rust/src/librustc/middle/trans/cabi_x86_64.rs
Philipp Brüschweiler a2227f9e0c librustc: don't skip ahead when computing register types of SSEFloatVectors
Also fixes an unrelated typo (found by comparing to the original code
of the clay project) and some cleanup.

Fixes #7415.
2013-06-28 21:28:58 +02:00

397 lines
10 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The classification code for the x86_64 ABI is taken from the clay language
// https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp
use lib::llvm::{llvm, Integer, Pointer, Float, Double};
use lib::llvm::{Struct, Array, Attribute};
use lib::llvm::{StructRetAttribute, ByValAttribute};
use middle::trans::cabi::*;
use middle::trans::type_::Type;
use core::option;
use core::option::Option;
use core::uint;
use core::vec;
#[deriving(Eq)]
enum RegClass {
NoClass,
Int,
SSEFs,
SSEFv,
SSEDs,
SSEDv,
SSEInt,
SSEUp,
X87,
X87Up,
ComplexX87,
Memory
}
impl Type {
fn is_reg_ty(&self) -> bool {
match self.kind() {
Integer | Pointer | Float | Double => true,
_ => false
}
}
}
impl RegClass {
fn is_sse(&self) -> bool {
match *self {
SSEFs | SSEFv | SSEDs | SSEDv => true,
_ => false
}
}
}
trait ClassList {
fn is_pass_byval(&self) -> bool;
fn is_ret_bysret(&self) -> bool;
}
impl<'self> ClassList for &'self [RegClass] {
fn is_pass_byval(&self) -> bool {
if self.len() == 0 { return false; }
let class = self[0];
class == Memory
|| class == X87
|| class == ComplexX87
}
fn is_ret_bysret(&self) -> bool {
if self.len() == 0 { return false; }
self[0] == Memory
}
}
fn classify_ty(ty: Type) -> ~[RegClass] {
fn align(off: uint, ty: Type) -> uint {
let a = ty_align(ty);
return (off + a - 1u) / a * a;
}
fn ty_align(ty: Type) -> uint {
match ty.kind() {
Integer => {
unsafe {
((llvm::LLVMGetIntTypeWidth(ty.to_ref()) as uint) + 7) / 8
}
}
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
if ty.is_packed() {
1
} else {
let str_tys = ty.field_types();
str_tys.iter().fold(1, |a, t| uint::max(a, ty_align(*t)))
}
}
Array => {
let elt = ty.element_type();
ty_align(elt)
}
_ => fail!("ty_size: unhandled type")
}
}
fn ty_size(ty: Type) -> uint {
match ty.kind() {
Integer => {
unsafe {
((llvm::LLVMGetIntTypeWidth(ty.to_ref()) as uint) + 7) / 8
}
}
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
let str_tys = ty.field_types();
if ty.is_packed() {
str_tys.iter().fold(0, |s, t| s + ty_size(*t))
} else {
let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t));
align(size, ty)
}
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
len * eltsz
}
_ => fail!("ty_size: unhandled type")
}
}
fn all_mem(cls: &mut [RegClass]) {
for uint::range(0, cls.len()) |i| {
cls[i] = Memory;
}
}
fn unify(cls: &mut [RegClass],
i: uint,
newv: RegClass) {
if cls[i] == newv {
return;
} else if cls[i] == NoClass {
cls[i] = newv;
} else if newv == NoClass {
return;
} else if cls[i] == Memory || newv == Memory {
cls[i] = Memory;
} else if cls[i] == Int || newv == Int {
cls[i] = Int;
} else if cls[i] == X87 ||
cls[i] == X87Up ||
cls[i] == ComplexX87 ||
newv == X87 ||
newv == X87Up ||
newv == ComplexX87 {
cls[i] = Memory;
} else {
cls[i] = newv;
}
}
fn classify_struct(tys: &[Type],
cls: &mut [RegClass], i: uint,
off: uint) {
let mut field_off = off;
for tys.iter().advance |ty| {
field_off = align(field_off, *ty);
classify(*ty, cls, i, field_off);
field_off += ty_size(*ty);
}
}
fn classify(ty: Type,
cls: &mut [RegClass], ix: uint,
off: uint) {
let t_align = ty_align(ty);
let t_size = ty_size(ty);
let misalign = off % t_align;
if misalign != 0u {
let mut i = off / 8u;
let e = (off + t_size + 7u) / 8u;
while i < e {
unify(cls, ix + i, Memory);
i += 1u;
}
return;
}
match ty.kind() {
Integer |
Pointer => {
unify(cls, ix + off / 8u, Int);
}
Float => {
if off % 8u == 4u {
unify(cls, ix + off / 8u, SSEFv);
} else {
unify(cls, ix + off / 8u, SSEFs);
}
}
Double => {
unify(cls, ix + off / 8u, SSEDs);
}
Struct => {
classify_struct(ty.field_types(), cls, ix, off);
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
let mut i = 0u;
while i < len {
classify(elt, cls, ix, off + i * eltsz);
i += 1u;
}
}
_ => fail!("classify: unhandled type")
}
}
fn fixup(ty: Type, cls: &mut [RegClass]) {
let mut i = 0u;
let ty_kind = ty.kind();
let e = cls.len();
if cls.len() > 2u && (ty_kind == Struct || ty_kind == Array) {
if cls[i].is_sse() {
i += 1u;
while i < e {
if cls[i] != SSEUp {
all_mem(cls);
return;
}
i += 1u;
}
} else {
all_mem(cls);
return
}
} else {
while i < e {
if cls[i] == Memory {
all_mem(cls);
return;
}
if cls[i] == X87Up {
// for darwin
// cls[i] = SSEDs;
all_mem(cls);
return;
}
if cls[i] == SSEUp {
cls[i] = SSEDv;
} else if cls[i].is_sse() {
i += 1;
while i != e && cls[i] == SSEUp { i += 1u; }
} else if cls[i] == X87 {
i += 1;
while i != e && cls[i] == X87Up { i += 1u; }
} else {
i += 1;
}
}
}
}
let words = (ty_size(ty) + 7) / 8;
let mut cls = vec::from_elem(words, NoClass);
if words > 4 {
all_mem(cls);
return cls;
}
classify(ty, cls, 0, 0);
fixup(ty, cls);
return cls;
}
fn llreg_ty(cls: &[RegClass]) -> Type {
fn llvec_len(cls: &[RegClass]) -> uint {
let mut len = 1u;
for cls.iter().advance |c| {
if *c != SSEUp {
break;
}
len += 1u;
}
return len;
}
let mut tys = ~[];
let mut i = 0u;
let e = cls.len();
while i < e {
match cls[i] {
Int => {
tys.push(Type::i64());
}
SSEFv => {
let vec_len = llvec_len(cls.tailn(i + 1u));
let vec_ty = Type::vector(&Type::f32(), (vec_len * 2u) as u64);
tys.push(vec_ty);
i += vec_len;
loop;
}
SSEFs => {
tys.push(Type::f32());
}
SSEDs => {
tys.push(Type::f64());
}
_ => fail!("llregtype: unhandled class")
}
i += 1u;
}
return Type::struct_(tys, false);
}
fn x86_64_tys(atys: &[Type],
rty: Type,
ret_def: bool) -> FnType {
fn x86_64_ty(ty: Type,
is_mem_cls: &fn(cls: &[RegClass]) -> bool,
attr: Attribute) -> (LLVMType, Option<Attribute>) {
let (cast, attr, ty) = if !ty.is_reg_ty() {
let cls = classify_ty(ty);
if is_mem_cls(cls) {
(false, option::Some(attr), ty.ptr_to())
} else {
(true, option::None, llreg_ty(cls))
}
} else {
(false, option::None, ty)
};
(LLVMType { cast: cast, ty: ty }, attr)
}
let mut arg_tys = ~[];
let mut attrs = ~[];
for atys.iter().advance |t| {
let (ty, attr) = x86_64_ty(*t, |cls| cls.is_pass_byval(), ByValAttribute);
arg_tys.push(ty);
attrs.push(attr);
}
let mut (ret_ty, ret_attr) = x86_64_ty(rty, |cls| cls.is_ret_bysret(),
StructRetAttribute);
let sret = ret_attr.is_some();
if sret {
arg_tys = vec::append(~[ret_ty], arg_tys);
ret_ty = LLVMType {
cast: false,
ty: Type::void()
};
attrs = vec::append(~[ret_attr], attrs);
} else if !ret_def {
ret_ty = LLVMType {
cast: false,
ty: Type::void()
};
}
return FnType {
arg_tys: arg_tys,
ret_ty: ret_ty,
attrs: attrs,
sret: sret
};
}
enum X86_64_ABIInfo { X86_64_ABIInfo }
impl ABIInfo for X86_64_ABIInfo {
fn compute_info(&self,
atys: &[Type],
rty: Type,
ret_def: bool) -> FnType {
return x86_64_tys(atys, rty, ret_def);
}
}
pub fn abi_info() -> @ABIInfo {
return @X86_64_ABIInfo as @ABIInfo;
}