// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::prelude::*; use c = metadata::common; use cstore = metadata::cstore; use driver::session::Session; use e = metadata::encoder; use metadata::decoder; use metadata::encoder; use metadata::tydecode; use metadata::tydecode::{DefIdSource, NominalType, TypeWithId, TypeParameter}; use metadata::tyencode; use middle::freevars::freevar_entry; use middle::typeck::{method_origin, method_map_entry, vtable_res}; use middle::typeck::{vtable_origin}; use middle::{ty, typeck}; use middle; use util::ppaux::ty_to_str; use core::{dvec, io, option, vec}; use std::ebml::reader::get_doc; use std::ebml::reader; use std::ebml::writer::Encoder; use std::ebml; use std::map::HashMap; use std::prettyprint; use std::serialize; use std::serialize::{Encodable, EncoderHelpers, DecoderHelpers}; use std::serialize::Decodable; use syntax::ast; use syntax::ast_map; use syntax::ast_util; use syntax::codemap::span; use syntax::codemap; use syntax::diagnostic; use syntax::fold::*; use syntax::fold; use syntax::parse; use syntax::print::pprust; use syntax::visit; use syntax; use writer = std::ebml::writer; export maps; export encode_inlined_item; export decode_inlined_item; // Auxiliary maps of things to be encoded type maps = { mutbl_map: middle::borrowck::mutbl_map, root_map: middle::borrowck::root_map, last_use_map: middle::liveness::last_use_map, method_map: middle::typeck::method_map, vtable_map: middle::typeck::vtable_map, write_guard_map: middle::borrowck::write_guard_map, }; type decode_ctxt = @{ cdata: cstore::crate_metadata, tcx: ty::ctxt, maps: maps }; type extended_decode_ctxt_ = { dcx: decode_ctxt, from_id_range: ast_util::id_range, to_id_range: ast_util::id_range }; enum extended_decode_ctxt { extended_decode_ctxt_(@extended_decode_ctxt_) } trait tr { fn tr(xcx: extended_decode_ctxt) -> self; } trait tr_intern { fn tr_intern(xcx: extended_decode_ctxt) -> ast::def_id; } // ______________________________________________________________________ // Top-level methods. fn encode_inlined_item(ecx: @e::encode_ctxt, ebml_w: writer::Encoder, path: &[ast_map::path_elt], ii: ast::inlined_item, maps: maps) { debug!("> Encoding inlined item: %s::%s (%u)", ast_map::path_to_str(path, ecx.tcx.sess.parse_sess.interner), ecx.tcx.sess.str_of(ii.ident()), ebml_w.writer.tell()); let id_range = ast_util::compute_id_range_for_inlined_item(ii); do ebml_w.wr_tag(c::tag_ast as uint) { id_range.encode(&ebml_w); encode_ast(ebml_w, simplify_ast(ii)); encode_side_tables_for_ii(ecx, maps, ebml_w, ii); } debug!("< Encoded inlined fn: %s::%s (%u)", ast_map::path_to_str(path, ecx.tcx.sess.parse_sess.interner), ecx.tcx.sess.str_of(ii.ident()), ebml_w.writer.tell()); } fn decode_inlined_item(cdata: cstore::crate_metadata, tcx: ty::ctxt, maps: maps, +path: ast_map::path, par_doc: ebml::Doc) -> Option { let dcx = @{cdata: cdata, tcx: tcx, maps: maps}; match par_doc.opt_child(c::tag_ast) { None => None, Some(ast_doc) => { debug!("> Decoding inlined fn: %s::?", ast_map::path_to_str(path, tcx.sess.parse_sess.interner)); let ast_dsr = &reader::Decoder(ast_doc); let from_id_range = Decodable::decode(ast_dsr); let to_id_range = reserve_id_range(dcx.tcx.sess, from_id_range); let xcx = extended_decode_ctxt_(@{dcx: dcx, from_id_range: from_id_range, to_id_range: to_id_range}); let raw_ii = decode_ast(ast_doc); let ii = renumber_ast(xcx, raw_ii); debug!("Fn named: %s", tcx.sess.str_of(ii.ident())); debug!("< Decoded inlined fn: %s::%s", ast_map::path_to_str(path, tcx.sess.parse_sess.interner), tcx.sess.str_of(ii.ident())); ast_map::map_decoded_item(tcx.sess.diagnostic(), dcx.tcx.items, path, ii); decode_side_tables(xcx, ast_doc); match ii { ast::ii_item(i) => { debug!(">>> DECODED ITEM >>>\n%s\n<<< DECODED ITEM <<<", syntax::print::pprust::item_to_str(i, tcx.sess.intr())); } _ => { } } Some(ii) } } } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST fn reserve_id_range(sess: Session, from_id_range: ast_util::id_range) -> ast_util::id_range { // Handle the case of an empty range: if ast_util::empty(from_id_range) { return from_id_range; } let cnt = from_id_range.max - from_id_range.min; let to_id_min = sess.parse_sess.next_id; let to_id_max = sess.parse_sess.next_id + cnt; sess.parse_sess.next_id = to_id_max; ast_util::id_range { min: to_id_min, max: to_id_min } } impl extended_decode_ctxt { fn tr_id(id: ast::node_id) -> ast::node_id { /*! * * Translates an internal id, meaning a node id that is known * to refer to some part of the item currently being inlined, * such as a local variable or argument. All naked node-ids * that appear in types have this property, since if something * might refer to an external item we would use a def-id to * allow for the possibility that the item resides in another * crate. */ // from_id_range should be non-empty assert !ast_util::empty(self.from_id_range); (id - self.from_id_range.min + self.to_id_range.min) } fn tr_def_id(did: ast::def_id) -> ast::def_id { /*! * * Translates an EXTERNAL def-id, converting the crate number * from the one used in the encoded data to the current crate * numbers.. By external, I mean that it be translated to a * reference to the item in its original crate, as opposed to * being translated to a reference to the inlined version of * the item. This is typically, but not always, what you * want, because most def-ids refer to external things like * types or other fns that may or may not be inlined. Note * that even when the inlined function is referencing itself * recursively, we would want `tr_def_id` for that * reference--- conceptually the function calls the original, * non-inlined version, and trans deals with linking that * recursive call to the inlined copy. * * However, there are a *few* cases where def-ids are used but * we know that the thing being referenced is in fact *internal* * to the item being inlined. In those cases, you should use * `tr_intern_def_id()` below. */ decoder::translate_def_id(self.dcx.cdata, did) } fn tr_intern_def_id(did: ast::def_id) -> ast::def_id { /*! * * Translates an INTERNAL def-id, meaning a def-id that is * known to refer to some part of the item currently being * inlined. In that case, we want to convert the def-id to * refer to the current crate and to the new, inlined node-id. */ assert did.crate == ast::local_crate; ast::def_id { crate: ast::local_crate, node: self.tr_id(did.node) } } fn tr_span(_span: span) -> span { ast_util::dummy_sp() // FIXME (#1972): handle span properly } } impl ast::def_id: tr_intern { fn tr_intern(xcx: extended_decode_ctxt) -> ast::def_id { xcx.tr_intern_def_id(self) } } impl ast::def_id: tr { fn tr(xcx: extended_decode_ctxt) -> ast::def_id { xcx.tr_def_id(self) } } impl span: tr { fn tr(xcx: extended_decode_ctxt) -> span { xcx.tr_span(self) } } trait def_id_encoder_helpers { fn emit_def_id(did: ast::def_id); } impl S: def_id_encoder_helpers { fn emit_def_id(did: ast::def_id) { did.encode(&self) } } trait def_id_decoder_helpers { fn read_def_id(xcx: extended_decode_ctxt) -> ast::def_id; } impl D: def_id_decoder_helpers { fn read_def_id(xcx: extended_decode_ctxt) -> ast::def_id { let did: ast::def_id = Decodable::decode(&self); did.tr(xcx) } } // ______________________________________________________________________ // Encoding and decoding the AST itself // // The hard work is done by an autogenerated module astencode_gen. To // regenerate astencode_gen, run src/etc/gen-astencode. It will // replace astencode_gen with a dummy file and regenerate its // contents. If you get compile errors, the dummy file // remains---resolve the errors and then rerun astencode_gen. // Annoying, I know, but hopefully only temporary. // // When decoding, we have to renumber the AST so that the node ids that // appear within are disjoint from the node ids in our existing ASTs. // We also have to adjust the spans: for now we just insert a dummy span, // but eventually we should add entries to the local codemap as required. fn encode_ast(ebml_w: writer::Encoder, item: ast::inlined_item) { do ebml_w.wr_tag(c::tag_tree as uint) { item.encode(&ebml_w) } } // Produces a simplified copy of the AST which does not include things // that we do not need to or do not want to export. For example, we // do not include any nested items: if these nested items are to be // inlined, their AST will be exported separately (this only makes // sense because, in Rust, nested items are independent except for // their visibility). // // As it happens, trans relies on the fact that we do not export // nested items, as otherwise it would get confused when translating // inlined items. fn simplify_ast(ii: ast::inlined_item) -> ast::inlined_item { fn drop_nested_items(blk: ast::blk_, fld: fold::ast_fold) -> ast::blk_ { let stmts_sans_items = do blk.stmts.filtered |stmt| { match stmt.node { ast::stmt_expr(_, _) | ast::stmt_semi(_, _) | ast::stmt_decl(@ast::spanned { node: ast::decl_local(_), span: _}, _) => true, ast::stmt_decl(@ast::spanned { node: ast::decl_item(_), span: _}, _) => false, ast::stmt_mac(*) => fail ~"unexpanded macro in astencode" } }; let blk_sans_items = ast::blk_ { view_items: ~[], // I don't know if we need the view_items here, // but it doesn't break tests! stmts: stmts_sans_items, expr: blk.expr, id: blk.id, rules: blk.rules }; fold::noop_fold_block(blk_sans_items, fld) } let fld = fold::make_fold(@fold::AstFoldFns { fold_block: fold::wrap(drop_nested_items), .. *fold::default_ast_fold() }); match ii { ast::ii_item(i) => { ast::ii_item(fld.fold_item(i).get()) //hack: we're not dropping items } ast::ii_method(d, m) => { ast::ii_method(d, fld.fold_method(m)) } ast::ii_foreign(i) => { ast::ii_foreign(fld.fold_foreign_item(i)) } ast::ii_dtor(ref dtor, nm, ref tps, parent_id) => { let dtor_body = fld.fold_block((*dtor).node.body); ast::ii_dtor( ast::spanned { node: ast::struct_dtor_ { body: dtor_body, .. /*bad*/copy (*dtor).node }, .. (/*bad*/copy *dtor) }, nm, /*bad*/copy *tps, parent_id) } } } fn decode_ast(par_doc: ebml::Doc) -> ast::inlined_item { let chi_doc = par_doc[c::tag_tree as uint]; let d = &reader::Decoder(chi_doc); Decodable::decode(d) } fn renumber_ast(xcx: extended_decode_ctxt, ii: ast::inlined_item) -> ast::inlined_item { let fld = fold::make_fold(@fold::AstFoldFns{ new_id: |a| xcx.tr_id(a), new_span: |a| xcx.tr_span(a), .. *fold::default_ast_fold() }); match ii { ast::ii_item(i) => { ast::ii_item(fld.fold_item(i).get()) } ast::ii_method(d, m) => { ast::ii_method(xcx.tr_def_id(d), fld.fold_method(m)) } ast::ii_foreign(i) => { ast::ii_foreign(fld.fold_foreign_item(i)) } ast::ii_dtor(ref dtor, nm, ref tps, parent_id) => { let dtor_body = fld.fold_block((*dtor).node.body); let dtor_attrs = fld.fold_attributes(/*bad*/copy (*dtor).node.attrs); let new_params = fold::fold_ty_params(/*bad*/copy *tps, fld); let dtor_id = fld.new_id((*dtor).node.id); let new_parent = xcx.tr_def_id(parent_id); let new_self = fld.new_id((*dtor).node.self_id); ast::ii_dtor( ast::spanned { node: ast::struct_dtor_ { id: dtor_id, attrs: dtor_attrs, self_id: new_self, body: dtor_body }, .. (/*bad*/copy *dtor) }, nm, new_params, new_parent) } } } // ______________________________________________________________________ // Encoding and decoding of ast::def fn encode_def(ebml_w: writer::Encoder, def: ast::def) { def.encode(&ebml_w) } fn decode_def(xcx: extended_decode_ctxt, doc: ebml::Doc) -> ast::def { let dsr = &reader::Decoder(doc); let def: ast::def = Decodable::decode(dsr); def.tr(xcx) } impl ast::def: tr { fn tr(xcx: extended_decode_ctxt) -> ast::def { match self { ast::def_fn(did, p) => { ast::def_fn(did.tr(xcx), p) } ast::def_static_method(did, did2_opt, p) => { ast::def_static_method(did.tr(xcx), did2_opt.map(|did2| did2.tr(xcx)), p) } ast::def_self_ty(nid) => { ast::def_self_ty(xcx.tr_id(nid)) } ast::def_self(nid, i) => { ast::def_self(xcx.tr_id(nid), i) } ast::def_mod(did) => { ast::def_mod(did.tr(xcx)) } ast::def_foreign_mod(did) => { ast::def_foreign_mod(did.tr(xcx)) } ast::def_const(did) => { ast::def_const(did.tr(xcx)) } ast::def_arg(nid, m, b) => { ast::def_arg(xcx.tr_id(nid), m, b) } ast::def_local(nid, b) => { ast::def_local(xcx.tr_id(nid), b) } ast::def_variant(e_did, v_did) => { ast::def_variant(e_did.tr(xcx), v_did.tr(xcx)) } ast::def_ty(did) => ast::def_ty(did.tr(xcx)), ast::def_prim_ty(p) => ast::def_prim_ty(p), ast::def_ty_param(did, v) => ast::def_ty_param(did.tr(xcx), v), ast::def_binding(nid, bm) => ast::def_binding(xcx.tr_id(nid), bm), ast::def_use(did) => ast::def_use(did.tr(xcx)), ast::def_upvar(nid1, def, nid2, nid3) => { ast::def_upvar(xcx.tr_id(nid1), @(*def).tr(xcx), xcx.tr_id(nid2), xcx.tr_id(nid3)) } ast::def_struct(did) => { ast::def_struct(did.tr(xcx)) } ast::def_region(nid) => ast::def_region(xcx.tr_id(nid)), ast::def_typaram_binder(nid) => { ast::def_typaram_binder(xcx.tr_id(nid)) } ast::def_label(nid) => ast::def_label(xcx.tr_id(nid)) } } } // ______________________________________________________________________ // Encoding and decoding of adjustment information impl ty::AutoAdjustment: tr { fn tr(xcx: extended_decode_ctxt) -> ty::AutoAdjustment { ty::AutoAdjustment { autoderefs: self.autoderefs, autoref: self.autoref.map(|ar| ar.tr(xcx)), } } } impl ty::AutoRef: tr { fn tr(xcx: extended_decode_ctxt) -> ty::AutoRef { ty::AutoRef { kind: self.kind, region: self.region.tr(xcx), mutbl: self.mutbl, } } } impl ty::Region: tr { fn tr(xcx: extended_decode_ctxt) -> ty::Region { match self { ty::re_bound(br) => ty::re_bound(br.tr(xcx)), ty::re_free(id, br) => ty::re_free(xcx.tr_id(id), br.tr(xcx)), ty::re_scope(id) => ty::re_scope(xcx.tr_id(id)), ty::re_static | ty::re_infer(*) => self, } } } impl ty::bound_region: tr { fn tr(xcx: extended_decode_ctxt) -> ty::bound_region { match self { ty::br_anon(_) | ty::br_named(_) | ty::br_self | ty::br_fresh(_) => self, ty::br_cap_avoid(id, br) => ty::br_cap_avoid(xcx.tr_id(id), @br.tr(xcx)) } } } // ______________________________________________________________________ // Encoding and decoding of freevar information fn encode_freevar_entry(ebml_w: writer::Encoder, fv: @freevar_entry) { (*fv).encode(&ebml_w) } trait ebml_decoder_helper { fn read_freevar_entry(xcx: extended_decode_ctxt) -> freevar_entry; } impl reader::Decoder: ebml_decoder_helper { fn read_freevar_entry(xcx: extended_decode_ctxt) -> freevar_entry { let fv: freevar_entry = Decodable::decode(&self); fv.tr(xcx) } } impl freevar_entry: tr { fn tr(xcx: extended_decode_ctxt) -> freevar_entry { freevar_entry { def: self.def.tr(xcx), span: self.span.tr(xcx), } } } // ______________________________________________________________________ // Encoding and decoding of method_map_entry trait read_method_map_entry_helper { fn read_method_map_entry(xcx: extended_decode_ctxt) -> method_map_entry; } fn encode_method_map_entry(ecx: @e::encode_ctxt, ebml_w: writer::Encoder, mme: method_map_entry) { do ebml_w.emit_rec { do ebml_w.emit_field(~"self_arg", 0u) { ebml_w.emit_arg(ecx, mme.self_arg); } do ebml_w.emit_field(~"explicit_self", 2u) { mme.explicit_self.encode(&ebml_w); } do ebml_w.emit_field(~"origin", 1u) { mme.origin.encode(&ebml_w); } } } impl reader::Decoder: read_method_map_entry_helper { fn read_method_map_entry(xcx: extended_decode_ctxt) -> method_map_entry { do self.read_rec { method_map_entry { self_arg: self.read_field(~"self_arg", 0u, || { self.read_arg(xcx) }), explicit_self: self.read_field(~"explicit_self", 2u, || { let self_type: ast::self_ty_ = Decodable::decode(&self); self_type }), origin: self.read_field(~"origin", 1u, || { let method_origin: method_origin = Decodable::decode(&self); method_origin.tr(xcx) }), } } } } impl method_origin: tr { fn tr(xcx: extended_decode_ctxt) -> method_origin { match self { typeck::method_static(did) => { typeck::method_static(did.tr(xcx)) } typeck::method_param(ref mp) => { typeck::method_param( typeck::method_param { trait_id: mp.trait_id.tr(xcx), .. *mp } ) } typeck::method_trait(did, m, vstore) => { typeck::method_trait(did.tr(xcx), m, vstore) } typeck::method_self(did, m) => { typeck::method_self(did.tr(xcx), m) } } } } // ______________________________________________________________________ // Encoding and decoding vtable_res fn encode_vtable_res(ecx: @e::encode_ctxt, ebml_w: writer::Encoder, dr: typeck::vtable_res) { // can't autogenerate this code because automatic code of // ty::t doesn't work, and there is no way (atm) to have // hand-written encoding routines combine with auto-generated // ones. perhaps we should fix this. do ebml_w.emit_from_vec(*dr) |vtable_origin| { encode_vtable_origin(ecx, ebml_w, *vtable_origin) } } fn encode_vtable_origin(ecx: @e::encode_ctxt, ebml_w: writer::Encoder, vtable_origin: typeck::vtable_origin) { do ebml_w.emit_enum(~"vtable_origin") { match /*bad*/copy vtable_origin { typeck::vtable_static(def_id, tys, vtable_res) => { do ebml_w.emit_enum_variant(~"vtable_static", 0u, 3u) { do ebml_w.emit_enum_variant_arg(0u) { ebml_w.emit_def_id(def_id) } do ebml_w.emit_enum_variant_arg(1u) { ebml_w.emit_tys(ecx, /*bad*/copy tys); } do ebml_w.emit_enum_variant_arg(2u) { encode_vtable_res(ecx, ebml_w, vtable_res); } } } typeck::vtable_param(pn, bn) => { do ebml_w.emit_enum_variant(~"vtable_param", 1u, 2u) { do ebml_w.emit_enum_variant_arg(0u) { ebml_w.emit_uint(pn); } do ebml_w.emit_enum_variant_arg(1u) { ebml_w.emit_uint(bn); } } } typeck::vtable_trait(def_id, tys) => { do ebml_w.emit_enum_variant(~"vtable_trait", 1u, 3u) { do ebml_w.emit_enum_variant_arg(0u) { ebml_w.emit_def_id(def_id) } do ebml_w.emit_enum_variant_arg(1u) { ebml_w.emit_tys(ecx, /*bad*/copy tys); } } } } } } trait vtable_decoder_helpers { fn read_vtable_res(xcx: extended_decode_ctxt) -> typeck::vtable_res; fn read_vtable_origin(xcx: extended_decode_ctxt) -> typeck::vtable_origin; } impl reader::Decoder: vtable_decoder_helpers { fn read_vtable_res(xcx: extended_decode_ctxt) -> typeck::vtable_res { @self.read_to_vec(|| self.read_vtable_origin(xcx) ) } fn read_vtable_origin(xcx: extended_decode_ctxt) -> typeck::vtable_origin { do self.read_enum(~"vtable_origin") { do self.read_enum_variant |i| { match i { 0 => { typeck::vtable_static( do self.read_enum_variant_arg(0u) { self.read_def_id(xcx) }, do self.read_enum_variant_arg(1u) { self.read_tys(xcx) }, do self.read_enum_variant_arg(2u) { self.read_vtable_res(xcx) } ) } 1 => { typeck::vtable_param( do self.read_enum_variant_arg(0u) { self.read_uint() }, do self.read_enum_variant_arg(1u) { self.read_uint() } ) } 2 => { typeck::vtable_trait( do self.read_enum_variant_arg(0u) { self.read_def_id(xcx) }, do self.read_enum_variant_arg(1u) { self.read_tys(xcx) } ) } // hard to avoid - user input _ => fail ~"bad enum variant" } } } } } // ______________________________________________________________________ // Encoding and decoding the side tables trait get_ty_str_ctxt { fn ty_str_ctxt() -> @tyencode::ctxt; } impl @e::encode_ctxt: get_ty_str_ctxt { fn ty_str_ctxt() -> @tyencode::ctxt { @tyencode::ctxt {diag: self.tcx.sess.diagnostic(), ds: e::def_to_str, tcx: self.tcx, reachable: |a| encoder::reachable(self, a), abbrevs: tyencode::ac_use_abbrevs(self.type_abbrevs)} } } trait ebml_writer_helpers { fn emit_arg(ecx: @e::encode_ctxt, arg: ty::arg); fn emit_ty(ecx: @e::encode_ctxt, ty: ty::t); fn emit_vstore(ecx: @e::encode_ctxt, vstore: ty::vstore); fn emit_tys(ecx: @e::encode_ctxt, tys: ~[ty::t]); fn emit_bounds(ecx: @e::encode_ctxt, bs: ty::param_bounds); fn emit_tpbt(ecx: @e::encode_ctxt, tpbt: ty::ty_param_bounds_and_ty); } impl writer::Encoder: ebml_writer_helpers { fn emit_ty(ecx: @e::encode_ctxt, ty: ty::t) { do self.emit_opaque { e::write_type(ecx, self, ty) } } fn emit_vstore(ecx: @e::encode_ctxt, vstore: ty::vstore) { do self.emit_opaque { e::write_vstore(ecx, self, vstore) } } fn emit_arg(ecx: @e::encode_ctxt, arg: ty::arg) { do self.emit_opaque { tyencode::enc_arg(self.writer, ecx.ty_str_ctxt(), arg); } } fn emit_tys(ecx: @e::encode_ctxt, tys: ~[ty::t]) { do self.emit_from_vec(tys) |ty| { self.emit_ty(ecx, *ty) } } fn emit_bounds(ecx: @e::encode_ctxt, bs: ty::param_bounds) { do self.emit_opaque { tyencode::enc_bounds(self.writer, ecx.ty_str_ctxt(), bs) } } fn emit_tpbt(ecx: @e::encode_ctxt, tpbt: ty::ty_param_bounds_and_ty) { do self.emit_rec { do self.emit_field(~"bounds", 0) { do self.emit_from_vec(*tpbt.bounds) |bs| { self.emit_bounds(ecx, *bs); } } do self.emit_field(~"region_param", 1u) { tpbt.region_param.encode(&self); } do self.emit_field(~"ty", 2u) { self.emit_ty(ecx, tpbt.ty); } } } } trait write_tag_and_id { fn tag(tag_id: c::astencode_tag, f: fn()); fn id(id: ast::node_id); } impl writer::Encoder: write_tag_and_id { fn tag(tag_id: c::astencode_tag, f: fn()) { do self.wr_tag(tag_id as uint) { f() } } fn id(id: ast::node_id) { self.wr_tagged_u64(c::tag_table_id as uint, id as u64) } } fn encode_side_tables_for_ii(ecx: @e::encode_ctxt, maps: maps, ebml_w: writer::Encoder, ii: ast::inlined_item) { do ebml_w.wr_tag(c::tag_table as uint) { ast_util::visit_ids_for_inlined_item( ii, fn@(id: ast::node_id, copy ebml_w) { // Note: this will cause a copy of ebml_w, which is bad as // it has mut fields. But I believe it's harmless since // we generate balanced EBML. encode_side_tables_for_id(ecx, maps, ebml_w, id) }); } } fn encode_side_tables_for_id(ecx: @e::encode_ctxt, maps: maps, ebml_w: writer::Encoder, id: ast::node_id) { let tcx = ecx.tcx; debug!("Encoding side tables for id %d", id); do option::iter(&tcx.def_map.find(id)) |def| { do ebml_w.tag(c::tag_table_def) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { (*def).encode(&ebml_w) } } } do option::iter(&(*tcx.node_types).find(id as uint)) |ty| { do ebml_w.tag(c::tag_table_node_type) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { ebml_w.emit_ty(ecx, *ty); } } } do option::iter(&tcx.node_type_substs.find(id)) |tys| { do ebml_w.tag(c::tag_table_node_type_subst) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { ebml_w.emit_tys(ecx, /*bad*/copy *tys) } } } do option::iter(&tcx.freevars.find(id)) |fv| { do ebml_w.tag(c::tag_table_freevars) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { do ebml_w.emit_from_vec(**fv) |fv_entry| { encode_freevar_entry(ebml_w, *fv_entry) } } } } let lid = ast::def_id { crate: ast::local_crate, node: id }; do option::iter(&tcx.tcache.find(lid)) |tpbt| { do ebml_w.tag(c::tag_table_tcache) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { ebml_w.emit_tpbt(ecx, *tpbt); } } } do option::iter(&tcx.ty_param_bounds.find(id)) |pbs| { do ebml_w.tag(c::tag_table_param_bounds) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { ebml_w.emit_bounds(ecx, *pbs) } } } // I believe it is not necessary to encode this information. The // ids will appear in the AST but in the *type* information, which // is what we actually use in trans, all modes will have been // resolved. // //option::iter(tcx.inferred_modes.find(id)) {|m| // ebml_w.tag(c::tag_table_inferred_modes) {|| // ebml_w.id(id); // ebml_w.tag(c::tag_table_val) {|| // tyencode::enc_mode(ebml_w.writer, ty_str_ctxt(), m); // } // } //} do option::iter(&maps.mutbl_map.find(id)) |_m| { do ebml_w.tag(c::tag_table_mutbl) { ebml_w.id(id); } } do option::iter(&maps.last_use_map.find(id)) |m| { do ebml_w.tag(c::tag_table_last_use) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { do ebml_w.emit_from_vec((*m).get()) |id| { id.encode(&ebml_w); } } } } do option::iter(&maps.method_map.find(id)) |mme| { do ebml_w.tag(c::tag_table_method_map) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { encode_method_map_entry(ecx, ebml_w, *mme) } } } do option::iter(&maps.vtable_map.find(id)) |dr| { do ebml_w.tag(c::tag_table_vtable_map) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { encode_vtable_res(ecx, ebml_w, *dr); } } } do option::iter(&tcx.adjustments.find(id)) |adj| { do ebml_w.tag(c::tag_table_adjustments) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { (**adj).encode(&ebml_w) } } } do option::iter(&tcx.legacy_boxed_traits.find(id)) |_x| { do ebml_w.tag(c::tag_table_legacy_boxed_trait) { ebml_w.id(id); } } do option::iter(&tcx.value_modes.find(id)) |vm| { do ebml_w.tag(c::tag_table_value_mode) { ebml_w.id(id); do ebml_w.tag(c::tag_table_val) { (*vm).encode(&ebml_w) } } } } trait doc_decoder_helpers { fn as_int() -> int; fn opt_child(tag: c::astencode_tag) -> Option; } impl ebml::Doc: doc_decoder_helpers { fn as_int() -> int { reader::doc_as_u64(self) as int } fn opt_child(tag: c::astencode_tag) -> Option { reader::maybe_get_doc(self, tag as uint) } } trait ebml_decoder_decoder_helpers { fn read_arg(xcx: extended_decode_ctxt) -> ty::arg; fn read_ty(xcx: extended_decode_ctxt) -> ty::t; fn read_tys(xcx: extended_decode_ctxt) -> ~[ty::t]; fn read_bounds(xcx: extended_decode_ctxt) -> @~[ty::param_bound]; fn read_ty_param_bounds_and_ty(xcx: extended_decode_ctxt) -> ty::ty_param_bounds_and_ty; fn convert_def_id(xcx: extended_decode_ctxt, source: DefIdSource, did: ast::def_id) -> ast::def_id; } impl reader::Decoder: ebml_decoder_decoder_helpers { fn read_arg(xcx: extended_decode_ctxt) -> ty::arg { do self.read_opaque |doc| { tydecode::parse_arg_data( doc.data, xcx.dcx.cdata.cnum, doc.start, xcx.dcx.tcx, |s, a| self.convert_def_id(xcx, s, a)) } } fn read_ty(xcx: extended_decode_ctxt) -> ty::t { // Note: regions types embed local node ids. In principle, we // should translate these node ids into the new decode // context. However, we do not bother, because region types // are not used during trans. do self.read_opaque |doc| { tydecode::parse_ty_data( doc.data, xcx.dcx.cdata.cnum, doc.start, xcx.dcx.tcx, |s, a| self.convert_def_id(xcx, s, a)) } } fn read_tys(xcx: extended_decode_ctxt) -> ~[ty::t] { self.read_to_vec(|| self.read_ty(xcx) ) } fn read_bounds(xcx: extended_decode_ctxt) -> @~[ty::param_bound] { do self.read_opaque |doc| { tydecode::parse_bounds_data( doc.data, doc.start, xcx.dcx.cdata.cnum, xcx.dcx.tcx, |s, a| self.convert_def_id(xcx, s, a)) } } fn read_ty_param_bounds_and_ty(xcx: extended_decode_ctxt) -> ty::ty_param_bounds_and_ty { do self.read_rec { { bounds: self.read_field(~"bounds", 0u, || { @self.read_to_vec(|| self.read_bounds(xcx) ) }), region_param: self.read_field(~"region_param", 1u, || { Decodable::decode(&self) }), ty: self.read_field(~"ty", 2u, || { self.read_ty(xcx) }) } } } fn convert_def_id(xcx: extended_decode_ctxt, source: tydecode::DefIdSource, did: ast::def_id) -> ast::def_id { /*! * * Converts a def-id that appears in a type. The correct * translation will depend on what kind of def-id this is. * This is a subtle point: type definitions are not * inlined into the current crate, so if the def-id names * a nominal type or type alias, then it should be * translated to refer to the source crate. * * However, *type parameters* are cloned along with the function * they are attached to. So we should translate those def-ids * to refer to the new, cloned copy of the type parameter. */ match source { NominalType | TypeWithId => xcx.tr_def_id(did), TypeParameter => xcx.tr_intern_def_id(did) } } } fn decode_side_tables(xcx: extended_decode_ctxt, ast_doc: ebml::Doc) { let dcx = xcx.dcx; let tbl_doc = ast_doc[c::tag_table as uint]; for reader::docs(tbl_doc) |tag, entry_doc| { let id0 = entry_doc[c::tag_table_id as uint].as_int(); let id = xcx.tr_id(id0); debug!(">> Side table document with tag 0x%x \ found for id %d (orig %d)", tag, id, id0); if tag == (c::tag_table_mutbl as uint) { dcx.maps.mutbl_map.insert(id, ()); } else if tag == (c::tag_table_legacy_boxed_trait as uint) { dcx.tcx.legacy_boxed_traits.insert(id, ()); } else { let val_doc = entry_doc[c::tag_table_val as uint]; let val_dsr = &reader::Decoder(val_doc); if tag == (c::tag_table_def as uint) { let def = decode_def(xcx, val_doc); dcx.tcx.def_map.insert(id, def); } else if tag == (c::tag_table_node_type as uint) { let ty = val_dsr.read_ty(xcx); (*dcx.tcx.node_types).insert(id as uint, ty); } else if tag == (c::tag_table_node_type_subst as uint) { let tys = val_dsr.read_tys(xcx); dcx.tcx.node_type_substs.insert(id, tys); } else if tag == (c::tag_table_freevars as uint) { let fv_info = @val_dsr.read_to_vec(|| { @val_dsr.read_freevar_entry(xcx) }); dcx.tcx.freevars.insert(id, fv_info); } else if tag == (c::tag_table_tcache as uint) { let tpbt = val_dsr.read_ty_param_bounds_and_ty(xcx); let lid = ast::def_id { crate: ast::local_crate, node: id }; dcx.tcx.tcache.insert(lid, tpbt); } else if tag == (c::tag_table_param_bounds as uint) { let bounds = val_dsr.read_bounds(xcx); dcx.tcx.ty_param_bounds.insert(id, bounds); } else if tag == (c::tag_table_last_use as uint) { let ids = val_dsr.read_to_vec(|| { xcx.tr_id(val_dsr.read_int()) }); let dvec = @dvec::from_vec(move ids); dcx.maps.last_use_map.insert(id, dvec); } else if tag == (c::tag_table_method_map as uint) { dcx.maps.method_map.insert( id, val_dsr.read_method_map_entry(xcx)); } else if tag == (c::tag_table_vtable_map as uint) { dcx.maps.vtable_map.insert(id, val_dsr.read_vtable_res(xcx)); } else if tag == (c::tag_table_adjustments as uint) { let adj: @ty::AutoAdjustment = @Decodable::decode(val_dsr); adj.tr(xcx); dcx.tcx.adjustments.insert(id, adj); } else if tag == (c::tag_table_value_mode as uint) { let vm: ty::ValueMode = Decodable::decode(val_dsr); dcx.tcx.value_modes.insert(id, vm); } else { xcx.dcx.tcx.sess.bug( fmt!("unknown tag found in side tables: %x", tag)); } } debug!(">< Side table doc loaded"); } } // ______________________________________________________________________ // Testing of astencode_gen #[cfg(test)] fn encode_item_ast(ebml_w: writer::Encoder, item: @ast::item) { do ebml_w.wr_tag(c::tag_tree as uint) { (*item).encode(&ebml_w) } } #[cfg(test)] fn decode_item_ast(par_doc: ebml::Doc) -> @ast::item { let chi_doc = par_doc[c::tag_tree as uint]; let d = &reader::Decoder(chi_doc); @Decodable::decode(d) } #[cfg(test)] trait fake_ext_ctxt { fn cfg() -> ast::crate_cfg; fn parse_sess() -> parse::parse_sess; fn call_site() -> span; fn ident_of(+st: ~str) -> ast::ident; } #[cfg(test)] type fake_session = parse::parse_sess; #[cfg(test)] impl fake_session: fake_ext_ctxt { fn cfg() -> ast::crate_cfg { ~[] } fn parse_sess() -> parse::parse_sess { self } fn call_site() -> span { codemap::span { lo: codemap::BytePos(0), hi: codemap::BytePos(0), expn_info: None } } fn ident_of(+st: ~str) -> ast::ident { self.interner.intern(@st) } } #[cfg(test)] fn mk_ctxt() -> fake_ext_ctxt { parse::new_parse_sess(None) as fake_ext_ctxt } #[cfg(test)] fn roundtrip(in_item: Option<@ast::item>) { let in_item = in_item.get(); let bytes = do io::with_bytes_writer |wr| { let ebml_w = writer::Encoder(wr); encode_item_ast(ebml_w, in_item); }; let ebml_doc = reader::Doc(@bytes); let out_item = decode_item_ast(ebml_doc); let exp_str = do io::with_str_writer |w| { in_item.encode(&prettyprint::Serializer(w)) }; let out_str = do io::with_str_writer |w| { out_item.encode(&prettyprint::Serializer(w)) }; debug!("expected string: %s", exp_str); debug!("actual string : %s", out_str); assert exp_str == out_str; } #[test] fn test_basic() { let ext_cx = mk_ctxt(); roundtrip(quote_item!( fn foo() {} )); } #[test] fn test_smalltalk() { let ext_cx = mk_ctxt(); roundtrip(quote_item!( fn foo() -> int { 3 + 4 } // first smalltalk program ever executed. )); } #[test] fn test_more() { let ext_cx = mk_ctxt(); roundtrip(quote_item!( fn foo(x: uint, y: uint) -> uint { let z = x + y; return z; } )); } #[test] fn test_simplification() { let ext_cx = mk_ctxt(); let item_in = ast::ii_item(quote_item!( fn new_int_alist() -> alist { fn eq_int(&&a: int, &&b: int) -> bool { a == b } return {eq_fn: eq_int, mut data: ~[]}; } ).get()); let item_out = simplify_ast(item_in); let item_exp = ast::ii_item(quote_item!( fn new_int_alist() -> alist { return {eq_fn: eq_int, mut data: ~[]}; } ).get()); match (item_out, item_exp) { (ast::ii_item(item_out), ast::ii_item(item_exp)) => { assert pprust::item_to_str(item_out, ext_cx.parse_sess().interner) == pprust::item_to_str(item_exp, ext_cx.parse_sess().interner); } _ => fail } }