rust/src/libcollections/bit.rs
Patrick Walton ddb2466f6a librustc: Always parse macro!()/macro![] as expressions if not
followed by a semicolon.

This allows code like `vec![1i, 2, 3].len();` to work.

This breaks code that uses macros as statements without putting
semicolons after them, such as:

    fn main() {
        ...
        assert!(a == b)
        assert!(c == d)
        println(...);
    }

It also breaks code that uses macros as items without semicolons:

    local_data_key!(foo)

    fn main() {
        println("hello world")
    }

Add semicolons to fix this code. Those two examples can be fixed as
follows:

    fn main() {
        ...
        assert!(a == b);
        assert!(c == d);
        println(...);
    }

    local_data_key!(foo);

    fn main() {
        println("hello world")
    }

RFC #378.

Closes #18635.

[breaking-change]
2014-12-18 12:09:07 -05:00

2801 lines
82 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// FIXME(Gankro): Bitv and BitvSet are very tightly coupled. Ideally (for maintenance),
// they should be in separate files/modules, with BitvSet only using Bitv's public API.
//! Collections implemented with bit vectors.
//!
//! # Examples
//!
//! This is a simple example of the [Sieve of Eratosthenes][sieve]
//! which calculates prime numbers up to a given limit.
//!
//! [sieve]: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
//!
//! ```
//! use std::collections::{BitvSet, Bitv};
//! use std::num::Float;
//! use std::iter;
//!
//! let max_prime = 10000;
//!
//! // Store the primes as a BitvSet
//! let primes = {
//! // Assume all numbers are prime to begin, and then we
//! // cross off non-primes progressively
//! let mut bv = Bitv::with_capacity(max_prime, true);
//!
//! // Neither 0 nor 1 are prime
//! bv.set(0, false);
//! bv.set(1, false);
//!
//! for i in iter::range_inclusive(2, (max_prime as f64).sqrt() as uint) {
//! // if i is a prime
//! if bv[i] {
//! // Mark all multiples of i as non-prime (any multiples below i * i
//! // will have been marked as non-prime previously)
//! for j in iter::range_step(i * i, max_prime, i) { bv.set(j, false) }
//! }
//! }
//! BitvSet::from_bitv(bv)
//! };
//!
//! // Simple primality tests below our max bound
//! let print_primes = 20;
//! print!("The primes below {} are: ", print_primes);
//! for x in range(0, print_primes) {
//! if primes.contains(&x) {
//! print!("{} ", x);
//! }
//! }
//! println!("");
//!
//! // We can manipulate the internal Bitv
//! let num_primes = primes.get_ref().iter().filter(|x| *x).count();
//! println!("There are {} primes below {}", num_primes, max_prime);
//! ```
use core::prelude::*;
use core::cmp;
use core::default::Default;
use core::fmt;
use core::iter::{Chain, Enumerate, Repeat, Skip, Take, repeat};
use core::iter;
use core::num::Int;
use core::slice;
use core::u32;
use std::hash;
use vec::Vec;
// FIXME(conventions): look, we just need to refactor this whole thing. Inside and out.
type MatchWords<'a> = Chain<MaskWords<'a>, Skip<Take<Enumerate<Repeat<u32>>>>>;
// Take two BitV's, and return iterators of their words, where the shorter one
// has been padded with 0's
fn match_words <'a,'b>(a: &'a Bitv, b: &'b Bitv) -> (MatchWords<'a>, MatchWords<'b>) {
let a_len = a.storage.len();
let b_len = b.storage.len();
// have to uselessly pretend to pad the longer one for type matching
if a_len < b_len {
(a.mask_words(0).chain(repeat(0u32).enumerate().take(b_len).skip(a_len)),
b.mask_words(0).chain(repeat(0u32).enumerate().take(0).skip(0)))
} else {
(a.mask_words(0).chain(repeat(0u32).enumerate().take(0).skip(0)),
b.mask_words(0).chain(repeat(0u32).enumerate().take(a_len).skip(b_len)))
}
}
static TRUE: bool = true;
static FALSE: bool = false;
/// The bitvector type.
///
/// # Examples
///
/// ```rust
/// use collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(10, false);
///
/// // insert all primes less than 10
/// bv.set(2, true);
/// bv.set(3, true);
/// bv.set(5, true);
/// bv.set(7, true);
/// println!("{}", bv.to_string());
/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count());
///
/// // flip all values in bitvector, producing non-primes less than 10
/// bv.negate();
/// println!("{}", bv.to_string());
/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count());
///
/// // reset bitvector to empty
/// bv.clear();
/// println!("{}", bv.to_string());
/// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count());
/// ```
pub struct Bitv {
/// Internal representation of the bit vector
storage: Vec<u32>,
/// The number of valid bits in the internal representation
nbits: uint
}
impl Index<uint,bool> for Bitv {
#[inline]
fn index<'a>(&'a self, i: &uint) -> &'a bool {
if self.get(*i) {
&TRUE
} else {
&FALSE
}
}
}
struct MaskWords<'a> {
iter: slice::Items<'a, u32>,
next_word: Option<&'a u32>,
last_word_mask: u32,
offset: uint
}
impl<'a> Iterator<(uint, u32)> for MaskWords<'a> {
/// Returns (offset, word)
#[inline]
fn next(&mut self) -> Option<(uint, u32)> {
let ret = self.next_word;
match ret {
Some(&w) => {
self.next_word = self.iter.next();
self.offset += 1;
// The last word may need to be masked
if self.next_word.is_none() {
Some((self.offset - 1, w & self.last_word_mask))
} else {
Some((self.offset - 1, w))
}
},
None => None
}
}
}
impl Bitv {
#[inline]
fn process<F>(&mut self, other: &Bitv, mut op: F) -> bool where F: FnMut(u32, u32) -> u32 {
let len = other.storage.len();
assert_eq!(self.storage.len(), len);
let mut changed = false;
// Notice: `a` is *not* masked here, which is fine as long as
// `op` is a bitwise operation, since any bits that should've
// been masked were fine to change anyway. `b` is masked to
// make sure its unmasked bits do not cause damage.
for (a, (_, b)) in self.storage.iter_mut()
.zip(other.mask_words(0)) {
let w = op(*a, b);
if *a != w {
changed = true;
*a = w;
}
}
changed
}
#[inline]
fn mask_words<'a>(&'a self, mut start: uint) -> MaskWords<'a> {
if start > self.storage.len() {
start = self.storage.len();
}
let mut iter = self.storage[start..].iter();
MaskWords {
next_word: iter.next(),
iter: iter,
last_word_mask: {
let rem = self.nbits % u32::BITS;
if rem > 0 {
(1 << rem) - 1
} else { !0 }
},
offset: start
}
}
/// Creates an empty `Bitv`.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
/// let mut bv = Bitv::new();
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn new() -> Bitv {
Bitv { storage: Vec::new(), nbits: 0 }
}
/// Creates a `Bitv` that holds `nbits` elements, setting each element
/// to `init`.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(10u, false);
/// assert_eq!(bv.len(), 10u);
/// for x in bv.iter() {
/// assert_eq!(x, false);
/// }
/// ```
pub fn with_capacity(nbits: uint, init: bool) -> Bitv {
let mut bitv = Bitv {
storage: Vec::from_elem((nbits + u32::BITS - 1) / u32::BITS,
if init { !0u32 } else { 0u32 }),
nbits: nbits
};
// Zero out any unused bits in the highest word if necessary
let used_bits = bitv.nbits % u32::BITS;
if init && used_bits != 0 {
let largest_used_word = (bitv.nbits + u32::BITS - 1) / u32::BITS - 1;
bitv.storage[largest_used_word] &= (1 << used_bits) - 1;
}
bitv
}
/// Retrieves the value at index `i`.
///
/// # Panics
///
/// Panics if `i` is out of bounds.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let bv = bitv::from_bytes(&[0b01100000]);
/// assert_eq!(bv.get(0), false);
/// assert_eq!(bv.get(1), true);
///
/// // Can also use array indexing
/// assert_eq!(bv[1], true);
/// ```
#[inline]
pub fn get(&self, i: uint) -> bool {
assert!(i < self.nbits);
let w = i / u32::BITS;
let b = i % u32::BITS;
let x = self.storage[w] & (1 << b);
x != 0
}
/// Sets the value of a bit at an index `i`.
///
/// # Panics
///
/// Panics if `i` is out of bounds.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(5, false);
/// bv.set(3, true);
/// assert_eq!(bv[3], true);
/// ```
#[inline]
pub fn set(&mut self, i: uint, x: bool) {
assert!(i < self.nbits);
let w = i / u32::BITS;
let b = i % u32::BITS;
let flag = 1 << b;
let val = if x { self.storage[w] | flag }
else { self.storage[w] & !flag };
self.storage[w] = val;
}
/// Sets all bits to 1.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let before = 0b01100000;
/// let after = 0b11111111;
///
/// let mut bv = bitv::from_bytes(&[before]);
/// bv.set_all();
/// assert_eq!(bv, bitv::from_bytes(&[after]));
/// ```
#[inline]
pub fn set_all(&mut self) {
for w in self.storage.iter_mut() { *w = !0u32; }
}
/// Flips all bits.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let before = 0b01100000;
/// let after = 0b10011111;
///
/// let mut bv = bitv::from_bytes(&[before]);
/// bv.negate();
/// assert_eq!(bv, bitv::from_bytes(&[after]));
/// ```
#[inline]
pub fn negate(&mut self) {
for w in self.storage.iter_mut() { *w = !*w; }
}
/// Calculates the union of two bitvectors. This acts like the bitwise `or`
/// function.
///
/// Sets `self` to the union of `self` and `other`. Both bitvectors must be
/// the same length. Returns `true` if `self` changed.
///
/// # Panics
///
/// Panics if the bitvectors are of different lengths.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let a = 0b01100100;
/// let b = 0b01011010;
/// let res = 0b01111110;
///
/// let mut a = bitv::from_bytes(&[a]);
/// let b = bitv::from_bytes(&[b]);
///
/// assert!(a.union(&b));
/// assert_eq!(a, bitv::from_bytes(&[res]));
/// ```
#[inline]
pub fn union(&mut self, other: &Bitv) -> bool {
self.process(other, |w1, w2| w1 | w2)
}
/// Calculates the intersection of two bitvectors. This acts like the
/// bitwise `and` function.
///
/// Sets `self` to the intersection of `self` and `other`. Both bitvectors
/// must be the same length. Returns `true` if `self` changed.
///
/// # Panics
///
/// Panics if the bitvectors are of different lengths.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let a = 0b01100100;
/// let b = 0b01011010;
/// let res = 0b01000000;
///
/// let mut a = bitv::from_bytes(&[a]);
/// let b = bitv::from_bytes(&[b]);
///
/// assert!(a.intersect(&b));
/// assert_eq!(a, bitv::from_bytes(&[res]));
/// ```
#[inline]
pub fn intersect(&mut self, other: &Bitv) -> bool {
self.process(other, |w1, w2| w1 & w2)
}
/// Calculates the difference between two bitvectors.
///
/// Sets each element of `self` to the value of that element minus the
/// element of `other` at the same index. Both bitvectors must be the same
/// length. Returns `true` if `self` changed.
///
/// # Panics
///
/// Panics if the bitvectors are of different length.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let a = 0b01100100;
/// let b = 0b01011010;
/// let a_b = 0b00100100; // a - b
/// let b_a = 0b00011010; // b - a
///
/// let mut bva = bitv::from_bytes(&[a]);
/// let bvb = bitv::from_bytes(&[b]);
///
/// assert!(bva.difference(&bvb));
/// assert_eq!(bva, bitv::from_bytes(&[a_b]));
///
/// let bva = bitv::from_bytes(&[a]);
/// let mut bvb = bitv::from_bytes(&[b]);
///
/// assert!(bvb.difference(&bva));
/// assert_eq!(bvb, bitv::from_bytes(&[b_a]));
/// ```
#[inline]
pub fn difference(&mut self, other: &Bitv) -> bool {
self.process(other, |w1, w2| w1 & !w2)
}
/// Returns `true` if all bits are 1.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(5, true);
/// assert_eq!(bv.all(), true);
///
/// bv.set(1, false);
/// assert_eq!(bv.all(), false);
/// ```
#[inline]
pub fn all(&self) -> bool {
let mut last_word = !0u32;
// Check that every word but the last is all-ones...
self.mask_words(0).all(|(_, elem)|
{ let tmp = last_word; last_word = elem; tmp == !0u32 }) &&
// ...and that the last word is ones as far as it needs to be
(last_word == ((1 << self.nbits % u32::BITS) - 1) || last_word == !0u32)
}
/// Returns an iterator over the elements of the vector in order.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let bv = bitv::from_bytes(&[0b01110100, 0b10010010]);
/// assert_eq!(bv.iter().filter(|x| *x).count(), 7);
/// ```
#[inline]
pub fn iter<'a>(&'a self) -> Bits<'a> {
Bits {bitv: self, next_idx: 0, end_idx: self.nbits}
}
/// Returns `true` if all bits are 0.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(10, false);
/// assert_eq!(bv.none(), true);
///
/// bv.set(3, true);
/// assert_eq!(bv.none(), false);
/// ```
pub fn none(&self) -> bool {
self.mask_words(0).all(|(_, w)| w == 0)
}
/// Returns `true` if any bit is 1.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(10, false);
/// assert_eq!(bv.any(), false);
///
/// bv.set(3, true);
/// assert_eq!(bv.any(), true);
/// ```
#[inline]
pub fn any(&self) -> bool {
!self.none()
}
/// Organises the bits into bytes, such that the first bit in the
/// `Bitv` becomes the high-order bit of the first byte. If the
/// size of the `Bitv` is not a multiple of eight then trailing bits
/// will be filled-in with `false`.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(3, true);
/// bv.set(1, false);
///
/// assert_eq!(bv.to_bytes(), vec!(0b10100000));
///
/// let mut bv = Bitv::with_capacity(9, false);
/// bv.set(2, true);
/// bv.set(8, true);
///
/// assert_eq!(bv.to_bytes(), vec!(0b00100000, 0b10000000));
/// ```
pub fn to_bytes(&self) -> Vec<u8> {
fn bit (bitv: &Bitv, byte: uint, bit: uint) -> u8 {
let offset = byte * 8 + bit;
if offset >= bitv.nbits {
0
} else {
bitv.get(offset) as u8 << (7 - bit)
}
}
let len = self.nbits/8 +
if self.nbits % 8 == 0 { 0 } else { 1 };
Vec::from_fn(len, |i|
bit(self, i, 0) |
bit(self, i, 1) |
bit(self, i, 2) |
bit(self, i, 3) |
bit(self, i, 4) |
bit(self, i, 5) |
bit(self, i, 6) |
bit(self, i, 7)
)
}
/// Transforms `self` into a `Vec<bool>` by turning each bit into a `bool`.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let bv = bitv::from_bytes(&[0b10100000]);
/// assert_eq!(bv.to_bools(), vec!(true, false, true, false,
/// false, false, false, false));
/// ```
pub fn to_bools(&self) -> Vec<bool> {
Vec::from_fn(self.nbits, |i| self.get(i))
}
/// Compares a `Bitv` to a slice of `bool`s.
/// Both the `Bitv` and slice must have the same length.
///
/// # Panics
///
/// Panics if the `Bitv` and slice are of different length.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let bv = bitv::from_bytes(&[0b10100000]);
///
/// assert!(bv.eq_vec(&[true, false, true, false,
/// false, false, false, false]));
/// ```
pub fn eq_vec(&self, v: &[bool]) -> bool {
assert_eq!(self.nbits, v.len());
let mut i = 0;
while i < self.nbits {
if self.get(i) != v[i] { return false; }
i = i + 1;
}
true
}
/// Shortens a `Bitv`, dropping excess elements.
///
/// If `len` is greater than the vector's current length, this has no
/// effect.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let mut bv = bitv::from_bytes(&[0b01001011]);
/// bv.truncate(2);
/// assert!(bv.eq_vec(&[false, true]));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn truncate(&mut self, len: uint) {
if len < self.len() {
self.nbits = len;
let word_len = (len + u32::BITS - 1) / u32::BITS;
self.storage.truncate(word_len);
if len % u32::BITS > 0 {
let mask = (1 << len % u32::BITS) - 1;
self.storage[word_len - 1] &= mask;
}
}
}
/// Grows the vector to be able to store `size` bits without resizing.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::with_capacity(3, false);
/// bv.reserve(10);
/// assert_eq!(bv.len(), 3);
/// assert!(bv.capacity() >= 10);
/// ```
pub fn reserve(&mut self, size: uint) {
let old_size = self.storage.len();
let new_size = (size + u32::BITS - 1) / u32::BITS;
if old_size < new_size {
self.storage.grow(new_size - old_size, 0);
}
}
/// Returns the capacity in bits for this bit vector. Inserting any
/// element less than this amount will not trigger a resizing.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::new();
/// bv.reserve(10);
/// assert!(bv.capacity() >= 10);
/// ```
#[inline]
pub fn capacity(&self) -> uint {
self.storage.len() * u32::BITS
}
/// Grows the `Bitv` in-place, adding `n` copies of `value` to the `Bitv`.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let mut bv = bitv::from_bytes(&[0b01001011]);
/// bv.grow(2, true);
/// assert_eq!(bv.len(), 10);
/// assert_eq!(bv.to_bytes(), vec!(0b01001011, 0b11000000));
/// ```
pub fn grow(&mut self, n: uint, value: bool) {
let new_nbits = self.nbits + n;
let new_nwords = (new_nbits + u32::BITS - 1) / u32::BITS;
let full_value = if value { !0 } else { 0 };
// Correct the old tail word
let old_last_word = (self.nbits + u32::BITS - 1) / u32::BITS - 1;
if self.nbits % u32::BITS > 0 {
let overhang = self.nbits % u32::BITS; // # of already-used bits
let mask = !((1 << overhang) - 1); // e.g. 5 unused bits => 111110....0
if value {
self.storage[old_last_word] |= mask;
} else {
self.storage[old_last_word] &= !mask;
}
}
// Fill in words after the old tail word
let stop_idx = cmp::min(self.storage.len(), new_nwords);
for idx in range(old_last_word + 1, stop_idx) {
self.storage[idx] = full_value;
}
// Allocate new words, if needed
if new_nwords > self.storage.len() {
let to_add = new_nwords - self.storage.len();
self.storage.grow(to_add, full_value);
// Zero out and unused bits in the new tail word
if value {
let tail_word = new_nwords - 1;
let used_bits = new_nbits % u32::BITS;
self.storage[tail_word] &= (1 << used_bits) - 1;
}
}
// Adjust internal bit count
self.nbits = new_nbits;
}
/// Shortens by one element and returns the removed element.
///
/// # Panics
///
/// Assert if empty.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let mut bv = bitv::from_bytes(&[0b01001001]);
/// assert_eq!(bv.pop(), true);
/// assert_eq!(bv.pop(), false);
/// assert_eq!(bv.len(), 6);
/// assert_eq!(bv.to_bytes(), vec!(0b01001000));
/// ```
pub fn pop(&mut self) -> bool {
let ret = self.get(self.nbits - 1);
// If we are unusing a whole word, make sure it is zeroed out
if self.nbits % u32::BITS == 1 {
self.storage[self.nbits / u32::BITS] = 0;
}
self.nbits -= 1;
ret
}
/// Pushes a `bool` onto the end.
///
/// # Examples
///
/// ```
/// use std::collections::Bitv;
///
/// let mut bv = Bitv::new();
/// bv.push(true);
/// bv.push(false);
/// assert!(bv.eq_vec(&[true, false]));
/// ```
pub fn push(&mut self, elem: bool) {
let insert_pos = self.nbits;
self.nbits += 1;
if self.storage.len() * u32::BITS < self.nbits {
self.storage.push(0);
}
self.set(insert_pos, elem);
}
/// Return the total number of bits in this vector
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn len(&self) -> uint { self.nbits }
/// Returns true if there are no bits in this vector
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears all bits in this vector.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn clear(&mut self) {
for w in self.storage.iter_mut() { *w = 0u32; }
}
}
/// Transforms a byte-vector into a `Bitv`. Each byte becomes eight bits,
/// with the most significant bits of each byte coming first. Each
/// bit becomes `true` if equal to 1 or `false` if equal to 0.
///
/// # Examples
///
/// ```
/// use std::collections::bitv;
///
/// let bv = bitv::from_bytes(&[0b10100000, 0b00010010]);
/// assert!(bv.eq_vec(&[true, false, true, false,
/// false, false, false, false,
/// false, false, false, true,
/// false, false, true, false]));
/// ```
pub fn from_bytes(bytes: &[u8]) -> Bitv {
from_fn(bytes.len() * 8, |i| {
let b = bytes[i / 8] as u32;
let offset = i % 8;
b >> (7 - offset) & 1 == 1
})
}
/// Creates a `Bitv` of the specified length where the value at each
/// index is `f(index)`.
///
/// # Examples
///
/// ```
/// use std::collections::bitv::from_fn;
///
/// let bv = from_fn(5, |i| { i % 2 == 0 });
/// assert!(bv.eq_vec(&[true, false, true, false, true]));
/// ```
pub fn from_fn<F>(len: uint, mut f: F) -> Bitv where F: FnMut(uint) -> bool {
let mut bitv = Bitv::with_capacity(len, false);
for i in range(0u, len) {
bitv.set(i, f(i));
}
bitv
}
#[stable]
impl Default for Bitv {
#[inline]
#[stable]
fn default() -> Bitv { Bitv::new() }
}
impl FromIterator<bool> for Bitv {
fn from_iter<I:Iterator<bool>>(iterator: I) -> Bitv {
let mut ret = Bitv::new();
ret.extend(iterator);
ret
}
}
impl Extend<bool> for Bitv {
#[inline]
fn extend<I: Iterator<bool>>(&mut self, mut iterator: I) {
let (min, _) = iterator.size_hint();
let nbits = self.nbits;
self.reserve(nbits + min);
for element in iterator {
self.push(element)
}
}
}
impl Clone for Bitv {
#[inline]
fn clone(&self) -> Bitv {
Bitv { storage: self.storage.clone(), nbits: self.nbits }
}
#[inline]
fn clone_from(&mut self, source: &Bitv) {
self.nbits = source.nbits;
self.storage.clone_from(&source.storage);
}
}
impl PartialOrd for Bitv {
#[inline]
fn partial_cmp(&self, other: &Bitv) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
impl Ord for Bitv {
#[inline]
fn cmp(&self, other: &Bitv) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
impl fmt::Show for Bitv {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
for bit in self.iter() {
try!(write!(fmt, "{}", if bit { 1u } else { 0u }));
}
Ok(())
}
}
impl<S: hash::Writer> hash::Hash<S> for Bitv {
fn hash(&self, state: &mut S) {
self.nbits.hash(state);
for (_, elem) in self.mask_words(0) {
elem.hash(state);
}
}
}
impl cmp::PartialEq for Bitv {
#[inline]
fn eq(&self, other: &Bitv) -> bool {
if self.nbits != other.nbits {
return false;
}
self.mask_words(0).zip(other.mask_words(0)).all(|((_, w1), (_, w2))| w1 == w2)
}
}
impl cmp::Eq for Bitv {}
/// An iterator for `Bitv`.
pub struct Bits<'a> {
bitv: &'a Bitv,
next_idx: uint,
end_idx: uint,
}
impl<'a> Iterator<bool> for Bits<'a> {
#[inline]
fn next(&mut self) -> Option<bool> {
if self.next_idx != self.end_idx {
let idx = self.next_idx;
self.next_idx += 1;
Some(self.bitv.get(idx))
} else {
None
}
}
fn size_hint(&self) -> (uint, Option<uint>) {
let rem = self.end_idx - self.next_idx;
(rem, Some(rem))
}
}
impl<'a> DoubleEndedIterator<bool> for Bits<'a> {
#[inline]
fn next_back(&mut self) -> Option<bool> {
if self.next_idx != self.end_idx {
self.end_idx -= 1;
Some(self.bitv.get(self.end_idx))
} else {
None
}
}
}
impl<'a> ExactSizeIterator<bool> for Bits<'a> {}
impl<'a> RandomAccessIterator<bool> for Bits<'a> {
#[inline]
fn indexable(&self) -> uint {
self.end_idx - self.next_idx
}
#[inline]
fn idx(&mut self, index: uint) -> Option<bool> {
if index >= self.indexable() {
None
} else {
Some(self.bitv.get(index))
}
}
}
/// An implementation of a set using a bit vector as an underlying
/// representation for holding unsigned numerical elements.
///
/// It should also be noted that the amount of storage necessary for holding a
/// set of objects is proportional to the maximum of the objects when viewed
/// as a `uint`.
///
/// # Examples
///
/// ```
/// use std::collections::{BitvSet, Bitv};
/// use std::collections::bitv;
///
/// // It's a regular set
/// let mut s = BitvSet::new();
/// s.insert(0);
/// s.insert(3);
/// s.insert(7);
///
/// s.remove(&7);
///
/// if !s.contains(&7) {
/// println!("There is no 7");
/// }
///
/// // Can initialize from a `Bitv`
/// let other = BitvSet::from_bitv(bitv::from_bytes(&[0b11010000]));
///
/// s.union_with(&other);
///
/// // Print 0, 1, 3 in some order
/// for x in s.iter() {
/// println!("{}", x);
/// }
///
/// // Can convert back to a `Bitv`
/// let bv: Bitv = s.into_bitv();
/// assert!(bv.get(3));
/// ```
#[deriving(Clone)]
pub struct BitvSet(Bitv);
impl Default for BitvSet {
#[inline]
fn default() -> BitvSet { BitvSet::new() }
}
impl FromIterator<bool> for BitvSet {
fn from_iter<I:Iterator<bool>>(iterator: I) -> BitvSet {
let mut ret = BitvSet::new();
ret.extend(iterator);
ret
}
}
impl Extend<bool> for BitvSet {
#[inline]
fn extend<I: Iterator<bool>>(&mut self, iterator: I) {
let &BitvSet(ref mut self_bitv) = self;
self_bitv.extend(iterator);
}
}
impl PartialOrd for BitvSet {
#[inline]
fn partial_cmp(&self, other: &BitvSet) -> Option<Ordering> {
let (a_iter, b_iter) = match_words(self.get_ref(), other.get_ref());
iter::order::partial_cmp(a_iter, b_iter)
}
}
impl Ord for BitvSet {
#[inline]
fn cmp(&self, other: &BitvSet) -> Ordering {
let (a_iter, b_iter) = match_words(self.get_ref(), other.get_ref());
iter::order::cmp(a_iter, b_iter)
}
}
impl cmp::PartialEq for BitvSet {
#[inline]
fn eq(&self, other: &BitvSet) -> bool {
let (a_iter, b_iter) = match_words(self.get_ref(), other.get_ref());
iter::order::eq(a_iter, b_iter)
}
}
impl cmp::Eq for BitvSet {}
impl BitvSet {
/// Creates a new bit vector set with initially no contents.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// let mut s = BitvSet::new();
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn new() -> BitvSet {
BitvSet(Bitv::new())
}
/// Creates a new bit vector set with initially no contents, able to
/// hold `nbits` elements without resizing.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// let mut s = BitvSet::with_capacity(100);
/// assert!(s.capacity() >= 100);
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn with_capacity(nbits: uint) -> BitvSet {
let bitv = Bitv::with_capacity(nbits, false);
BitvSet::from_bitv(bitv)
}
/// Creates a new bit vector set from the given bit vector.
///
/// # Examples
///
/// ```
/// use std::collections::{bitv, BitvSet};
///
/// let bv = bitv::from_bytes(&[0b01100000]);
/// let s = BitvSet::from_bitv(bv);
///
/// // Print 1, 2 in arbitrary order
/// for x in s.iter() {
/// println!("{}", x);
/// }
/// ```
#[inline]
pub fn from_bitv(mut bitv: Bitv) -> BitvSet {
// Mark every bit as valid
bitv.nbits = bitv.capacity();
BitvSet(bitv)
}
/// Returns the capacity in bits for this bit vector. Inserting any
/// element less than this amount will not trigger a resizing.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
///
/// let mut s = BitvSet::with_capacity(100);
/// assert!(s.capacity() >= 100);
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn capacity(&self) -> uint {
let &BitvSet(ref bitv) = self;
bitv.capacity()
}
/// Grows the underlying vector to be able to store `size` bits.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
///
/// let mut s = BitvSet::new();
/// s.reserve(10);
/// assert!(s.capacity() >= 10);
/// ```
pub fn reserve(&mut self, size: uint) {
let &BitvSet(ref mut bitv) = self;
bitv.reserve(size);
if bitv.nbits < size {
bitv.nbits = bitv.capacity();
}
}
/// Consumes this set to return the underlying bit vector.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
///
/// let mut s = BitvSet::new();
/// s.insert(0);
/// s.insert(3);
///
/// let bv = s.into_bitv();
/// assert!(bv.get(0));
/// assert!(bv.get(3));
/// ```
#[inline]
pub fn into_bitv(self) -> Bitv {
let BitvSet(bitv) = self;
bitv
}
/// Returns a reference to the underlying bit vector.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
///
/// let mut s = BitvSet::new();
/// s.insert(0);
///
/// let bv = s.get_ref();
/// assert_eq!(bv[0], true);
/// ```
#[inline]
pub fn get_ref<'a>(&'a self) -> &'a Bitv {
let &BitvSet(ref bitv) = self;
bitv
}
#[inline]
fn other_op<F>(&mut self, other: &BitvSet, mut f: F) where F: FnMut(u32, u32) -> u32 {
// Expand the vector if necessary
self.reserve(other.capacity());
// Unwrap Bitvs
let &BitvSet(ref mut self_bitv) = self;
let &BitvSet(ref other_bitv) = other;
// virtually pad other with 0's for equal lengths
let mut other_words = {
let (_, result) = match_words(self_bitv, other_bitv);
result
};
// Apply values found in other
for (i, w) in other_words {
let old = self_bitv.storage[i];
let new = f(old, w);
self_bitv.storage[i] = new;
}
}
/// Truncates the underlying vector to the least length required.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
///
/// let mut s = BitvSet::new();
/// s.insert(32183231);
/// s.remove(&32183231);
///
/// // Internal storage will probably be bigger than necessary
/// println!("old capacity: {}", s.capacity());
///
/// // Now should be smaller
/// s.shrink_to_fit();
/// println!("new capacity: {}", s.capacity());
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn shrink_to_fit(&mut self) {
let &BitvSet(ref mut bitv) = self;
// Obtain original length
let old_len = bitv.storage.len();
// Obtain coarse trailing zero length
let n = bitv.storage.iter().rev().take_while(|&&n| n == 0).count();
// Truncate
let trunc_len = cmp::max(old_len - n, 1);
bitv.storage.truncate(trunc_len);
bitv.nbits = trunc_len * u32::BITS;
}
/// Iterator over each u32 stored in the `BitvSet`.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let s = BitvSet::from_bitv(bitv::from_bytes(&[0b01001010]));
///
/// // Print 1, 4, 6 in arbitrary order
/// for x in s.iter() {
/// println!("{}", x);
/// }
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn iter<'a>(&'a self) -> BitPositions<'a> {
BitPositions {set: self, next_idx: 0u}
}
/// Iterator over each u32 stored in `self` union `other`.
/// See [union_with](#method.union_with) for an efficient in-place version.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000]));
///
/// // Print 0, 1, 2, 4 in arbitrary order
/// for x in a.union(&b) {
/// println!("{}", x);
/// }
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn union<'a>(&'a self, other: &'a BitvSet) -> TwoBitPositions<'a> {
fn or(w1: u32, w2: u32) -> u32 { w1 | w2 }
TwoBitPositions {
set: self,
other: other,
merge: or,
current_word: 0u32,
next_idx: 0u
}
}
/// Iterator over each uint stored in `self` intersect `other`.
/// See [intersect_with](#method.intersect_with) for an efficient in-place version.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000]));
///
/// // Print 2
/// for x in a.intersection(&b) {
/// println!("{}", x);
/// }
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn intersection<'a>(&'a self, other: &'a BitvSet) -> Take<TwoBitPositions<'a>> {
fn bitand(w1: u32, w2: u32) -> u32 { w1 & w2 }
let min = cmp::min(self.capacity(), other.capacity());
TwoBitPositions {
set: self,
other: other,
merge: bitand,
current_word: 0u32,
next_idx: 0
}.take(min)
}
/// Iterator over each uint stored in the `self` setminus `other`.
/// See [difference_with](#method.difference_with) for an efficient in-place version.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000]));
///
/// // Print 1, 4 in arbitrary order
/// for x in a.difference(&b) {
/// println!("{}", x);
/// }
///
/// // Note that difference is not symmetric,
/// // and `b - a` means something else.
/// // This prints 0
/// for x in b.difference(&a) {
/// println!("{}", x);
/// }
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn difference<'a>(&'a self, other: &'a BitvSet) -> TwoBitPositions<'a> {
fn diff(w1: u32, w2: u32) -> u32 { w1 & !w2 }
TwoBitPositions {
set: self,
other: other,
merge: diff,
current_word: 0u32,
next_idx: 0
}
}
/// Iterator over each u32 stored in the symmetric difference of `self` and `other`.
/// See [symmetric_difference_with](#method.symmetric_difference_with) for
/// an efficient in-place version.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000]));
///
/// // Print 0, 1, 4 in arbitrary order
/// for x in a.symmetric_difference(&b) {
/// println!("{}", x);
/// }
/// ```
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn symmetric_difference<'a>(&'a self, other: &'a BitvSet) -> TwoBitPositions<'a> {
fn bitxor(w1: u32, w2: u32) -> u32 { w1 ^ w2 }
TwoBitPositions {
set: self,
other: other,
merge: bitxor,
current_word: 0u32,
next_idx: 0
}
}
/// Unions in-place with the specified other bit vector.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = 0b01101000;
/// let b = 0b10100000;
/// let res = 0b11101000;
///
/// let mut a = BitvSet::from_bitv(bitv::from_bytes(&[a]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[b]));
/// let res = BitvSet::from_bitv(bitv::from_bytes(&[res]));
///
/// a.union_with(&b);
/// assert_eq!(a, res);
/// ```
#[inline]
pub fn union_with(&mut self, other: &BitvSet) {
self.other_op(other, |w1, w2| w1 | w2);
}
/// Intersects in-place with the specified other bit vector.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = 0b01101000;
/// let b = 0b10100000;
/// let res = 0b00100000;
///
/// let mut a = BitvSet::from_bitv(bitv::from_bytes(&[a]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[b]));
/// let res = BitvSet::from_bitv(bitv::from_bytes(&[res]));
///
/// a.intersect_with(&b);
/// assert_eq!(a, res);
/// ```
#[inline]
pub fn intersect_with(&mut self, other: &BitvSet) {
self.other_op(other, |w1, w2| w1 & w2);
}
/// Makes this bit vector the difference with the specified other bit vector
/// in-place.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = 0b01101000;
/// let b = 0b10100000;
/// let a_b = 0b01001000; // a - b
/// let b_a = 0b10000000; // b - a
///
/// let mut bva = BitvSet::from_bitv(bitv::from_bytes(&[a]));
/// let bvb = BitvSet::from_bitv(bitv::from_bytes(&[b]));
/// let bva_b = BitvSet::from_bitv(bitv::from_bytes(&[a_b]));
/// let bvb_a = BitvSet::from_bitv(bitv::from_bytes(&[b_a]));
///
/// bva.difference_with(&bvb);
/// assert_eq!(bva, bva_b);
///
/// let bva = BitvSet::from_bitv(bitv::from_bytes(&[a]));
/// let mut bvb = BitvSet::from_bitv(bitv::from_bytes(&[b]));
///
/// bvb.difference_with(&bva);
/// assert_eq!(bvb, bvb_a);
/// ```
#[inline]
pub fn difference_with(&mut self, other: &BitvSet) {
self.other_op(other, |w1, w2| w1 & !w2);
}
/// Makes this bit vector the symmetric difference with the specified other
/// bit vector in-place.
///
/// # Examples
///
/// ```
/// use std::collections::BitvSet;
/// use std::collections::bitv;
///
/// let a = 0b01101000;
/// let b = 0b10100000;
/// let res = 0b11001000;
///
/// let mut a = BitvSet::from_bitv(bitv::from_bytes(&[a]));
/// let b = BitvSet::from_bitv(bitv::from_bytes(&[b]));
/// let res = BitvSet::from_bitv(bitv::from_bytes(&[res]));
///
/// a.symmetric_difference_with(&b);
/// assert_eq!(a, res);
/// ```
#[inline]
pub fn symmetric_difference_with(&mut self, other: &BitvSet) {
self.other_op(other, |w1, w2| w1 ^ w2);
}
/// Return the number of set bits in this set.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn len(&self) -> uint {
let &BitvSet(ref bitv) = self;
bitv.storage.iter().fold(0, |acc, &n| acc + n.count_ones())
}
/// Returns whether there are no bits set in this set
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_empty(&self) -> bool {
let &BitvSet(ref bitv) = self;
bitv.storage.iter().all(|&n| n == 0)
}
/// Clears all bits in this set
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn clear(&mut self) {
let &BitvSet(ref mut bitv) = self;
bitv.clear();
}
/// Returns `true` if this set contains the specified integer.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn contains(&self, value: &uint) -> bool {
let &BitvSet(ref bitv) = self;
*value < bitv.nbits && bitv.get(*value)
}
/// Returns `true` if the set has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_disjoint(&self, other: &BitvSet) -> bool {
self.intersection(other).next().is_none()
}
/// Returns `true` if the set is a subset of another.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_subset(&self, other: &BitvSet) -> bool {
let &BitvSet(ref self_bitv) = self;
let &BitvSet(ref other_bitv) = other;
// Check that `self` intersect `other` is self
self_bitv.mask_words(0).zip(other_bitv.mask_words(0))
.all(|((_, w1), (_, w2))| w1 & w2 == w1) &&
// Check that `self` setminus `other` is empty
self_bitv.mask_words(other_bitv.storage.len()).all(|(_, w)| w == 0)
}
/// Returns `true` if the set is a superset of another.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_superset(&self, other: &BitvSet) -> bool {
other.is_subset(self)
}
/// Adds a value to the set. Returns `true` if the value was not already
/// present in the set.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn insert(&mut self, value: uint) -> bool {
if self.contains(&value) {
return false;
}
// Ensure we have enough space to hold the new element
if value >= self.capacity() {
let new_cap = cmp::max(value + 1, self.capacity() * 2);
self.reserve(new_cap);
}
let &BitvSet(ref mut bitv) = self;
bitv.set(value, true);
return true;
}
/// Removes a value from the set. Returns `true` if the value was
/// present in the set.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn remove(&mut self, value: &uint) -> bool {
if !self.contains(value) {
return false;
}
let &BitvSet(ref mut bitv) = self;
bitv.set(*value, false);
return true;
}
}
impl fmt::Show for BitvSet {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
try!(write!(fmt, "{{"));
let mut first = true;
for n in self.iter() {
if !first {
try!(write!(fmt, ", "));
}
try!(write!(fmt, "{}", n));
first = false;
}
write!(fmt, "}}")
}
}
impl<S: hash::Writer> hash::Hash<S> for BitvSet {
fn hash(&self, state: &mut S) {
for pos in self.iter() {
pos.hash(state);
}
}
}
/// An iterator for `BitvSet`.
pub struct BitPositions<'a> {
set: &'a BitvSet,
next_idx: uint
}
/// An iterator combining two `BitvSet` iterators.
pub struct TwoBitPositions<'a> {
set: &'a BitvSet,
other: &'a BitvSet,
merge: fn(u32, u32) -> u32,
current_word: u32,
next_idx: uint
}
impl<'a> Iterator<uint> for BitPositions<'a> {
fn next(&mut self) -> Option<uint> {
while self.next_idx < self.set.capacity() {
let idx = self.next_idx;
self.next_idx += 1;
if self.set.contains(&idx) {
return Some(idx);
}
}
return None;
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(0, Some(self.set.capacity() - self.next_idx))
}
}
impl<'a> Iterator<uint> for TwoBitPositions<'a> {
fn next(&mut self) -> Option<uint> {
while self.next_idx < self.set.capacity() ||
self.next_idx < self.other.capacity() {
let bit_idx = self.next_idx % u32::BITS;
if bit_idx == 0 {
let &BitvSet(ref s_bitv) = self.set;
let &BitvSet(ref o_bitv) = self.other;
// Merging the two words is a bit of an awkward dance since
// one Bitv might be longer than the other
let word_idx = self.next_idx / u32::BITS;
let w1 = if word_idx < s_bitv.storage.len() {
s_bitv.storage[word_idx]
} else { 0 };
let w2 = if word_idx < o_bitv.storage.len() {
o_bitv.storage[word_idx]
} else { 0 };
self.current_word = (self.merge)(w1, w2);
}
self.next_idx += 1;
if self.current_word & (1 << bit_idx) != 0 {
return Some(self.next_idx - 1);
}
}
return None;
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let cap = cmp::max(self.set.capacity(), self.other.capacity());
(0, Some(cap - self.next_idx))
}
}
#[cfg(test)]
mod tests {
use std::prelude::*;
use std::iter::range_step;
use std::rand;
use std::rand::Rng;
use std::u32;
use test::{Bencher, black_box};
use super::{Bitv, BitvSet, from_fn, from_bytes};
use bitv;
use vec::Vec;
static BENCH_BITS : uint = 1 << 14;
#[test]
fn test_to_str() {
let zerolen = Bitv::new();
assert_eq!(zerolen.to_string(), "");
let eightbits = Bitv::with_capacity(8u, false);
assert_eq!(eightbits.to_string(), "00000000")
}
#[test]
fn test_0_elements() {
let act = Bitv::new();
let exp = Vec::from_elem(0u, false);
assert!(act.eq_vec(exp.as_slice()));
}
#[test]
fn test_1_element() {
let mut act = Bitv::with_capacity(1u, false);
assert!(act.eq_vec(&[false]));
act = Bitv::with_capacity(1u, true);
assert!(act.eq_vec(&[true]));
}
#[test]
fn test_2_elements() {
let mut b = bitv::Bitv::with_capacity(2, false);
b.set(0, true);
b.set(1, false);
assert_eq!(b.to_string(), "10");
}
#[test]
fn test_10_elements() {
let mut act;
// all 0
act = Bitv::with_capacity(10u, false);
assert!((act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false])));
// all 1
act = Bitv::with_capacity(10u, true);
assert!((act.eq_vec(&[true, true, true, true, true, true, true, true, true, true])));
// mixed
act = Bitv::with_capacity(10u, false);
act.set(0u, true);
act.set(1u, true);
act.set(2u, true);
act.set(3u, true);
act.set(4u, true);
assert!((act.eq_vec(&[true, true, true, true, true, false, false, false, false, false])));
// mixed
act = Bitv::with_capacity(10u, false);
act.set(5u, true);
act.set(6u, true);
act.set(7u, true);
act.set(8u, true);
act.set(9u, true);
assert!((act.eq_vec(&[false, false, false, false, false, true, true, true, true, true])));
// mixed
act = Bitv::with_capacity(10u, false);
act.set(0u, true);
act.set(3u, true);
act.set(6u, true);
act.set(9u, true);
assert!((act.eq_vec(&[true, false, false, true, false, false, true, false, false, true])));
}
#[test]
fn test_31_elements() {
let mut act;
// all 0
act = Bitv::with_capacity(31u, false);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false]));
// all 1
act = Bitv::with_capacity(31u, true);
assert!(act.eq_vec(
&[true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true]));
// mixed
act = Bitv::with_capacity(31u, false);
act.set(0u, true);
act.set(1u, true);
act.set(2u, true);
act.set(3u, true);
act.set(4u, true);
act.set(5u, true);
act.set(6u, true);
act.set(7u, true);
assert!(act.eq_vec(
&[true, true, true, true, true, true, true, true, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false]));
// mixed
act = Bitv::with_capacity(31u, false);
act.set(16u, true);
act.set(17u, true);
act.set(18u, true);
act.set(19u, true);
act.set(20u, true);
act.set(21u, true);
act.set(22u, true);
act.set(23u, true);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, true, true, true, true, true, true, true, true,
false, false, false, false, false, false, false]));
// mixed
act = Bitv::with_capacity(31u, false);
act.set(24u, true);
act.set(25u, true);
act.set(26u, true);
act.set(27u, true);
act.set(28u, true);
act.set(29u, true);
act.set(30u, true);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, true, true, true, true, true, true, true]));
// mixed
act = Bitv::with_capacity(31u, false);
act.set(3u, true);
act.set(17u, true);
act.set(30u, true);
assert!(act.eq_vec(
&[false, false, false, true, false, false, false, false, false, false, false, false,
false, false, false, false, false, true, false, false, false, false, false, false,
false, false, false, false, false, false, true]));
}
#[test]
fn test_32_elements() {
let mut act;
// all 0
act = Bitv::with_capacity(32u, false);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false]));
// all 1
act = Bitv::with_capacity(32u, true);
assert!(act.eq_vec(
&[true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true]));
// mixed
act = Bitv::with_capacity(32u, false);
act.set(0u, true);
act.set(1u, true);
act.set(2u, true);
act.set(3u, true);
act.set(4u, true);
act.set(5u, true);
act.set(6u, true);
act.set(7u, true);
assert!(act.eq_vec(
&[true, true, true, true, true, true, true, true, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false]));
// mixed
act = Bitv::with_capacity(32u, false);
act.set(16u, true);
act.set(17u, true);
act.set(18u, true);
act.set(19u, true);
act.set(20u, true);
act.set(21u, true);
act.set(22u, true);
act.set(23u, true);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, true, true, true, true, true, true, true, true,
false, false, false, false, false, false, false, false]));
// mixed
act = Bitv::with_capacity(32u, false);
act.set(24u, true);
act.set(25u, true);
act.set(26u, true);
act.set(27u, true);
act.set(28u, true);
act.set(29u, true);
act.set(30u, true);
act.set(31u, true);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, true, true, true, true, true, true, true, true]));
// mixed
act = Bitv::with_capacity(32u, false);
act.set(3u, true);
act.set(17u, true);
act.set(30u, true);
act.set(31u, true);
assert!(act.eq_vec(
&[false, false, false, true, false, false, false, false, false, false, false, false,
false, false, false, false, false, true, false, false, false, false, false, false,
false, false, false, false, false, false, true, true]));
}
#[test]
fn test_33_elements() {
let mut act;
// all 0
act = Bitv::with_capacity(33u, false);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false]));
// all 1
act = Bitv::with_capacity(33u, true);
assert!(act.eq_vec(
&[true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true, true]));
// mixed
act = Bitv::with_capacity(33u, false);
act.set(0u, true);
act.set(1u, true);
act.set(2u, true);
act.set(3u, true);
act.set(4u, true);
act.set(5u, true);
act.set(6u, true);
act.set(7u, true);
assert!(act.eq_vec(
&[true, true, true, true, true, true, true, true, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false]));
// mixed
act = Bitv::with_capacity(33u, false);
act.set(16u, true);
act.set(17u, true);
act.set(18u, true);
act.set(19u, true);
act.set(20u, true);
act.set(21u, true);
act.set(22u, true);
act.set(23u, true);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, true, true, true, true, true, true, true, true,
false, false, false, false, false, false, false, false, false]));
// mixed
act = Bitv::with_capacity(33u, false);
act.set(24u, true);
act.set(25u, true);
act.set(26u, true);
act.set(27u, true);
act.set(28u, true);
act.set(29u, true);
act.set(30u, true);
act.set(31u, true);
assert!(act.eq_vec(
&[false, false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, true, true, true, true, true, true, true, true, false]));
// mixed
act = Bitv::with_capacity(33u, false);
act.set(3u, true);
act.set(17u, true);
act.set(30u, true);
act.set(31u, true);
act.set(32u, true);
assert!(act.eq_vec(
&[false, false, false, true, false, false, false, false, false, false, false, false,
false, false, false, false, false, true, false, false, false, false, false, false,
false, false, false, false, false, false, true, true, true]));
}
#[test]
fn test_equal_differing_sizes() {
let v0 = Bitv::with_capacity(10u, false);
let v1 = Bitv::with_capacity(11u, false);
assert!(v0 != v1);
}
#[test]
fn test_equal_greatly_differing_sizes() {
let v0 = Bitv::with_capacity(10u, false);
let v1 = Bitv::with_capacity(110u, false);
assert!(v0 != v1);
}
#[test]
fn test_equal_sneaky_small() {
let mut a = bitv::Bitv::with_capacity(1, false);
a.set(0, true);
let mut b = bitv::Bitv::with_capacity(1, true);
b.set(0, true);
assert_eq!(a, b);
}
#[test]
fn test_equal_sneaky_big() {
let mut a = bitv::Bitv::with_capacity(100, false);
for i in range(0u, 100) {
a.set(i, true);
}
let mut b = bitv::Bitv::with_capacity(100, true);
for i in range(0u, 100) {
b.set(i, true);
}
assert_eq!(a, b);
}
#[test]
fn test_from_bytes() {
let bitv = from_bytes(&[0b10110110, 0b00000000, 0b11111111]);
let str = format!("{}{}{}", "10110110", "00000000", "11111111");
assert_eq!(bitv.to_string(), str);
}
#[test]
fn test_to_bytes() {
let mut bv = Bitv::with_capacity(3, true);
bv.set(1, false);
assert_eq!(bv.to_bytes(), vec!(0b10100000));
let mut bv = Bitv::with_capacity(9, false);
bv.set(2, true);
bv.set(8, true);
assert_eq!(bv.to_bytes(), vec!(0b00100000, 0b10000000));
}
#[test]
fn test_from_bools() {
let bools = vec![true, false, true, true];
let bitv: Bitv = bools.iter().map(|n| *n).collect();
assert_eq!(bitv.to_string(), "1011");
}
#[test]
fn test_bitv_set_from_bools() {
let bools = vec![true, false, true, true];
let a: BitvSet = bools.iter().map(|n| *n).collect();
let mut b = BitvSet::new();
b.insert(0);
b.insert(2);
b.insert(3);
assert_eq!(a, b);
}
#[test]
fn test_to_bools() {
let bools = vec!(false, false, true, false, false, true, true, false);
assert_eq!(from_bytes(&[0b00100110]).iter().collect::<Vec<bool>>(), bools);
}
#[test]
fn test_bitv_iterator() {
let bools = vec![true, false, true, true];
let bitv: Bitv = bools.iter().map(|n| *n).collect();
assert_eq!(bitv.iter().collect::<Vec<bool>>(), bools);
let long = Vec::from_fn(10000, |i| i % 2 == 0);
let bitv: Bitv = long.iter().map(|n| *n).collect();
assert_eq!(bitv.iter().collect::<Vec<bool>>(), long)
}
#[test]
fn test_bitv_set_iterator() {
let bools = [true, false, true, true];
let bitv: BitvSet = bools.iter().map(|n| *n).collect();
let idxs: Vec<uint> = bitv.iter().collect();
assert_eq!(idxs, vec!(0, 2, 3));
let long: BitvSet = range(0u, 10000).map(|n| n % 2 == 0).collect();
let real = range_step(0, 10000, 2).collect::<Vec<uint>>();
let idxs: Vec<uint> = long.iter().collect();
assert_eq!(idxs, real);
}
#[test]
fn test_bitv_set_frombitv_init() {
let bools = [true, false];
let lengths = [10, 64, 100];
for &b in bools.iter() {
for &l in lengths.iter() {
let bitset = BitvSet::from_bitv(Bitv::with_capacity(l, b));
assert_eq!(bitset.contains(&1u), b);
assert_eq!(bitset.contains(&(l-1u)), b);
assert!(!bitset.contains(&l))
}
}
}
#[test]
fn test_small_difference() {
let mut b1 = Bitv::with_capacity(3, false);
let mut b2 = Bitv::with_capacity(3, false);
b1.set(0, true);
b1.set(1, true);
b2.set(1, true);
b2.set(2, true);
assert!(b1.difference(&b2));
assert!(b1.get(0));
assert!(!b1.get(1));
assert!(!b1.get(2));
}
#[test]
fn test_big_difference() {
let mut b1 = Bitv::with_capacity(100, false);
let mut b2 = Bitv::with_capacity(100, false);
b1.set(0, true);
b1.set(40, true);
b2.set(40, true);
b2.set(80, true);
assert!(b1.difference(&b2));
assert!(b1.get(0));
assert!(!b1.get(40));
assert!(!b1.get(80));
}
#[test]
fn test_small_clear() {
let mut b = Bitv::with_capacity(14, true);
b.clear();
assert!(b.none());
}
#[test]
fn test_big_clear() {
let mut b = Bitv::with_capacity(140, true);
b.clear();
assert!(b.none());
}
#[test]
fn test_bitv_masking() {
let b = Bitv::with_capacity(140, true);
let mut bs = BitvSet::from_bitv(b);
assert!(bs.contains(&139));
assert!(!bs.contains(&140));
assert!(bs.insert(150));
assert!(!bs.contains(&140));
assert!(!bs.contains(&149));
assert!(bs.contains(&150));
assert!(!bs.contains(&151));
}
#[test]
fn test_bitv_set_basic() {
// calculate nbits with u32::BITS granularity
fn calc_nbits(bits: uint) -> uint {
u32::BITS * ((bits + u32::BITS - 1) / u32::BITS)
}
let mut b = BitvSet::new();
assert_eq!(b.capacity(), calc_nbits(0));
assert!(b.insert(3));
assert_eq!(b.capacity(), calc_nbits(3));
assert!(!b.insert(3));
assert!(b.contains(&3));
assert!(b.insert(4));
assert!(!b.insert(4));
assert!(b.contains(&3));
assert!(b.insert(400));
assert_eq!(b.capacity(), calc_nbits(400));
assert!(!b.insert(400));
assert!(b.contains(&400));
assert_eq!(b.len(), 3);
}
#[test]
fn test_bitv_set_intersection() {
let mut a = BitvSet::new();
let mut b = BitvSet::new();
assert!(a.insert(11));
assert!(a.insert(1));
assert!(a.insert(3));
assert!(a.insert(77));
assert!(a.insert(103));
assert!(a.insert(5));
assert!(b.insert(2));
assert!(b.insert(11));
assert!(b.insert(77));
assert!(b.insert(5));
assert!(b.insert(3));
let expected = [3, 5, 11, 77];
let actual = a.intersection(&b).collect::<Vec<uint>>();
assert_eq!(actual, expected);
}
#[test]
fn test_bitv_set_difference() {
let mut a = BitvSet::new();
let mut b = BitvSet::new();
assert!(a.insert(1));
assert!(a.insert(3));
assert!(a.insert(5));
assert!(a.insert(200));
assert!(a.insert(500));
assert!(b.insert(3));
assert!(b.insert(200));
let expected = [1, 5, 500];
let actual = a.difference(&b).collect::<Vec<uint>>();
assert_eq!(actual, expected);
}
#[test]
fn test_bitv_set_symmetric_difference() {
let mut a = BitvSet::new();
let mut b = BitvSet::new();
assert!(a.insert(1));
assert!(a.insert(3));
assert!(a.insert(5));
assert!(a.insert(9));
assert!(a.insert(11));
assert!(b.insert(3));
assert!(b.insert(9));
assert!(b.insert(14));
assert!(b.insert(220));
let expected = [1, 5, 11, 14, 220];
let actual = a.symmetric_difference(&b).collect::<Vec<uint>>();
assert_eq!(actual, expected);
}
#[test]
fn test_bitv_set_union() {
let mut a = BitvSet::new();
let mut b = BitvSet::new();
assert!(a.insert(1));
assert!(a.insert(3));
assert!(a.insert(5));
assert!(a.insert(9));
assert!(a.insert(11));
assert!(a.insert(160));
assert!(a.insert(19));
assert!(a.insert(24));
assert!(a.insert(200));
assert!(b.insert(1));
assert!(b.insert(5));
assert!(b.insert(9));
assert!(b.insert(13));
assert!(b.insert(19));
let expected = [1, 3, 5, 9, 11, 13, 19, 24, 160, 200];
let actual = a.union(&b).collect::<Vec<uint>>();
assert_eq!(actual, expected);
}
#[test]
fn test_bitv_set_subset() {
let mut set1 = BitvSet::new();
let mut set2 = BitvSet::new();
assert!(set1.is_subset(&set2)); // {} {}
set2.insert(100);
assert!(set1.is_subset(&set2)); // {} { 1 }
set2.insert(200);
assert!(set1.is_subset(&set2)); // {} { 1, 2 }
set1.insert(200);
assert!(set1.is_subset(&set2)); // { 2 } { 1, 2 }
set1.insert(300);
assert!(!set1.is_subset(&set2)); // { 2, 3 } { 1, 2 }
set2.insert(300);
assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3 }
set2.insert(400);
assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3, 4 }
set2.remove(&100);
assert!(set1.is_subset(&set2)); // { 2, 3 } { 2, 3, 4 }
set2.remove(&300);
assert!(!set1.is_subset(&set2)); // { 2, 3 } { 2, 4 }
set1.remove(&300);
assert!(set1.is_subset(&set2)); // { 2 } { 2, 4 }
}
#[test]
fn test_bitv_set_is_disjoint() {
let a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let b = BitvSet::from_bitv(from_bytes(&[0b01000000]));
let c = BitvSet::new();
let d = BitvSet::from_bitv(from_bytes(&[0b00110000]));
assert!(!a.is_disjoint(&d));
assert!(!d.is_disjoint(&a));
assert!(a.is_disjoint(&b));
assert!(a.is_disjoint(&c));
assert!(b.is_disjoint(&a));
assert!(b.is_disjoint(&c));
assert!(c.is_disjoint(&a));
assert!(c.is_disjoint(&b));
}
#[test]
fn test_bitv_set_union_with() {
//a should grow to include larger elements
let mut a = BitvSet::new();
a.insert(0);
let mut b = BitvSet::new();
b.insert(5);
let expected = BitvSet::from_bitv(from_bytes(&[0b10000100]));
a.union_with(&b);
assert_eq!(a, expected);
// Standard
let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let mut b = BitvSet::from_bitv(from_bytes(&[0b01100010]));
let c = a.clone();
a.union_with(&b);
b.union_with(&c);
assert_eq!(a.len(), 4);
assert_eq!(b.len(), 4);
}
#[test]
fn test_bitv_set_intersect_with() {
// Explicitly 0'ed bits
let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let mut b = BitvSet::from_bitv(from_bytes(&[0b00000000]));
let c = a.clone();
a.intersect_with(&b);
b.intersect_with(&c);
assert!(a.is_empty());
assert!(b.is_empty());
// Uninitialized bits should behave like 0's
let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let mut b = BitvSet::new();
let c = a.clone();
a.intersect_with(&b);
b.intersect_with(&c);
assert!(a.is_empty());
assert!(b.is_empty());
// Standard
let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let mut b = BitvSet::from_bitv(from_bytes(&[0b01100010]));
let c = a.clone();
a.intersect_with(&b);
b.intersect_with(&c);
assert_eq!(a.len(), 2);
assert_eq!(b.len(), 2);
}
#[test]
fn test_bitv_set_difference_with() {
// Explicitly 0'ed bits
let mut a = BitvSet::from_bitv(from_bytes(&[0b00000000]));
let b = BitvSet::from_bitv(from_bytes(&[0b10100010]));
a.difference_with(&b);
assert!(a.is_empty());
// Uninitialized bits should behave like 0's
let mut a = BitvSet::new();
let b = BitvSet::from_bitv(from_bytes(&[0b11111111]));
a.difference_with(&b);
assert!(a.is_empty());
// Standard
let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let mut b = BitvSet::from_bitv(from_bytes(&[0b01100010]));
let c = a.clone();
a.difference_with(&b);
b.difference_with(&c);
assert_eq!(a.len(), 1);
assert_eq!(b.len(), 1);
}
#[test]
fn test_bitv_set_symmetric_difference_with() {
//a should grow to include larger elements
let mut a = BitvSet::new();
a.insert(0);
a.insert(1);
let mut b = BitvSet::new();
b.insert(1);
b.insert(5);
let expected = BitvSet::from_bitv(from_bytes(&[0b10000100]));
a.symmetric_difference_with(&b);
assert_eq!(a, expected);
let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let b = BitvSet::new();
let c = a.clone();
a.symmetric_difference_with(&b);
assert_eq!(a, c);
// Standard
let mut a = BitvSet::from_bitv(from_bytes(&[0b11100010]));
let mut b = BitvSet::from_bitv(from_bytes(&[0b01101010]));
let c = a.clone();
a.symmetric_difference_with(&b);
b.symmetric_difference_with(&c);
assert_eq!(a.len(), 2);
assert_eq!(b.len(), 2);
}
#[test]
fn test_bitv_set_eq() {
let a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let b = BitvSet::from_bitv(from_bytes(&[0b00000000]));
let c = BitvSet::new();
assert!(a == a);
assert!(a != b);
assert!(a != c);
assert!(b == b);
assert!(b == c);
assert!(c == c);
}
#[test]
fn test_bitv_set_cmp() {
let a = BitvSet::from_bitv(from_bytes(&[0b10100010]));
let b = BitvSet::from_bitv(from_bytes(&[0b00000000]));
let c = BitvSet::new();
assert_eq!(a.cmp(&b), Greater);
assert_eq!(a.cmp(&c), Greater);
assert_eq!(b.cmp(&a), Less);
assert_eq!(b.cmp(&c), Equal);
assert_eq!(c.cmp(&a), Less);
assert_eq!(c.cmp(&b), Equal);
}
#[test]
fn test_bitv_remove() {
let mut a = BitvSet::new();
assert!(a.insert(1));
assert!(a.remove(&1));
assert!(a.insert(100));
assert!(a.remove(&100));
assert!(a.insert(1000));
assert!(a.remove(&1000));
a.shrink_to_fit();
assert_eq!(a.capacity(), u32::BITS);
}
#[test]
fn test_bitv_lt() {
let mut a = Bitv::with_capacity(5u, false);
let mut b = Bitv::with_capacity(5u, false);
assert!(!(a < b) && !(b < a));
b.set(2, true);
assert!(a < b);
a.set(3, true);
assert!(a < b);
a.set(2, true);
assert!(!(a < b) && b < a);
b.set(0, true);
assert!(a < b);
}
#[test]
fn test_ord() {
let mut a = Bitv::with_capacity(5u, false);
let mut b = Bitv::with_capacity(5u, false);
assert!(a <= b && a >= b);
a.set(1, true);
assert!(a > b && a >= b);
assert!(b < a && b <= a);
b.set(1, true);
b.set(2, true);
assert!(b > a && b >= a);
assert!(a < b && a <= b);
}
#[test]
fn test_bitv_clone() {
let mut a = BitvSet::new();
assert!(a.insert(1));
assert!(a.insert(100));
assert!(a.insert(1000));
let mut b = a.clone();
assert!(a == b);
assert!(b.remove(&1));
assert!(a.contains(&1));
assert!(a.remove(&1000));
assert!(b.contains(&1000));
}
#[test]
fn test_small_bitv_tests() {
let v = from_bytes(&[0]);
assert!(!v.all());
assert!(!v.any());
assert!(v.none());
let v = from_bytes(&[0b00010100]);
assert!(!v.all());
assert!(v.any());
assert!(!v.none());
let v = from_bytes(&[0xFF]);
assert!(v.all());
assert!(v.any());
assert!(!v.none());
}
#[test]
fn test_big_bitv_tests() {
let v = from_bytes(&[ // 88 bits
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0]);
assert!(!v.all());
assert!(!v.any());
assert!(v.none());
let v = from_bytes(&[ // 88 bits
0, 0, 0b00010100, 0,
0, 0, 0, 0b00110100,
0, 0, 0]);
assert!(!v.all());
assert!(v.any());
assert!(!v.none());
let v = from_bytes(&[ // 88 bits
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF]);
assert!(v.all());
assert!(v.any());
assert!(!v.none());
}
#[test]
fn test_bitv_push_pop() {
let mut s = Bitv::with_capacity(5 * u32::BITS - 2, false);
assert_eq!(s.len(), 5 * u32::BITS - 2);
assert_eq!(s.get(5 * u32::BITS - 3), false);
s.push(true);
s.push(true);
assert_eq!(s.get(5 * u32::BITS - 2), true);
assert_eq!(s.get(5 * u32::BITS - 1), true);
// Here the internal vector will need to be extended
s.push(false);
assert_eq!(s.get(5 * u32::BITS), false);
s.push(false);
assert_eq!(s.get(5 * u32::BITS + 1), false);
assert_eq!(s.len(), 5 * u32::BITS + 2);
// Pop it all off
assert_eq!(s.pop(), false);
assert_eq!(s.pop(), false);
assert_eq!(s.pop(), true);
assert_eq!(s.pop(), true);
assert_eq!(s.len(), 5 * u32::BITS - 2);
}
#[test]
fn test_bitv_truncate() {
let mut s = Bitv::with_capacity(5 * u32::BITS, true);
assert_eq!(s, Bitv::with_capacity(5 * u32::BITS, true));
assert_eq!(s.len(), 5 * u32::BITS);
s.truncate(4 * u32::BITS);
assert_eq!(s, Bitv::with_capacity(4 * u32::BITS, true));
assert_eq!(s.len(), 4 * u32::BITS);
// Truncating to a size > s.len() should be a noop
s.truncate(5 * u32::BITS);
assert_eq!(s, Bitv::with_capacity(4 * u32::BITS, true));
assert_eq!(s.len(), 4 * u32::BITS);
s.truncate(3 * u32::BITS - 10);
assert_eq!(s, Bitv::with_capacity(3 * u32::BITS - 10, true));
assert_eq!(s.len(), 3 * u32::BITS - 10);
s.truncate(0);
assert_eq!(s, Bitv::with_capacity(0, true));
assert_eq!(s.len(), 0);
}
#[test]
fn test_bitv_reserve() {
let mut s = Bitv::with_capacity(5 * u32::BITS, true);
// Check capacity
assert_eq!(s.capacity(), 5 * u32::BITS);
s.reserve(2 * u32::BITS);
assert_eq!(s.capacity(), 5 * u32::BITS);
s.reserve(7 * u32::BITS);
assert_eq!(s.capacity(), 7 * u32::BITS);
s.reserve(7 * u32::BITS);
assert_eq!(s.capacity(), 7 * u32::BITS);
s.reserve(7 * u32::BITS + 1);
assert_eq!(s.capacity(), 8 * u32::BITS);
// Check that length hasn't changed
assert_eq!(s.len(), 5 * u32::BITS);
s.push(true);
s.push(false);
s.push(true);
assert_eq!(s.get(5 * u32::BITS - 1), true);
assert_eq!(s.get(5 * u32::BITS - 0), true);
assert_eq!(s.get(5 * u32::BITS + 1), false);
assert_eq!(s.get(5 * u32::BITS + 2), true);
}
#[test]
fn test_bitv_grow() {
let mut bitv = from_bytes(&[0b10110110, 0b00000000, 0b10101010]);
bitv.grow(32, true);
assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b10101010,
0xFF, 0xFF, 0xFF, 0xFF]));
bitv.grow(64, false);
assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b10101010,
0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0]));
bitv.grow(16, true);
assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b10101010,
0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF]));
}
#[test]
fn test_bitv_extend() {
let mut bitv = from_bytes(&[0b10110110, 0b00000000, 0b11111111]);
let ext = from_bytes(&[0b01001001, 0b10010010, 0b10111101]);
bitv.extend(ext.iter());
assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b11111111,
0b01001001, 0b10010010, 0b10111101]));
}
#[test]
fn test_bitv_set_show() {
let mut s = BitvSet::new();
s.insert(1);
s.insert(10);
s.insert(50);
s.insert(2);
assert_eq!("{1, 2, 10, 50}", s.to_string());
}
fn rng() -> rand::IsaacRng {
let seed: &[_] = &[1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
rand::SeedableRng::from_seed(seed)
}
#[bench]
fn bench_uint_small(b: &mut Bencher) {
let mut r = rng();
let mut bitv = 0 as uint;
b.iter(|| {
for _ in range(0u, 100) {
bitv |= 1 << ((r.next_u32() as uint) % u32::BITS);
}
black_box(&bitv)
});
}
#[bench]
fn bench_bitv_set_big_fixed(b: &mut Bencher) {
let mut r = rng();
let mut bitv = Bitv::with_capacity(BENCH_BITS, false);
b.iter(|| {
for _ in range(0u, 100) {
bitv.set((r.next_u32() as uint) % BENCH_BITS, true);
}
black_box(&bitv)
});
}
#[bench]
fn bench_bitv_set_big_variable(b: &mut Bencher) {
let mut r = rng();
let mut bitv = Bitv::with_capacity(BENCH_BITS, false);
b.iter(|| {
for _ in range(0u, 100) {
bitv.set((r.next_u32() as uint) % BENCH_BITS, r.gen());
}
black_box(&bitv);
});
}
#[bench]
fn bench_bitv_set_small(b: &mut Bencher) {
let mut r = rng();
let mut bitv = Bitv::with_capacity(u32::BITS, false);
b.iter(|| {
for _ in range(0u, 100) {
bitv.set((r.next_u32() as uint) % u32::BITS, true);
}
black_box(&bitv);
});
}
#[bench]
fn bench_bitvset_small(b: &mut Bencher) {
let mut r = rng();
let mut bitv = BitvSet::new();
b.iter(|| {
for _ in range(0u, 100) {
bitv.insert((r.next_u32() as uint) % u32::BITS);
}
black_box(&bitv);
});
}
#[bench]
fn bench_bitvset_big(b: &mut Bencher) {
let mut r = rng();
let mut bitv = BitvSet::new();
b.iter(|| {
for _ in range(0u, 100) {
bitv.insert((r.next_u32() as uint) % BENCH_BITS);
}
black_box(&bitv);
});
}
#[bench]
fn bench_bitv_big_union(b: &mut Bencher) {
let mut b1 = Bitv::with_capacity(BENCH_BITS, false);
let b2 = Bitv::with_capacity(BENCH_BITS, false);
b.iter(|| {
b1.union(&b2)
})
}
#[bench]
fn bench_bitv_small_iter(b: &mut Bencher) {
let bitv = Bitv::with_capacity(u32::BITS, false);
b.iter(|| {
let mut sum = 0u;
for _ in range(0u, 10) {
for pres in bitv.iter() {
sum += pres as uint;
}
}
sum
})
}
#[bench]
fn bench_bitv_big_iter(b: &mut Bencher) {
let bitv = Bitv::with_capacity(BENCH_BITS, false);
b.iter(|| {
let mut sum = 0u;
for pres in bitv.iter() {
sum += pres as uint;
}
sum
})
}
#[bench]
fn bench_bitvset_iter(b: &mut Bencher) {
let bitv = BitvSet::from_bitv(from_fn(BENCH_BITS,
|idx| {idx % 3 == 0}));
b.iter(|| {
let mut sum = 0u;
for idx in bitv.iter() {
sum += idx as uint;
}
sum
})
}
}