but in the *type* information, which
// is what we actually use in trans, all modes will have been
// resolved.
//
//option::iter(tcx.inferred_modes.find(id)) {|m|
// ebml_w.tag(c::tag_table_inferred_modes) {||
// ebml_w.id(id);
// ebml_w.tag(c::tag_table_val) {||
// tyencode::enc_mode(ebml_w.writer, ty_str_ctxt(), m);
// }
// }
//}
do option::iter(&maps.mutbl_map.find(id)) |_m| {
do ebml_w.tag(c::tag_table_mutbl) {
ebml_w.id(id);
}
}
do option::iter(&maps.last_use_map.find(id)) |m| {
do ebml_w.tag(c::tag_table_last_use) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
do ebml_w.emit_from_vec((*m).get()) |id| {
id.encode(&ebml_w);
}
}
}
}
do option::iter(&maps.method_map.find(id)) |mme| {
do ebml_w.tag(c::tag_table_method_map) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
encode_method_map_entry(ecx, ebml_w, *mme)
}
}
}
do option::iter(&maps.vtable_map.find(id)) |dr| {
do ebml_w.tag(c::tag_table_vtable_map) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
encode_vtable_res(ecx, ebml_w, *dr);
}
}
}
do option::iter(&tcx.adjustments.find(id)) |adj| {
do ebml_w.tag(c::tag_table_adjustments) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
(**adj).encode(&ebml_w)
}
}
}
do option::iter(&tcx.legacy_boxed_traits.find(id)) |_x| {
do ebml_w.tag(c::tag_table_legacy_boxed_trait) {
ebml_w.id(id);
}
}
do option::iter(&tcx.value_modes.find(id)) |vm| {
do ebml_w.tag(c::tag_table_value_mode) {
ebml_w.id(id);
do ebml_w.tag(c::tag_table_val) {
(*vm).encode(&ebml_w)
}
}
}
}
trait doc_decoder_helpers {
fn as_int() -> int;
fn opt_child(tag: c::astencode_tag) -> Option<ebml::Doc>;
}
impl ebml::Doc: doc_decoder_helpers {
fn as_int() -> int { reader::doc_as_u64(self) as int }
fn opt_child(tag: c::astencode_tag) -> Option<ebml::Doc> {
reader::maybe_get_doc(self, tag as uint)
}
}
trait ebml_decoder_decoder_helpers {
fn read_arg(xcx: extended_decode_ctxt) -> ty::arg;
fn read_ty(xcx: extended_decode_ctxt) -> ty::t;
fn read_tys(xcx: extended_decode_ctxt) -> ~[ty::t];
fn read_bounds(xcx: extended_decode_ctxt) -> @~[ty::param_bound];
fn read_ty_param_bounds_and_ty(xcx: extended_decode_ctxt)
-> ty::ty_param_bounds_and_ty;
fn convert_def_id(xcx: extended_decode_ctxt,
source: DefIdSource,
did: ast::def_id) -> ast::def_id;
}
impl reader::Decoder: ebml_decoder_decoder_helpers {
fn read_arg(xcx: extended_decode_ctxt) -> ty::arg {
do self.read_opaque |doc| {
tydecode::parse_arg_data(
doc.data, xcx.dcx.cdata.cnum, doc.start, xcx.dcx.tcx,
|s, a| self.convert_def_id(xcx, s, a))
}
}
fn read_ty(xcx: extended_decode_ctxt) -> ty::t {
// Note: regions types embed local node ids. In principle, we
// should translate these node ids into the new decode
// context. However, we do not bother, because region types
// are not used during trans.
do self.read_opaque |doc| {
tydecode::parse_ty_data(
doc.data, xcx.dcx.cdata.cnum, doc.start, xcx.dcx.tcx,
|s, a| self.convert_def_id(xcx, s, a))
}
}
fn read_tys(xcx: extended_decode_ctxt) -> ~[ty::t] {
self.read_to_vec(|| self.read_ty(xcx) )
}
fn read_bounds(xcx: extended_decode_ctxt) -> @~[ty::param_bound] {
do self.read_opaque |doc| {
tydecode::parse_bounds_data(
doc.data, doc.start, xcx.dcx.cdata.cnum, xcx.dcx.tcx,
|s, a| self.convert_def_id(xcx, s, a))
}
}
fn read_ty_param_bounds_and_ty(xcx: extended_decode_ctxt)
-> ty::ty_param_bounds_and_ty
{
do self.read_rec {
{
bounds: self.read_field(~"bounds", 0u, || {
@self.read_to_vec(|| self.read_bounds(xcx) )
}),
region_param: self.read_field(~"region_param", 1u, || {
Decodable::decode(&self)
}),
ty: self.read_field(~"ty", 2u, || {
self.read_ty(xcx)
})
}
}
}
fn convert_def_id(xcx: extended_decode_ctxt,
source: tydecode::DefIdSource,
did: ast::def_id) -> ast::def_id {
/*!
*
* Converts a def-id that appears in a type. The correct
* translation will depend on what kind of def-id this is.
* This is a subtle point: type definitions are not
* inlined into the current crate, so if the def-id names
* a nominal type or type alias, then it should be
* translated to refer to the source crate.
*
* However, *type parameters* are cloned along with the function
* they are attached to. So we should translate those def-ids
* to refer to the new, cloned copy of the type parameter.
*/
match source {
NominalType | TypeWithId => xcx.tr_def_id(did),
TypeParameter => xcx.tr_intern_def_id(did)
}
}
}
fn decode_side_tables(xcx: extended_decode_ctxt,
ast_doc: ebml::Doc) {
let dcx = xcx.dcx;
let tbl_doc = ast_doc[c::tag_table as uint];
for reader::docs(tbl_doc) |tag, entry_doc| {
let id0 = entry_doc[c::tag_table_id as uint].as_int();
let id = xcx.tr_id(id0);
debug!(">> Side table document with tag 0x%x \
found for id %d (orig %d)",
tag, id, id0);
if tag == (c::tag_table_mutbl as uint) {
dcx.maps.mutbl_map.insert(id, ());
} else if tag == (c::tag_table_legacy_boxed_trait as uint) {
dcx.tcx.legacy_boxed_traits.insert(id, ());
} else {
let val_doc = entry_doc[c::tag_table_val as uint];
let val_dsr = &reader::Decoder(val_doc);
if tag == (c::tag_table_def as uint) {
let def = decode_def(xcx, val_doc);
dcx.tcx.def_map.insert(id, def);
} else if tag == (c::tag_table_node_type as uint) {
let ty = val_dsr.read_ty(xcx);
(*dcx.tcx.node_types).insert(id as uint, ty);
} else if tag == (c::tag_table_node_type_subst as uint) {
let tys = val_dsr.read_tys(xcx);
dcx.tcx.node_type_substs.insert(id, tys);
} else if tag == (c::tag_table_freevars as uint) {
let fv_info = @val_dsr.read_to_vec(|| {
@val_dsr.read_freevar_entry(xcx)
});
dcx.tcx.freevars.insert(id, fv_info);
} else if tag == (c::tag_table_tcache as uint) {
let tpbt = val_dsr.read_ty_param_bounds_and_ty(xcx);
let lid = ast::def_id { crate: ast::local_crate, node: id };
dcx.tcx.tcache.insert(lid, tpbt);
} else if tag == (c::tag_table_param_bounds as uint) {
let bounds = val_dsr.read_bounds(xcx);
dcx.tcx.ty_param_bounds.insert(id, bounds);
} else if tag == (c::tag_table_last_use as uint) {
let ids = val_dsr.read_to_vec(|| {
xcx.tr_id(val_dsr.read_int())
});
let dvec = @dvec::from_vec(move ids);
dcx.maps.last_use_map.insert(id, dvec);
} else if tag == (c::tag_table_method_map as uint) {
dcx.maps.method_map.insert(
id,
val_dsr.read_method_map_entry(xcx));
} else if tag == (c::tag_table_vtable_map as uint) {
dcx.maps.vtable_map.insert(id,
val_dsr.read_vtable_res(xcx));
} else if tag == (c::tag_table_adjustments as uint) {
let adj: @ty::AutoAdjustment = @Decodable::decode(val_dsr);
adj.tr(xcx);
dcx.tcx.adjustments.insert(id, adj);
} else if tag == (c::tag_table_value_mode as uint) {
let vm: ty::ValueMode = Decodable::decode(val_dsr);
dcx.tcx.value_modes.insert(id, vm);
} else {
xcx.dcx.tcx.sess.bug(
fmt!("unknown tag found in side tables: %x", tag));
}
}
debug!(">< Side table doc loaded");
}
}
// ______________________________________________________________________
// Testing of astencode_gen
#[cfg(test)]
fn encode_item_ast(ebml_w: writer::Encoder, item: @ast::item) {
do ebml_w.wr_tag(c::tag_tree as uint) {
(*item).encode(&ebml_w)
}
}
#[cfg(test)]
fn decode_item_ast(par_doc: ebml::Doc) -> @ast::item {
let chi_doc = par_doc[c::tag_tree as uint];
let d = &reader::Decoder(chi_doc);
@Decodable::decode(d)
}
#[cfg(test)]
trait fake_ext_ctxt {
fn cfg() -> ast::crate_cfg;
fn parse_sess() -> parse::parse_sess;
fn call_site() -> span;
fn ident_of(+st: ~str) -> ast::ident;
}
#[cfg(test)]
type fake_session = parse::parse_sess;
#[cfg(test)]
impl fake_session: fake_ext_ctxt {
fn cfg() -> ast::crate_cfg { ~[] }
fn parse_sess() -> parse::parse_sess { self }
fn call_site() -> span {
codemap::span {
lo: codemap::BytePos(0),
hi: codemap::BytePos(0),
expn_info: None
}
}
fn ident_of(+st: ~str) -> ast::ident {
self.interner.intern(@st)
}
}
#[cfg(test)]
fn mk_ctxt() -> fake_ext_ctxt {
parse::new_parse_sess(None) as fake_ext_ctxt
}
#[cfg(test)]
fn roundtrip(in_item: Option<@ast::item>) {
let in_item = in_item.get();
let bytes = do io::with_bytes_writer |wr| {
let ebml_w = writer::Encoder(wr);
encode_item_ast(ebml_w, in_item);
};
let ebml_doc = reader::Doc(@bytes);
let out_item = decode_item_ast(ebml_doc);
let exp_str = do io::with_str_writer |w| {
in_item.encode(&prettyprint::Serializer(w))
};
let out_str = do io::with_str_writer |w| {
out_item.encode(&prettyprint::Serializer(w))
};
debug!("expected string: %s", exp_str);
debug!("actual string : %s", out_str);
assert exp_str == out_str;
}
#[test]
fn test_basic() {
let ext_cx = mk_ctxt();
roundtrip(quote_item!(
fn foo() {}
));
}
#[test]
fn test_smalltalk() {
let ext_cx = mk_ctxt();
roundtrip(quote_item!(
fn foo() -> int { 3 + 4 } // first smalltalk program ever executed.
));
}
#[test]
fn test_more() {
let ext_cx = mk_ctxt();
roundtrip(quote_item!(
fn foo(x: uint, y: uint) -> uint {
let z = x + y;
return z;
}
));
}
#[test]
fn test_simplification() {
let ext_cx = mk_ctxt();
let item_in = ast::ii_item(quote_item!(
fn new_int_alist<B: Copy>() -> alist<int, B> {
fn eq_int(&&a: int, &&b: int) -> bool { a == b }
return {eq_fn: eq_int, mut data: ~[]};
}
).get());
let item_out = simplify_ast(item_in);
let item_exp = ast::ii_item(quote_item!(
fn new_int_alist<B: Copy>() -> alist<int, B> {
return {eq_fn: eq_int, mut data: ~[]};
}
).get());
match (item_out, item_exp) {
(ast::ii_item(item_out), ast::ii_item(item_exp)) => {
assert pprust::item_to_str(item_out, ext_cx.parse_sess().interner)
== pprust::item_to_str(item_exp, ext_cx.parse_sess().interner);
}
_ => fail
}
}