// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME(Gankro): Bitv and BitvSet are very tightly coupled. Ideally (for maintenance), // they should be in separate files/modules, with BitvSet only using Bitv's public API. //! Collections implemented with bit vectors. //! //! # Examples //! //! This is a simple example of the [Sieve of Eratosthenes][sieve] //! which calculates prime numbers up to a given limit. //! //! [sieve]: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes //! //! ``` //! use std::collections::{BitvSet, Bitv}; //! use std::num::Float; //! use std::iter; //! //! let max_prime = 10000; //! //! // Store the primes as a BitvSet //! let primes = { //! // Assume all numbers are prime to begin, and then we //! // cross off non-primes progressively //! let mut bv = Bitv::with_capacity(max_prime, true); //! //! // Neither 0 nor 1 are prime //! bv.set(0, false); //! bv.set(1, false); //! //! for i in iter::range_inclusive(2, (max_prime as f64).sqrt() as uint) { //! // if i is a prime //! if bv[i] { //! // Mark all multiples of i as non-prime (any multiples below i * i //! // will have been marked as non-prime previously) //! for j in iter::range_step(i * i, max_prime, i) { bv.set(j, false) } //! } //! } //! BitvSet::from_bitv(bv) //! }; //! //! // Simple primality tests below our max bound //! let print_primes = 20; //! print!("The primes below {} are: ", print_primes); //! for x in range(0, print_primes) { //! if primes.contains(&x) { //! print!("{} ", x); //! } //! } //! println!(""); //! //! // We can manipulate the internal Bitv //! let num_primes = primes.get_ref().iter().filter(|x| *x).count(); //! println!("There are {} primes below {}", num_primes, max_prime); //! ``` use core::prelude::*; use core::cmp; use core::default::Default; use core::fmt; use core::iter::{Chain, Enumerate, Repeat, Skip, Take, repeat}; use core::iter; use core::num::Int; use core::slice; use core::u32; use std::hash; use vec::Vec; // FIXME(conventions): look, we just need to refactor this whole thing. Inside and out. type MatchWords<'a> = Chain, Skip>>>>; // Take two BitV's, and return iterators of their words, where the shorter one // has been padded with 0's fn match_words <'a,'b>(a: &'a Bitv, b: &'b Bitv) -> (MatchWords<'a>, MatchWords<'b>) { let a_len = a.storage.len(); let b_len = b.storage.len(); // have to uselessly pretend to pad the longer one for type matching if a_len < b_len { (a.mask_words(0).chain(repeat(0u32).enumerate().take(b_len).skip(a_len)), b.mask_words(0).chain(repeat(0u32).enumerate().take(0).skip(0))) } else { (a.mask_words(0).chain(repeat(0u32).enumerate().take(0).skip(0)), b.mask_words(0).chain(repeat(0u32).enumerate().take(a_len).skip(b_len))) } } static TRUE: bool = true; static FALSE: bool = false; /// The bitvector type. /// /// # Examples /// /// ```rust /// use collections::Bitv; /// /// let mut bv = Bitv::with_capacity(10, false); /// /// // insert all primes less than 10 /// bv.set(2, true); /// bv.set(3, true); /// bv.set(5, true); /// bv.set(7, true); /// println!("{}", bv.to_string()); /// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); /// /// // flip all values in bitvector, producing non-primes less than 10 /// bv.negate(); /// println!("{}", bv.to_string()); /// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); /// /// // reset bitvector to empty /// bv.clear(); /// println!("{}", bv.to_string()); /// println!("total bits set to true: {}", bv.iter().filter(|x| *x).count()); /// ``` pub struct Bitv { /// Internal representation of the bit vector storage: Vec, /// The number of valid bits in the internal representation nbits: uint } impl Index for Bitv { #[inline] fn index<'a>(&'a self, i: &uint) -> &'a bool { if self.get(*i) { &TRUE } else { &FALSE } } } struct MaskWords<'a> { iter: slice::Items<'a, u32>, next_word: Option<&'a u32>, last_word_mask: u32, offset: uint } impl<'a> Iterator<(uint, u32)> for MaskWords<'a> { /// Returns (offset, word) #[inline] fn next(&mut self) -> Option<(uint, u32)> { let ret = self.next_word; match ret { Some(&w) => { self.next_word = self.iter.next(); self.offset += 1; // The last word may need to be masked if self.next_word.is_none() { Some((self.offset - 1, w & self.last_word_mask)) } else { Some((self.offset - 1, w)) } }, None => None } } } impl Bitv { #[inline] fn process(&mut self, other: &Bitv, mut op: F) -> bool where F: FnMut(u32, u32) -> u32 { let len = other.storage.len(); assert_eq!(self.storage.len(), len); let mut changed = false; // Notice: `a` is *not* masked here, which is fine as long as // `op` is a bitwise operation, since any bits that should've // been masked were fine to change anyway. `b` is masked to // make sure its unmasked bits do not cause damage. for (a, (_, b)) in self.storage.iter_mut() .zip(other.mask_words(0)) { let w = op(*a, b); if *a != w { changed = true; *a = w; } } changed } #[inline] fn mask_words<'a>(&'a self, mut start: uint) -> MaskWords<'a> { if start > self.storage.len() { start = self.storage.len(); } let mut iter = self.storage[start..].iter(); MaskWords { next_word: iter.next(), iter: iter, last_word_mask: { let rem = self.nbits % u32::BITS; if rem > 0 { (1 << rem) - 1 } else { !0 } }, offset: start } } /// Creates an empty `Bitv`. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// let mut bv = Bitv::new(); /// ``` #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn new() -> Bitv { Bitv { storage: Vec::new(), nbits: 0 } } /// Creates a `Bitv` that holds `nbits` elements, setting each element /// to `init`. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(10u, false); /// assert_eq!(bv.len(), 10u); /// for x in bv.iter() { /// assert_eq!(x, false); /// } /// ``` pub fn with_capacity(nbits: uint, init: bool) -> Bitv { let mut bitv = Bitv { storage: Vec::from_elem((nbits + u32::BITS - 1) / u32::BITS, if init { !0u32 } else { 0u32 }), nbits: nbits }; // Zero out any unused bits in the highest word if necessary let used_bits = bitv.nbits % u32::BITS; if init && used_bits != 0 { let largest_used_word = (bitv.nbits + u32::BITS - 1) / u32::BITS - 1; bitv.storage[largest_used_word] &= (1 << used_bits) - 1; } bitv } /// Retrieves the value at index `i`. /// /// # Panics /// /// Panics if `i` is out of bounds. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let bv = bitv::from_bytes(&[0b01100000]); /// assert_eq!(bv.get(0), false); /// assert_eq!(bv.get(1), true); /// /// // Can also use array indexing /// assert_eq!(bv[1], true); /// ``` #[inline] pub fn get(&self, i: uint) -> bool { assert!(i < self.nbits); let w = i / u32::BITS; let b = i % u32::BITS; let x = self.storage[w] & (1 << b); x != 0 } /// Sets the value of a bit at an index `i`. /// /// # Panics /// /// Panics if `i` is out of bounds. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(5, false); /// bv.set(3, true); /// assert_eq!(bv[3], true); /// ``` #[inline] pub fn set(&mut self, i: uint, x: bool) { assert!(i < self.nbits); let w = i / u32::BITS; let b = i % u32::BITS; let flag = 1 << b; let val = if x { self.storage[w] | flag } else { self.storage[w] & !flag }; self.storage[w] = val; } /// Sets all bits to 1. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let before = 0b01100000; /// let after = 0b11111111; /// /// let mut bv = bitv::from_bytes(&[before]); /// bv.set_all(); /// assert_eq!(bv, bitv::from_bytes(&[after])); /// ``` #[inline] pub fn set_all(&mut self) { for w in self.storage.iter_mut() { *w = !0u32; } } /// Flips all bits. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let before = 0b01100000; /// let after = 0b10011111; /// /// let mut bv = bitv::from_bytes(&[before]); /// bv.negate(); /// assert_eq!(bv, bitv::from_bytes(&[after])); /// ``` #[inline] pub fn negate(&mut self) { for w in self.storage.iter_mut() { *w = !*w; } } /// Calculates the union of two bitvectors. This acts like the bitwise `or` /// function. /// /// Sets `self` to the union of `self` and `other`. Both bitvectors must be /// the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different lengths. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let res = 0b01111110; /// /// let mut a = bitv::from_bytes(&[a]); /// let b = bitv::from_bytes(&[b]); /// /// assert!(a.union(&b)); /// assert_eq!(a, bitv::from_bytes(&[res])); /// ``` #[inline] pub fn union(&mut self, other: &Bitv) -> bool { self.process(other, |w1, w2| w1 | w2) } /// Calculates the intersection of two bitvectors. This acts like the /// bitwise `and` function. /// /// Sets `self` to the intersection of `self` and `other`. Both bitvectors /// must be the same length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different lengths. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let res = 0b01000000; /// /// let mut a = bitv::from_bytes(&[a]); /// let b = bitv::from_bytes(&[b]); /// /// assert!(a.intersect(&b)); /// assert_eq!(a, bitv::from_bytes(&[res])); /// ``` #[inline] pub fn intersect(&mut self, other: &Bitv) -> bool { self.process(other, |w1, w2| w1 & w2) } /// Calculates the difference between two bitvectors. /// /// Sets each element of `self` to the value of that element minus the /// element of `other` at the same index. Both bitvectors must be the same /// length. Returns `true` if `self` changed. /// /// # Panics /// /// Panics if the bitvectors are of different length. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let a = 0b01100100; /// let b = 0b01011010; /// let a_b = 0b00100100; // a - b /// let b_a = 0b00011010; // b - a /// /// let mut bva = bitv::from_bytes(&[a]); /// let bvb = bitv::from_bytes(&[b]); /// /// assert!(bva.difference(&bvb)); /// assert_eq!(bva, bitv::from_bytes(&[a_b])); /// /// let bva = bitv::from_bytes(&[a]); /// let mut bvb = bitv::from_bytes(&[b]); /// /// assert!(bvb.difference(&bva)); /// assert_eq!(bvb, bitv::from_bytes(&[b_a])); /// ``` #[inline] pub fn difference(&mut self, other: &Bitv) -> bool { self.process(other, |w1, w2| w1 & !w2) } /// Returns `true` if all bits are 1. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(5, true); /// assert_eq!(bv.all(), true); /// /// bv.set(1, false); /// assert_eq!(bv.all(), false); /// ``` #[inline] pub fn all(&self) -> bool { let mut last_word = !0u32; // Check that every word but the last is all-ones... self.mask_words(0).all(|(_, elem)| { let tmp = last_word; last_word = elem; tmp == !0u32 }) && // ...and that the last word is ones as far as it needs to be (last_word == ((1 << self.nbits % u32::BITS) - 1) || last_word == !0u32) } /// Returns an iterator over the elements of the vector in order. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let bv = bitv::from_bytes(&[0b01110100, 0b10010010]); /// assert_eq!(bv.iter().filter(|x| *x).count(), 7); /// ``` #[inline] pub fn iter<'a>(&'a self) -> Bits<'a> { Bits {bitv: self, next_idx: 0, end_idx: self.nbits} } /// Returns `true` if all bits are 0. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(10, false); /// assert_eq!(bv.none(), true); /// /// bv.set(3, true); /// assert_eq!(bv.none(), false); /// ``` pub fn none(&self) -> bool { self.mask_words(0).all(|(_, w)| w == 0) } /// Returns `true` if any bit is 1. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(10, false); /// assert_eq!(bv.any(), false); /// /// bv.set(3, true); /// assert_eq!(bv.any(), true); /// ``` #[inline] pub fn any(&self) -> bool { !self.none() } /// Organises the bits into bytes, such that the first bit in the /// `Bitv` becomes the high-order bit of the first byte. If the /// size of the `Bitv` is not a multiple of eight then trailing bits /// will be filled-in with `false`. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(3, true); /// bv.set(1, false); /// /// assert_eq!(bv.to_bytes(), vec!(0b10100000)); /// /// let mut bv = Bitv::with_capacity(9, false); /// bv.set(2, true); /// bv.set(8, true); /// /// assert_eq!(bv.to_bytes(), vec!(0b00100000, 0b10000000)); /// ``` pub fn to_bytes(&self) -> Vec { fn bit (bitv: &Bitv, byte: uint, bit: uint) -> u8 { let offset = byte * 8 + bit; if offset >= bitv.nbits { 0 } else { bitv.get(offset) as u8 << (7 - bit) } } let len = self.nbits/8 + if self.nbits % 8 == 0 { 0 } else { 1 }; Vec::from_fn(len, |i| bit(self, i, 0) | bit(self, i, 1) | bit(self, i, 2) | bit(self, i, 3) | bit(self, i, 4) | bit(self, i, 5) | bit(self, i, 6) | bit(self, i, 7) ) } /// Transforms `self` into a `Vec` by turning each bit into a `bool`. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let bv = bitv::from_bytes(&[0b10100000]); /// assert_eq!(bv.to_bools(), vec!(true, false, true, false, /// false, false, false, false)); /// ``` pub fn to_bools(&self) -> Vec { Vec::from_fn(self.nbits, |i| self.get(i)) } /// Compares a `Bitv` to a slice of `bool`s. /// Both the `Bitv` and slice must have the same length. /// /// # Panics /// /// Panics if the `Bitv` and slice are of different length. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let bv = bitv::from_bytes(&[0b10100000]); /// /// assert!(bv.eq_vec(&[true, false, true, false, /// false, false, false, false])); /// ``` pub fn eq_vec(&self, v: &[bool]) -> bool { assert_eq!(self.nbits, v.len()); let mut i = 0; while i < self.nbits { if self.get(i) != v[i] { return false; } i = i + 1; } true } /// Shortens a `Bitv`, dropping excess elements. /// /// If `len` is greater than the vector's current length, this has no /// effect. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let mut bv = bitv::from_bytes(&[0b01001011]); /// bv.truncate(2); /// assert!(bv.eq_vec(&[false, true])); /// ``` #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn truncate(&mut self, len: uint) { if len < self.len() { self.nbits = len; let word_len = (len + u32::BITS - 1) / u32::BITS; self.storage.truncate(word_len); if len % u32::BITS > 0 { let mask = (1 << len % u32::BITS) - 1; self.storage[word_len - 1] &= mask; } } } /// Grows the vector to be able to store `size` bits without resizing. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::with_capacity(3, false); /// bv.reserve(10); /// assert_eq!(bv.len(), 3); /// assert!(bv.capacity() >= 10); /// ``` pub fn reserve(&mut self, size: uint) { let old_size = self.storage.len(); let new_size = (size + u32::BITS - 1) / u32::BITS; if old_size < new_size { self.storage.grow(new_size - old_size, 0); } } /// Returns the capacity in bits for this bit vector. Inserting any /// element less than this amount will not trigger a resizing. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::new(); /// bv.reserve(10); /// assert!(bv.capacity() >= 10); /// ``` #[inline] pub fn capacity(&self) -> uint { self.storage.len() * u32::BITS } /// Grows the `Bitv` in-place, adding `n` copies of `value` to the `Bitv`. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let mut bv = bitv::from_bytes(&[0b01001011]); /// bv.grow(2, true); /// assert_eq!(bv.len(), 10); /// assert_eq!(bv.to_bytes(), vec!(0b01001011, 0b11000000)); /// ``` pub fn grow(&mut self, n: uint, value: bool) { let new_nbits = self.nbits + n; let new_nwords = (new_nbits + u32::BITS - 1) / u32::BITS; let full_value = if value { !0 } else { 0 }; // Correct the old tail word let old_last_word = (self.nbits + u32::BITS - 1) / u32::BITS - 1; if self.nbits % u32::BITS > 0 { let overhang = self.nbits % u32::BITS; // # of already-used bits let mask = !((1 << overhang) - 1); // e.g. 5 unused bits => 111110....0 if value { self.storage[old_last_word] |= mask; } else { self.storage[old_last_word] &= !mask; } } // Fill in words after the old tail word let stop_idx = cmp::min(self.storage.len(), new_nwords); for idx in range(old_last_word + 1, stop_idx) { self.storage[idx] = full_value; } // Allocate new words, if needed if new_nwords > self.storage.len() { let to_add = new_nwords - self.storage.len(); self.storage.grow(to_add, full_value); // Zero out and unused bits in the new tail word if value { let tail_word = new_nwords - 1; let used_bits = new_nbits % u32::BITS; self.storage[tail_word] &= (1 << used_bits) - 1; } } // Adjust internal bit count self.nbits = new_nbits; } /// Shortens by one element and returns the removed element. /// /// # Panics /// /// Assert if empty. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let mut bv = bitv::from_bytes(&[0b01001001]); /// assert_eq!(bv.pop(), true); /// assert_eq!(bv.pop(), false); /// assert_eq!(bv.len(), 6); /// assert_eq!(bv.to_bytes(), vec!(0b01001000)); /// ``` pub fn pop(&mut self) -> bool { let ret = self.get(self.nbits - 1); // If we are unusing a whole word, make sure it is zeroed out if self.nbits % u32::BITS == 1 { self.storage[self.nbits / u32::BITS] = 0; } self.nbits -= 1; ret } /// Pushes a `bool` onto the end. /// /// # Examples /// /// ``` /// use std::collections::Bitv; /// /// let mut bv = Bitv::new(); /// bv.push(true); /// bv.push(false); /// assert!(bv.eq_vec(&[true, false])); /// ``` pub fn push(&mut self, elem: bool) { let insert_pos = self.nbits; self.nbits += 1; if self.storage.len() * u32::BITS < self.nbits { self.storage.push(0); } self.set(insert_pos, elem); } /// Return the total number of bits in this vector #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn len(&self) -> uint { self.nbits } /// Returns true if there are no bits in this vector #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Clears all bits in this vector. #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn clear(&mut self) { for w in self.storage.iter_mut() { *w = 0u32; } } } /// Transforms a byte-vector into a `Bitv`. Each byte becomes eight bits, /// with the most significant bits of each byte coming first. Each /// bit becomes `true` if equal to 1 or `false` if equal to 0. /// /// # Examples /// /// ``` /// use std::collections::bitv; /// /// let bv = bitv::from_bytes(&[0b10100000, 0b00010010]); /// assert!(bv.eq_vec(&[true, false, true, false, /// false, false, false, false, /// false, false, false, true, /// false, false, true, false])); /// ``` pub fn from_bytes(bytes: &[u8]) -> Bitv { from_fn(bytes.len() * 8, |i| { let b = bytes[i / 8] as u32; let offset = i % 8; b >> (7 - offset) & 1 == 1 }) } /// Creates a `Bitv` of the specified length where the value at each /// index is `f(index)`. /// /// # Examples /// /// ``` /// use std::collections::bitv::from_fn; /// /// let bv = from_fn(5, |i| { i % 2 == 0 }); /// assert!(bv.eq_vec(&[true, false, true, false, true])); /// ``` pub fn from_fn(len: uint, mut f: F) -> Bitv where F: FnMut(uint) -> bool { let mut bitv = Bitv::with_capacity(len, false); for i in range(0u, len) { bitv.set(i, f(i)); } bitv } #[stable] impl Default for Bitv { #[inline] #[stable] fn default() -> Bitv { Bitv::new() } } impl FromIterator for Bitv { fn from_iter>(iterator: I) -> Bitv { let mut ret = Bitv::new(); ret.extend(iterator); ret } } impl Extend for Bitv { #[inline] fn extend>(&mut self, mut iterator: I) { let (min, _) = iterator.size_hint(); let nbits = self.nbits; self.reserve(nbits + min); for element in iterator { self.push(element) } } } impl Clone for Bitv { #[inline] fn clone(&self) -> Bitv { Bitv { storage: self.storage.clone(), nbits: self.nbits } } #[inline] fn clone_from(&mut self, source: &Bitv) { self.nbits = source.nbits; self.storage.clone_from(&source.storage); } } impl PartialOrd for Bitv { #[inline] fn partial_cmp(&self, other: &Bitv) -> Option { iter::order::partial_cmp(self.iter(), other.iter()) } } impl Ord for Bitv { #[inline] fn cmp(&self, other: &Bitv) -> Ordering { iter::order::cmp(self.iter(), other.iter()) } } impl fmt::Show for Bitv { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { for bit in self.iter() { try!(write!(fmt, "{}", if bit { 1u } else { 0u })); } Ok(()) } } impl hash::Hash for Bitv { fn hash(&self, state: &mut S) { self.nbits.hash(state); for (_, elem) in self.mask_words(0) { elem.hash(state); } } } impl cmp::PartialEq for Bitv { #[inline] fn eq(&self, other: &Bitv) -> bool { if self.nbits != other.nbits { return false; } self.mask_words(0).zip(other.mask_words(0)).all(|((_, w1), (_, w2))| w1 == w2) } } impl cmp::Eq for Bitv {} /// An iterator for `Bitv`. pub struct Bits<'a> { bitv: &'a Bitv, next_idx: uint, end_idx: uint, } impl<'a> Iterator for Bits<'a> { #[inline] fn next(&mut self) -> Option { if self.next_idx != self.end_idx { let idx = self.next_idx; self.next_idx += 1; Some(self.bitv.get(idx)) } else { None } } fn size_hint(&self) -> (uint, Option) { let rem = self.end_idx - self.next_idx; (rem, Some(rem)) } } impl<'a> DoubleEndedIterator for Bits<'a> { #[inline] fn next_back(&mut self) -> Option { if self.next_idx != self.end_idx { self.end_idx -= 1; Some(self.bitv.get(self.end_idx)) } else { None } } } impl<'a> ExactSizeIterator for Bits<'a> {} impl<'a> RandomAccessIterator for Bits<'a> { #[inline] fn indexable(&self) -> uint { self.end_idx - self.next_idx } #[inline] fn idx(&mut self, index: uint) -> Option { if index >= self.indexable() { None } else { Some(self.bitv.get(index)) } } } /// An implementation of a set using a bit vector as an underlying /// representation for holding unsigned numerical elements. /// /// It should also be noted that the amount of storage necessary for holding a /// set of objects is proportional to the maximum of the objects when viewed /// as a `uint`. /// /// # Examples /// /// ``` /// use std::collections::{BitvSet, Bitv}; /// use std::collections::bitv; /// /// // It's a regular set /// let mut s = BitvSet::new(); /// s.insert(0); /// s.insert(3); /// s.insert(7); /// /// s.remove(&7); /// /// if !s.contains(&7) { /// println!("There is no 7"); /// } /// /// // Can initialize from a `Bitv` /// let other = BitvSet::from_bitv(bitv::from_bytes(&[0b11010000])); /// /// s.union_with(&other); /// /// // Print 0, 1, 3 in some order /// for x in s.iter() { /// println!("{}", x); /// } /// /// // Can convert back to a `Bitv` /// let bv: Bitv = s.into_bitv(); /// assert!(bv.get(3)); /// ``` #[deriving(Clone)] pub struct BitvSet(Bitv); impl Default for BitvSet { #[inline] fn default() -> BitvSet { BitvSet::new() } } impl FromIterator for BitvSet { fn from_iter>(iterator: I) -> BitvSet { let mut ret = BitvSet::new(); ret.extend(iterator); ret } } impl Extend for BitvSet { #[inline] fn extend>(&mut self, iterator: I) { let &BitvSet(ref mut self_bitv) = self; self_bitv.extend(iterator); } } impl PartialOrd for BitvSet { #[inline] fn partial_cmp(&self, other: &BitvSet) -> Option { let (a_iter, b_iter) = match_words(self.get_ref(), other.get_ref()); iter::order::partial_cmp(a_iter, b_iter) } } impl Ord for BitvSet { #[inline] fn cmp(&self, other: &BitvSet) -> Ordering { let (a_iter, b_iter) = match_words(self.get_ref(), other.get_ref()); iter::order::cmp(a_iter, b_iter) } } impl cmp::PartialEq for BitvSet { #[inline] fn eq(&self, other: &BitvSet) -> bool { let (a_iter, b_iter) = match_words(self.get_ref(), other.get_ref()); iter::order::eq(a_iter, b_iter) } } impl cmp::Eq for BitvSet {} impl BitvSet { /// Creates a new bit vector set with initially no contents. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// let mut s = BitvSet::new(); /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn new() -> BitvSet { BitvSet(Bitv::new()) } /// Creates a new bit vector set with initially no contents, able to /// hold `nbits` elements without resizing. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// let mut s = BitvSet::with_capacity(100); /// assert!(s.capacity() >= 100); /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn with_capacity(nbits: uint) -> BitvSet { let bitv = Bitv::with_capacity(nbits, false); BitvSet::from_bitv(bitv) } /// Creates a new bit vector set from the given bit vector. /// /// # Examples /// /// ``` /// use std::collections::{bitv, BitvSet}; /// /// let bv = bitv::from_bytes(&[0b01100000]); /// let s = BitvSet::from_bitv(bv); /// /// // Print 1, 2 in arbitrary order /// for x in s.iter() { /// println!("{}", x); /// } /// ``` #[inline] pub fn from_bitv(mut bitv: Bitv) -> BitvSet { // Mark every bit as valid bitv.nbits = bitv.capacity(); BitvSet(bitv) } /// Returns the capacity in bits for this bit vector. Inserting any /// element less than this amount will not trigger a resizing. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// /// let mut s = BitvSet::with_capacity(100); /// assert!(s.capacity() >= 100); /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn capacity(&self) -> uint { let &BitvSet(ref bitv) = self; bitv.capacity() } /// Grows the underlying vector to be able to store `size` bits. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// /// let mut s = BitvSet::new(); /// s.reserve(10); /// assert!(s.capacity() >= 10); /// ``` pub fn reserve(&mut self, size: uint) { let &BitvSet(ref mut bitv) = self; bitv.reserve(size); if bitv.nbits < size { bitv.nbits = bitv.capacity(); } } /// Consumes this set to return the underlying bit vector. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// /// let mut s = BitvSet::new(); /// s.insert(0); /// s.insert(3); /// /// let bv = s.into_bitv(); /// assert!(bv.get(0)); /// assert!(bv.get(3)); /// ``` #[inline] pub fn into_bitv(self) -> Bitv { let BitvSet(bitv) = self; bitv } /// Returns a reference to the underlying bit vector. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// /// let mut s = BitvSet::new(); /// s.insert(0); /// /// let bv = s.get_ref(); /// assert_eq!(bv[0], true); /// ``` #[inline] pub fn get_ref<'a>(&'a self) -> &'a Bitv { let &BitvSet(ref bitv) = self; bitv } #[inline] fn other_op(&mut self, other: &BitvSet, mut f: F) where F: FnMut(u32, u32) -> u32 { // Expand the vector if necessary self.reserve(other.capacity()); // Unwrap Bitvs let &BitvSet(ref mut self_bitv) = self; let &BitvSet(ref other_bitv) = other; // virtually pad other with 0's for equal lengths let mut other_words = { let (_, result) = match_words(self_bitv, other_bitv); result }; // Apply values found in other for (i, w) in other_words { let old = self_bitv.storage[i]; let new = f(old, w); self_bitv.storage[i] = new; } } /// Truncates the underlying vector to the least length required. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// /// let mut s = BitvSet::new(); /// s.insert(32183231); /// s.remove(&32183231); /// /// // Internal storage will probably be bigger than necessary /// println!("old capacity: {}", s.capacity()); /// /// // Now should be smaller /// s.shrink_to_fit(); /// println!("new capacity: {}", s.capacity()); /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn shrink_to_fit(&mut self) { let &BitvSet(ref mut bitv) = self; // Obtain original length let old_len = bitv.storage.len(); // Obtain coarse trailing zero length let n = bitv.storage.iter().rev().take_while(|&&n| n == 0).count(); // Truncate let trunc_len = cmp::max(old_len - n, 1); bitv.storage.truncate(trunc_len); bitv.nbits = trunc_len * u32::BITS; } /// Iterator over each u32 stored in the `BitvSet`. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let s = BitvSet::from_bitv(bitv::from_bytes(&[0b01001010])); /// /// // Print 1, 4, 6 in arbitrary order /// for x in s.iter() { /// println!("{}", x); /// } /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn iter<'a>(&'a self) -> BitPositions<'a> { BitPositions {set: self, next_idx: 0u} } /// Iterator over each u32 stored in `self` union `other`. /// See [union_with](#method.union_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000])); /// /// // Print 0, 1, 2, 4 in arbitrary order /// for x in a.union(&b) { /// println!("{}", x); /// } /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn union<'a>(&'a self, other: &'a BitvSet) -> TwoBitPositions<'a> { fn or(w1: u32, w2: u32) -> u32 { w1 | w2 } TwoBitPositions { set: self, other: other, merge: or, current_word: 0u32, next_idx: 0u } } /// Iterator over each uint stored in `self` intersect `other`. /// See [intersect_with](#method.intersect_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000])); /// /// // Print 2 /// for x in a.intersection(&b) { /// println!("{}", x); /// } /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn intersection<'a>(&'a self, other: &'a BitvSet) -> Take> { fn bitand(w1: u32, w2: u32) -> u32 { w1 & w2 } let min = cmp::min(self.capacity(), other.capacity()); TwoBitPositions { set: self, other: other, merge: bitand, current_word: 0u32, next_idx: 0 }.take(min) } /// Iterator over each uint stored in the `self` setminus `other`. /// See [difference_with](#method.difference_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000])); /// /// // Print 1, 4 in arbitrary order /// for x in a.difference(&b) { /// println!("{}", x); /// } /// /// // Note that difference is not symmetric, /// // and `b - a` means something else. /// // This prints 0 /// for x in b.difference(&a) { /// println!("{}", x); /// } /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn difference<'a>(&'a self, other: &'a BitvSet) -> TwoBitPositions<'a> { fn diff(w1: u32, w2: u32) -> u32 { w1 & !w2 } TwoBitPositions { set: self, other: other, merge: diff, current_word: 0u32, next_idx: 0 } } /// Iterator over each u32 stored in the symmetric difference of `self` and `other`. /// See [symmetric_difference_with](#method.symmetric_difference_with) for /// an efficient in-place version. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = BitvSet::from_bitv(bitv::from_bytes(&[0b01101000])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[0b10100000])); /// /// // Print 0, 1, 4 in arbitrary order /// for x in a.symmetric_difference(&b) { /// println!("{}", x); /// } /// ``` #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn symmetric_difference<'a>(&'a self, other: &'a BitvSet) -> TwoBitPositions<'a> { fn bitxor(w1: u32, w2: u32) -> u32 { w1 ^ w2 } TwoBitPositions { set: self, other: other, merge: bitxor, current_word: 0u32, next_idx: 0 } } /// Unions in-place with the specified other bit vector. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b11101000; /// /// let mut a = BitvSet::from_bitv(bitv::from_bytes(&[a])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[b])); /// let res = BitvSet::from_bitv(bitv::from_bytes(&[res])); /// /// a.union_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn union_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 | w2); } /// Intersects in-place with the specified other bit vector. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b00100000; /// /// let mut a = BitvSet::from_bitv(bitv::from_bytes(&[a])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[b])); /// let res = BitvSet::from_bitv(bitv::from_bytes(&[res])); /// /// a.intersect_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn intersect_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 & w2); } /// Makes this bit vector the difference with the specified other bit vector /// in-place. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let a_b = 0b01001000; // a - b /// let b_a = 0b10000000; // b - a /// /// let mut bva = BitvSet::from_bitv(bitv::from_bytes(&[a])); /// let bvb = BitvSet::from_bitv(bitv::from_bytes(&[b])); /// let bva_b = BitvSet::from_bitv(bitv::from_bytes(&[a_b])); /// let bvb_a = BitvSet::from_bitv(bitv::from_bytes(&[b_a])); /// /// bva.difference_with(&bvb); /// assert_eq!(bva, bva_b); /// /// let bva = BitvSet::from_bitv(bitv::from_bytes(&[a])); /// let mut bvb = BitvSet::from_bitv(bitv::from_bytes(&[b])); /// /// bvb.difference_with(&bva); /// assert_eq!(bvb, bvb_a); /// ``` #[inline] pub fn difference_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 & !w2); } /// Makes this bit vector the symmetric difference with the specified other /// bit vector in-place. /// /// # Examples /// /// ``` /// use std::collections::BitvSet; /// use std::collections::bitv; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b11001000; /// /// let mut a = BitvSet::from_bitv(bitv::from_bytes(&[a])); /// let b = BitvSet::from_bitv(bitv::from_bytes(&[b])); /// let res = BitvSet::from_bitv(bitv::from_bytes(&[res])); /// /// a.symmetric_difference_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn symmetric_difference_with(&mut self, other: &BitvSet) { self.other_op(other, |w1, w2| w1 ^ w2); } /// Return the number of set bits in this set. #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn len(&self) -> uint { let &BitvSet(ref bitv) = self; bitv.storage.iter().fold(0, |acc, &n| acc + n.count_ones()) } /// Returns whether there are no bits set in this set #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn is_empty(&self) -> bool { let &BitvSet(ref bitv) = self; bitv.storage.iter().all(|&n| n == 0) } /// Clears all bits in this set #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn clear(&mut self) { let &BitvSet(ref mut bitv) = self; bitv.clear(); } /// Returns `true` if this set contains the specified integer. #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn contains(&self, value: &uint) -> bool { let &BitvSet(ref bitv) = self; *value < bitv.nbits && bitv.get(*value) } /// Returns `true` if the set has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn is_disjoint(&self, other: &BitvSet) -> bool { self.intersection(other).next().is_none() } /// Returns `true` if the set is a subset of another. #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn is_subset(&self, other: &BitvSet) -> bool { let &BitvSet(ref self_bitv) = self; let &BitvSet(ref other_bitv) = other; // Check that `self` intersect `other` is self self_bitv.mask_words(0).zip(other_bitv.mask_words(0)) .all(|((_, w1), (_, w2))| w1 & w2 == w1) && // Check that `self` setminus `other` is empty self_bitv.mask_words(other_bitv.storage.len()).all(|(_, w)| w == 0) } /// Returns `true` if the set is a superset of another. #[inline] #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn is_superset(&self, other: &BitvSet) -> bool { other.is_subset(self) } /// Adds a value to the set. Returns `true` if the value was not already /// present in the set. #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn insert(&mut self, value: uint) -> bool { if self.contains(&value) { return false; } // Ensure we have enough space to hold the new element if value >= self.capacity() { let new_cap = cmp::max(value + 1, self.capacity() * 2); self.reserve(new_cap); } let &BitvSet(ref mut bitv) = self; bitv.set(value, true); return true; } /// Removes a value from the set. Returns `true` if the value was /// present in the set. #[unstable = "matches collection reform specification, waiting for dust to settle"] pub fn remove(&mut self, value: &uint) -> bool { if !self.contains(value) { return false; } let &BitvSet(ref mut bitv) = self; bitv.set(*value, false); return true; } } impl fmt::Show for BitvSet { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { try!(write!(fmt, "{{")); let mut first = true; for n in self.iter() { if !first { try!(write!(fmt, ", ")); } try!(write!(fmt, "{}", n)); first = false; } write!(fmt, "}}") } } impl hash::Hash for BitvSet { fn hash(&self, state: &mut S) { for pos in self.iter() { pos.hash(state); } } } /// An iterator for `BitvSet`. pub struct BitPositions<'a> { set: &'a BitvSet, next_idx: uint } /// An iterator combining two `BitvSet` iterators. pub struct TwoBitPositions<'a> { set: &'a BitvSet, other: &'a BitvSet, merge: fn(u32, u32) -> u32, current_word: u32, next_idx: uint } impl<'a> Iterator for BitPositions<'a> { fn next(&mut self) -> Option { while self.next_idx < self.set.capacity() { let idx = self.next_idx; self.next_idx += 1; if self.set.contains(&idx) { return Some(idx); } } return None; } #[inline] fn size_hint(&self) -> (uint, Option) { (0, Some(self.set.capacity() - self.next_idx)) } } impl<'a> Iterator for TwoBitPositions<'a> { fn next(&mut self) -> Option { while self.next_idx < self.set.capacity() || self.next_idx < self.other.capacity() { let bit_idx = self.next_idx % u32::BITS; if bit_idx == 0 { let &BitvSet(ref s_bitv) = self.set; let &BitvSet(ref o_bitv) = self.other; // Merging the two words is a bit of an awkward dance since // one Bitv might be longer than the other let word_idx = self.next_idx / u32::BITS; let w1 = if word_idx < s_bitv.storage.len() { s_bitv.storage[word_idx] } else { 0 }; let w2 = if word_idx < o_bitv.storage.len() { o_bitv.storage[word_idx] } else { 0 }; self.current_word = (self.merge)(w1, w2); } self.next_idx += 1; if self.current_word & (1 << bit_idx) != 0 { return Some(self.next_idx - 1); } } return None; } #[inline] fn size_hint(&self) -> (uint, Option) { let cap = cmp::max(self.set.capacity(), self.other.capacity()); (0, Some(cap - self.next_idx)) } } #[cfg(test)] mod tests { use std::prelude::*; use std::iter::range_step; use std::rand; use std::rand::Rng; use std::u32; use test::{Bencher, black_box}; use super::{Bitv, BitvSet, from_fn, from_bytes}; use bitv; use vec::Vec; static BENCH_BITS : uint = 1 << 14; #[test] fn test_to_str() { let zerolen = Bitv::new(); assert_eq!(zerolen.to_string(), ""); let eightbits = Bitv::with_capacity(8u, false); assert_eq!(eightbits.to_string(), "00000000") } #[test] fn test_0_elements() { let act = Bitv::new(); let exp = Vec::from_elem(0u, false); assert!(act.eq_vec(exp.as_slice())); } #[test] fn test_1_element() { let mut act = Bitv::with_capacity(1u, false); assert!(act.eq_vec(&[false])); act = Bitv::with_capacity(1u, true); assert!(act.eq_vec(&[true])); } #[test] fn test_2_elements() { let mut b = bitv::Bitv::with_capacity(2, false); b.set(0, true); b.set(1, false); assert_eq!(b.to_string(), "10"); } #[test] fn test_10_elements() { let mut act; // all 0 act = Bitv::with_capacity(10u, false); assert!((act.eq_vec( &[false, false, false, false, false, false, false, false, false, false]))); // all 1 act = Bitv::with_capacity(10u, true); assert!((act.eq_vec(&[true, true, true, true, true, true, true, true, true, true]))); // mixed act = Bitv::with_capacity(10u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); assert!((act.eq_vec(&[true, true, true, true, true, false, false, false, false, false]))); // mixed act = Bitv::with_capacity(10u, false); act.set(5u, true); act.set(6u, true); act.set(7u, true); act.set(8u, true); act.set(9u, true); assert!((act.eq_vec(&[false, false, false, false, false, true, true, true, true, true]))); // mixed act = Bitv::with_capacity(10u, false); act.set(0u, true); act.set(3u, true); act.set(6u, true); act.set(9u, true); assert!((act.eq_vec(&[true, false, false, true, false, false, true, false, false, true]))); } #[test] fn test_31_elements() { let mut act; // all 0 act = Bitv::with_capacity(31u, false); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); // all 1 act = Bitv::with_capacity(31u, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true])); // mixed act = Bitv::with_capacity(31u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); act.set(5u, true); act.set(6u, true); act.set(7u, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); // mixed act = Bitv::with_capacity(31u, false); act.set(16u, true); act.set(17u, true); act.set(18u, true); act.set(19u, true); act.set(20u, true); act.set(21u, true); act.set(22u, true); act.set(23u, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false, false, false, false, false, false, false])); // mixed act = Bitv::with_capacity(31u, false); act.set(24u, true); act.set(25u, true); act.set(26u, true); act.set(27u, true); act.set(28u, true); act.set(29u, true); act.set(30u, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true])); // mixed act = Bitv::with_capacity(31u, false); act.set(3u, true); act.set(17u, true); act.set(30u, true); assert!(act.eq_vec( &[false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, true])); } #[test] fn test_32_elements() { let mut act; // all 0 act = Bitv::with_capacity(32u, false); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); // all 1 act = Bitv::with_capacity(32u, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true])); // mixed act = Bitv::with_capacity(32u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); act.set(5u, true); act.set(6u, true); act.set(7u, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); // mixed act = Bitv::with_capacity(32u, false); act.set(16u, true); act.set(17u, true); act.set(18u, true); act.set(19u, true); act.set(20u, true); act.set(21u, true); act.set(22u, true); act.set(23u, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false])); // mixed act = Bitv::with_capacity(32u, false); act.set(24u, true); act.set(25u, true); act.set(26u, true); act.set(27u, true); act.set(28u, true); act.set(29u, true); act.set(30u, true); act.set(31u, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true])); // mixed act = Bitv::with_capacity(32u, false); act.set(3u, true); act.set(17u, true); act.set(30u, true); act.set(31u, true); assert!(act.eq_vec( &[false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, true, true])); } #[test] fn test_33_elements() { let mut act; // all 0 act = Bitv::with_capacity(33u, false); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); // all 1 act = Bitv::with_capacity(33u, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true])); // mixed act = Bitv::with_capacity(33u, false); act.set(0u, true); act.set(1u, true); act.set(2u, true); act.set(3u, true); act.set(4u, true); act.set(5u, true); act.set(6u, true); act.set(7u, true); assert!(act.eq_vec( &[true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false])); // mixed act = Bitv::with_capacity(33u, false); act.set(16u, true); act.set(17u, true); act.set(18u, true); act.set(19u, true); act.set(20u, true); act.set(21u, true); act.set(22u, true); act.set(23u, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false, false, false, false, false, false, false, false, false])); // mixed act = Bitv::with_capacity(33u, false); act.set(24u, true); act.set(25u, true); act.set(26u, true); act.set(27u, true); act.set(28u, true); act.set(29u, true); act.set(30u, true); act.set(31u, true); assert!(act.eq_vec( &[false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true, true, true, true, true, true, false])); // mixed act = Bitv::with_capacity(33u, false); act.set(3u, true); act.set(17u, true); act.set(30u, true); act.set(31u, true); act.set(32u, true); assert!(act.eq_vec( &[false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, true, true, true])); } #[test] fn test_equal_differing_sizes() { let v0 = Bitv::with_capacity(10u, false); let v1 = Bitv::with_capacity(11u, false); assert!(v0 != v1); } #[test] fn test_equal_greatly_differing_sizes() { let v0 = Bitv::with_capacity(10u, false); let v1 = Bitv::with_capacity(110u, false); assert!(v0 != v1); } #[test] fn test_equal_sneaky_small() { let mut a = bitv::Bitv::with_capacity(1, false); a.set(0, true); let mut b = bitv::Bitv::with_capacity(1, true); b.set(0, true); assert_eq!(a, b); } #[test] fn test_equal_sneaky_big() { let mut a = bitv::Bitv::with_capacity(100, false); for i in range(0u, 100) { a.set(i, true); } let mut b = bitv::Bitv::with_capacity(100, true); for i in range(0u, 100) { b.set(i, true); } assert_eq!(a, b); } #[test] fn test_from_bytes() { let bitv = from_bytes(&[0b10110110, 0b00000000, 0b11111111]); let str = format!("{}{}{}", "10110110", "00000000", "11111111"); assert_eq!(bitv.to_string(), str); } #[test] fn test_to_bytes() { let mut bv = Bitv::with_capacity(3, true); bv.set(1, false); assert_eq!(bv.to_bytes(), vec!(0b10100000)); let mut bv = Bitv::with_capacity(9, false); bv.set(2, true); bv.set(8, true); assert_eq!(bv.to_bytes(), vec!(0b00100000, 0b10000000)); } #[test] fn test_from_bools() { let bools = vec![true, false, true, true]; let bitv: Bitv = bools.iter().map(|n| *n).collect(); assert_eq!(bitv.to_string(), "1011"); } #[test] fn test_bitv_set_from_bools() { let bools = vec![true, false, true, true]; let a: BitvSet = bools.iter().map(|n| *n).collect(); let mut b = BitvSet::new(); b.insert(0); b.insert(2); b.insert(3); assert_eq!(a, b); } #[test] fn test_to_bools() { let bools = vec!(false, false, true, false, false, true, true, false); assert_eq!(from_bytes(&[0b00100110]).iter().collect::>(), bools); } #[test] fn test_bitv_iterator() { let bools = vec![true, false, true, true]; let bitv: Bitv = bools.iter().map(|n| *n).collect(); assert_eq!(bitv.iter().collect::>(), bools); let long = Vec::from_fn(10000, |i| i % 2 == 0); let bitv: Bitv = long.iter().map(|n| *n).collect(); assert_eq!(bitv.iter().collect::>(), long) } #[test] fn test_bitv_set_iterator() { let bools = [true, false, true, true]; let bitv: BitvSet = bools.iter().map(|n| *n).collect(); let idxs: Vec = bitv.iter().collect(); assert_eq!(idxs, vec!(0, 2, 3)); let long: BitvSet = range(0u, 10000).map(|n| n % 2 == 0).collect(); let real = range_step(0, 10000, 2).collect::>(); let idxs: Vec = long.iter().collect(); assert_eq!(idxs, real); } #[test] fn test_bitv_set_frombitv_init() { let bools = [true, false]; let lengths = [10, 64, 100]; for &b in bools.iter() { for &l in lengths.iter() { let bitset = BitvSet::from_bitv(Bitv::with_capacity(l, b)); assert_eq!(bitset.contains(&1u), b); assert_eq!(bitset.contains(&(l-1u)), b); assert!(!bitset.contains(&l)) } } } #[test] fn test_small_difference() { let mut b1 = Bitv::with_capacity(3, false); let mut b2 = Bitv::with_capacity(3, false); b1.set(0, true); b1.set(1, true); b2.set(1, true); b2.set(2, true); assert!(b1.difference(&b2)); assert!(b1.get(0)); assert!(!b1.get(1)); assert!(!b1.get(2)); } #[test] fn test_big_difference() { let mut b1 = Bitv::with_capacity(100, false); let mut b2 = Bitv::with_capacity(100, false); b1.set(0, true); b1.set(40, true); b2.set(40, true); b2.set(80, true); assert!(b1.difference(&b2)); assert!(b1.get(0)); assert!(!b1.get(40)); assert!(!b1.get(80)); } #[test] fn test_small_clear() { let mut b = Bitv::with_capacity(14, true); b.clear(); assert!(b.none()); } #[test] fn test_big_clear() { let mut b = Bitv::with_capacity(140, true); b.clear(); assert!(b.none()); } #[test] fn test_bitv_masking() { let b = Bitv::with_capacity(140, true); let mut bs = BitvSet::from_bitv(b); assert!(bs.contains(&139)); assert!(!bs.contains(&140)); assert!(bs.insert(150)); assert!(!bs.contains(&140)); assert!(!bs.contains(&149)); assert!(bs.contains(&150)); assert!(!bs.contains(&151)); } #[test] fn test_bitv_set_basic() { // calculate nbits with u32::BITS granularity fn calc_nbits(bits: uint) -> uint { u32::BITS * ((bits + u32::BITS - 1) / u32::BITS) } let mut b = BitvSet::new(); assert_eq!(b.capacity(), calc_nbits(0)); assert!(b.insert(3)); assert_eq!(b.capacity(), calc_nbits(3)); assert!(!b.insert(3)); assert!(b.contains(&3)); assert!(b.insert(4)); assert!(!b.insert(4)); assert!(b.contains(&3)); assert!(b.insert(400)); assert_eq!(b.capacity(), calc_nbits(400)); assert!(!b.insert(400)); assert!(b.contains(&400)); assert_eq!(b.len(), 3); } #[test] fn test_bitv_set_intersection() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(11)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(b.insert(2)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(5)); assert!(b.insert(3)); let expected = [3, 5, 11, 77]; let actual = a.intersection(&b).collect::>(); assert_eq!(actual, expected); } #[test] fn test_bitv_set_difference() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(200)); assert!(a.insert(500)); assert!(b.insert(3)); assert!(b.insert(200)); let expected = [1, 5, 500]; let actual = a.difference(&b).collect::>(); assert_eq!(actual, expected); } #[test] fn test_bitv_set_symmetric_difference() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(220)); let expected = [1, 5, 11, 14, 220]; let actual = a.symmetric_difference(&b).collect::>(); assert_eq!(actual, expected); } #[test] fn test_bitv_set_union() { let mut a = BitvSet::new(); let mut b = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(160)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(a.insert(200)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let expected = [1, 3, 5, 9, 11, 13, 19, 24, 160, 200]; let actual = a.union(&b).collect::>(); assert_eq!(actual, expected); } #[test] fn test_bitv_set_subset() { let mut set1 = BitvSet::new(); let mut set2 = BitvSet::new(); assert!(set1.is_subset(&set2)); // {} {} set2.insert(100); assert!(set1.is_subset(&set2)); // {} { 1 } set2.insert(200); assert!(set1.is_subset(&set2)); // {} { 1, 2 } set1.insert(200); assert!(set1.is_subset(&set2)); // { 2 } { 1, 2 } set1.insert(300); assert!(!set1.is_subset(&set2)); // { 2, 3 } { 1, 2 } set2.insert(300); assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3 } set2.insert(400); assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3, 4 } set2.remove(&100); assert!(set1.is_subset(&set2)); // { 2, 3 } { 2, 3, 4 } set2.remove(&300); assert!(!set1.is_subset(&set2)); // { 2, 3 } { 2, 4 } set1.remove(&300); assert!(set1.is_subset(&set2)); // { 2 } { 2, 4 } } #[test] fn test_bitv_set_is_disjoint() { let a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let b = BitvSet::from_bitv(from_bytes(&[0b01000000])); let c = BitvSet::new(); let d = BitvSet::from_bitv(from_bytes(&[0b00110000])); assert!(!a.is_disjoint(&d)); assert!(!d.is_disjoint(&a)); assert!(a.is_disjoint(&b)); assert!(a.is_disjoint(&c)); assert!(b.is_disjoint(&a)); assert!(b.is_disjoint(&c)); assert!(c.is_disjoint(&a)); assert!(c.is_disjoint(&b)); } #[test] fn test_bitv_set_union_with() { //a should grow to include larger elements let mut a = BitvSet::new(); a.insert(0); let mut b = BitvSet::new(); b.insert(5); let expected = BitvSet::from_bitv(from_bytes(&[0b10000100])); a.union_with(&b); assert_eq!(a, expected); // Standard let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let mut b = BitvSet::from_bitv(from_bytes(&[0b01100010])); let c = a.clone(); a.union_with(&b); b.union_with(&c); assert_eq!(a.len(), 4); assert_eq!(b.len(), 4); } #[test] fn test_bitv_set_intersect_with() { // Explicitly 0'ed bits let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let mut b = BitvSet::from_bitv(from_bytes(&[0b00000000])); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert!(a.is_empty()); assert!(b.is_empty()); // Uninitialized bits should behave like 0's let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let mut b = BitvSet::new(); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert!(a.is_empty()); assert!(b.is_empty()); // Standard let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let mut b = BitvSet::from_bitv(from_bytes(&[0b01100010])); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert_eq!(a.len(), 2); assert_eq!(b.len(), 2); } #[test] fn test_bitv_set_difference_with() { // Explicitly 0'ed bits let mut a = BitvSet::from_bitv(from_bytes(&[0b00000000])); let b = BitvSet::from_bitv(from_bytes(&[0b10100010])); a.difference_with(&b); assert!(a.is_empty()); // Uninitialized bits should behave like 0's let mut a = BitvSet::new(); let b = BitvSet::from_bitv(from_bytes(&[0b11111111])); a.difference_with(&b); assert!(a.is_empty()); // Standard let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let mut b = BitvSet::from_bitv(from_bytes(&[0b01100010])); let c = a.clone(); a.difference_with(&b); b.difference_with(&c); assert_eq!(a.len(), 1); assert_eq!(b.len(), 1); } #[test] fn test_bitv_set_symmetric_difference_with() { //a should grow to include larger elements let mut a = BitvSet::new(); a.insert(0); a.insert(1); let mut b = BitvSet::new(); b.insert(1); b.insert(5); let expected = BitvSet::from_bitv(from_bytes(&[0b10000100])); a.symmetric_difference_with(&b); assert_eq!(a, expected); let mut a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let b = BitvSet::new(); let c = a.clone(); a.symmetric_difference_with(&b); assert_eq!(a, c); // Standard let mut a = BitvSet::from_bitv(from_bytes(&[0b11100010])); let mut b = BitvSet::from_bitv(from_bytes(&[0b01101010])); let c = a.clone(); a.symmetric_difference_with(&b); b.symmetric_difference_with(&c); assert_eq!(a.len(), 2); assert_eq!(b.len(), 2); } #[test] fn test_bitv_set_eq() { let a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let b = BitvSet::from_bitv(from_bytes(&[0b00000000])); let c = BitvSet::new(); assert!(a == a); assert!(a != b); assert!(a != c); assert!(b == b); assert!(b == c); assert!(c == c); } #[test] fn test_bitv_set_cmp() { let a = BitvSet::from_bitv(from_bytes(&[0b10100010])); let b = BitvSet::from_bitv(from_bytes(&[0b00000000])); let c = BitvSet::new(); assert_eq!(a.cmp(&b), Greater); assert_eq!(a.cmp(&c), Greater); assert_eq!(b.cmp(&a), Less); assert_eq!(b.cmp(&c), Equal); assert_eq!(c.cmp(&a), Less); assert_eq!(c.cmp(&b), Equal); } #[test] fn test_bitv_remove() { let mut a = BitvSet::new(); assert!(a.insert(1)); assert!(a.remove(&1)); assert!(a.insert(100)); assert!(a.remove(&100)); assert!(a.insert(1000)); assert!(a.remove(&1000)); a.shrink_to_fit(); assert_eq!(a.capacity(), u32::BITS); } #[test] fn test_bitv_lt() { let mut a = Bitv::with_capacity(5u, false); let mut b = Bitv::with_capacity(5u, false); assert!(!(a < b) && !(b < a)); b.set(2, true); assert!(a < b); a.set(3, true); assert!(a < b); a.set(2, true); assert!(!(a < b) && b < a); b.set(0, true); assert!(a < b); } #[test] fn test_ord() { let mut a = Bitv::with_capacity(5u, false); let mut b = Bitv::with_capacity(5u, false); assert!(a <= b && a >= b); a.set(1, true); assert!(a > b && a >= b); assert!(b < a && b <= a); b.set(1, true); b.set(2, true); assert!(b > a && b >= a); assert!(a < b && a <= b); } #[test] fn test_bitv_clone() { let mut a = BitvSet::new(); assert!(a.insert(1)); assert!(a.insert(100)); assert!(a.insert(1000)); let mut b = a.clone(); assert!(a == b); assert!(b.remove(&1)); assert!(a.contains(&1)); assert!(a.remove(&1000)); assert!(b.contains(&1000)); } #[test] fn test_small_bitv_tests() { let v = from_bytes(&[0]); assert!(!v.all()); assert!(!v.any()); assert!(v.none()); let v = from_bytes(&[0b00010100]); assert!(!v.all()); assert!(v.any()); assert!(!v.none()); let v = from_bytes(&[0xFF]); assert!(v.all()); assert!(v.any()); assert!(!v.none()); } #[test] fn test_big_bitv_tests() { let v = from_bytes(&[ // 88 bits 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); assert!(!v.all()); assert!(!v.any()); assert!(v.none()); let v = from_bytes(&[ // 88 bits 0, 0, 0b00010100, 0, 0, 0, 0, 0b00110100, 0, 0, 0]); assert!(!v.all()); assert!(v.any()); assert!(!v.none()); let v = from_bytes(&[ // 88 bits 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]); assert!(v.all()); assert!(v.any()); assert!(!v.none()); } #[test] fn test_bitv_push_pop() { let mut s = Bitv::with_capacity(5 * u32::BITS - 2, false); assert_eq!(s.len(), 5 * u32::BITS - 2); assert_eq!(s.get(5 * u32::BITS - 3), false); s.push(true); s.push(true); assert_eq!(s.get(5 * u32::BITS - 2), true); assert_eq!(s.get(5 * u32::BITS - 1), true); // Here the internal vector will need to be extended s.push(false); assert_eq!(s.get(5 * u32::BITS), false); s.push(false); assert_eq!(s.get(5 * u32::BITS + 1), false); assert_eq!(s.len(), 5 * u32::BITS + 2); // Pop it all off assert_eq!(s.pop(), false); assert_eq!(s.pop(), false); assert_eq!(s.pop(), true); assert_eq!(s.pop(), true); assert_eq!(s.len(), 5 * u32::BITS - 2); } #[test] fn test_bitv_truncate() { let mut s = Bitv::with_capacity(5 * u32::BITS, true); assert_eq!(s, Bitv::with_capacity(5 * u32::BITS, true)); assert_eq!(s.len(), 5 * u32::BITS); s.truncate(4 * u32::BITS); assert_eq!(s, Bitv::with_capacity(4 * u32::BITS, true)); assert_eq!(s.len(), 4 * u32::BITS); // Truncating to a size > s.len() should be a noop s.truncate(5 * u32::BITS); assert_eq!(s, Bitv::with_capacity(4 * u32::BITS, true)); assert_eq!(s.len(), 4 * u32::BITS); s.truncate(3 * u32::BITS - 10); assert_eq!(s, Bitv::with_capacity(3 * u32::BITS - 10, true)); assert_eq!(s.len(), 3 * u32::BITS - 10); s.truncate(0); assert_eq!(s, Bitv::with_capacity(0, true)); assert_eq!(s.len(), 0); } #[test] fn test_bitv_reserve() { let mut s = Bitv::with_capacity(5 * u32::BITS, true); // Check capacity assert_eq!(s.capacity(), 5 * u32::BITS); s.reserve(2 * u32::BITS); assert_eq!(s.capacity(), 5 * u32::BITS); s.reserve(7 * u32::BITS); assert_eq!(s.capacity(), 7 * u32::BITS); s.reserve(7 * u32::BITS); assert_eq!(s.capacity(), 7 * u32::BITS); s.reserve(7 * u32::BITS + 1); assert_eq!(s.capacity(), 8 * u32::BITS); // Check that length hasn't changed assert_eq!(s.len(), 5 * u32::BITS); s.push(true); s.push(false); s.push(true); assert_eq!(s.get(5 * u32::BITS - 1), true); assert_eq!(s.get(5 * u32::BITS - 0), true); assert_eq!(s.get(5 * u32::BITS + 1), false); assert_eq!(s.get(5 * u32::BITS + 2), true); } #[test] fn test_bitv_grow() { let mut bitv = from_bytes(&[0b10110110, 0b00000000, 0b10101010]); bitv.grow(32, true); assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b10101010, 0xFF, 0xFF, 0xFF, 0xFF])); bitv.grow(64, false); assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b10101010, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0])); bitv.grow(16, true); assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b10101010, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF])); } #[test] fn test_bitv_extend() { let mut bitv = from_bytes(&[0b10110110, 0b00000000, 0b11111111]); let ext = from_bytes(&[0b01001001, 0b10010010, 0b10111101]); bitv.extend(ext.iter()); assert_eq!(bitv, from_bytes(&[0b10110110, 0b00000000, 0b11111111, 0b01001001, 0b10010010, 0b10111101])); } #[test] fn test_bitv_set_show() { let mut s = BitvSet::new(); s.insert(1); s.insert(10); s.insert(50); s.insert(2); assert_eq!("{1, 2, 10, 50}", s.to_string()); } fn rng() -> rand::IsaacRng { let seed: &[_] = &[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]; rand::SeedableRng::from_seed(seed) } #[bench] fn bench_uint_small(b: &mut Bencher) { let mut r = rng(); let mut bitv = 0 as uint; b.iter(|| { for _ in range(0u, 100) { bitv |= 1 << ((r.next_u32() as uint) % u32::BITS); } black_box(&bitv) }); } #[bench] fn bench_bitv_set_big_fixed(b: &mut Bencher) { let mut r = rng(); let mut bitv = Bitv::with_capacity(BENCH_BITS, false); b.iter(|| { for _ in range(0u, 100) { bitv.set((r.next_u32() as uint) % BENCH_BITS, true); } black_box(&bitv) }); } #[bench] fn bench_bitv_set_big_variable(b: &mut Bencher) { let mut r = rng(); let mut bitv = Bitv::with_capacity(BENCH_BITS, false); b.iter(|| { for _ in range(0u, 100) { bitv.set((r.next_u32() as uint) % BENCH_BITS, r.gen()); } black_box(&bitv); }); } #[bench] fn bench_bitv_set_small(b: &mut Bencher) { let mut r = rng(); let mut bitv = Bitv::with_capacity(u32::BITS, false); b.iter(|| { for _ in range(0u, 100) { bitv.set((r.next_u32() as uint) % u32::BITS, true); } black_box(&bitv); }); } #[bench] fn bench_bitvset_small(b: &mut Bencher) { let mut r = rng(); let mut bitv = BitvSet::new(); b.iter(|| { for _ in range(0u, 100) { bitv.insert((r.next_u32() as uint) % u32::BITS); } black_box(&bitv); }); } #[bench] fn bench_bitvset_big(b: &mut Bencher) { let mut r = rng(); let mut bitv = BitvSet::new(); b.iter(|| { for _ in range(0u, 100) { bitv.insert((r.next_u32() as uint) % BENCH_BITS); } black_box(&bitv); }); } #[bench] fn bench_bitv_big_union(b: &mut Bencher) { let mut b1 = Bitv::with_capacity(BENCH_BITS, false); let b2 = Bitv::with_capacity(BENCH_BITS, false); b.iter(|| { b1.union(&b2) }) } #[bench] fn bench_bitv_small_iter(b: &mut Bencher) { let bitv = Bitv::with_capacity(u32::BITS, false); b.iter(|| { let mut sum = 0u; for _ in range(0u, 10) { for pres in bitv.iter() { sum += pres as uint; } } sum }) } #[bench] fn bench_bitv_big_iter(b: &mut Bencher) { let bitv = Bitv::with_capacity(BENCH_BITS, false); b.iter(|| { let mut sum = 0u; for pres in bitv.iter() { sum += pres as uint; } sum }) } #[bench] fn bench_bitvset_iter(b: &mut Bencher) { let bitv = BitvSet::from_bitv(from_fn(BENCH_BITS, |idx| {idx % 3 == 0})); b.iter(|| { let mut sum = 0u; for idx in bitv.iter() { sum += idx as uint; } sum }) } }