// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The classification code for the x86_64 ABI is taken from the clay language // https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp use lib::llvm::{llvm, Integer, Pointer, Float, Double}; use lib::llvm::{Struct, Array, Attribute}; use lib::llvm::{StructRetAttribute, ByValAttribute}; use middle::trans::cabi::*; use middle::trans::type_::Type; use core::option; use core::option::Option; use core::uint; use core::vec; #[deriving(Eq)] enum RegClass { NoClass, Int, SSEFs, SSEFv, SSEDs, SSEDv, SSEInt, SSEUp, X87, X87Up, ComplexX87, Memory } impl Type { fn is_reg_ty(&self) -> bool { match self.kind() { Integer | Pointer | Float | Double => true, _ => false } } } impl RegClass { fn is_sse(&self) -> bool { match *self { SSEFs | SSEFv | SSEDs | SSEDv => true, _ => false } } } trait ClassList { fn is_pass_byval(&self) -> bool; fn is_ret_bysret(&self) -> bool; } impl<'self> ClassList for &'self [RegClass] { fn is_pass_byval(&self) -> bool { if self.len() == 0 { return false; } let class = self[0]; class == Memory || class == X87 || class == ComplexX87 } fn is_ret_bysret(&self) -> bool { if self.len() == 0 { return false; } self[0] == Memory } } fn classify_ty(ty: Type) -> ~[RegClass] { fn align(off: uint, ty: Type) -> uint { let a = ty_align(ty); return (off + a - 1u) / a * a; } fn ty_align(ty: Type) -> uint { match ty.kind() { Integer => { unsafe { ((llvm::LLVMGetIntTypeWidth(ty.to_ref()) as uint) + 7) / 8 } } Pointer => 8, Float => 4, Double => 8, Struct => { if ty.is_packed() { 1 } else { let str_tys = ty.field_types(); str_tys.iter().fold(1, |a, t| uint::max(a, ty_align(*t))) } } Array => { let elt = ty.element_type(); ty_align(elt) } _ => fail!("ty_size: unhandled type") } } fn ty_size(ty: Type) -> uint { match ty.kind() { Integer => { unsafe { ((llvm::LLVMGetIntTypeWidth(ty.to_ref()) as uint) + 7) / 8 } } Pointer => 8, Float => 4, Double => 8, Struct => { let str_tys = ty.field_types(); if ty.is_packed() { str_tys.iter().fold(0, |s, t| s + ty_size(*t)) } else { let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t)); align(size, ty) } } Array => { let len = ty.array_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); len * eltsz } _ => fail!("ty_size: unhandled type") } } fn all_mem(cls: &mut [RegClass]) { for uint::range(0, cls.len()) |i| { cls[i] = Memory; } } fn unify(cls: &mut [RegClass], i: uint, newv: RegClass) { if cls[i] == newv { return; } else if cls[i] == NoClass { cls[i] = newv; } else if newv == NoClass { return; } else if cls[i] == Memory || newv == Memory { cls[i] = Memory; } else if cls[i] == Int || newv == Int { cls[i] = Int; } else if cls[i] == X87 || cls[i] == X87Up || cls[i] == ComplexX87 || newv == X87 || newv == X87Up || newv == ComplexX87 { cls[i] = Memory; } else { cls[i] = newv; } } fn classify_struct(tys: &[Type], cls: &mut [RegClass], i: uint, off: uint) { let mut field_off = off; for tys.iter().advance |ty| { field_off = align(field_off, *ty); classify(*ty, cls, i, field_off); field_off += ty_size(*ty); } } fn classify(ty: Type, cls: &mut [RegClass], ix: uint, off: uint) { let t_align = ty_align(ty); let t_size = ty_size(ty); let misalign = off % t_align; if misalign != 0u { let mut i = off / 8u; let e = (off + t_size + 7u) / 8u; while i < e { unify(cls, ix + i, Memory); i += 1u; } return; } match ty.kind() { Integer | Pointer => { unify(cls, ix + off / 8u, Int); } Float => { if off % 8u == 4u { unify(cls, ix + off / 8u, SSEFv); } else { unify(cls, ix + off / 8u, SSEFs); } } Double => { unify(cls, ix + off / 8u, SSEDs); } Struct => { classify_struct(ty.field_types(), cls, ix, off); } Array => { let len = ty.array_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); let mut i = 0u; while i < len { classify(elt, cls, ix, off + i * eltsz); i += 1u; } } _ => fail!("classify: unhandled type") } } fn fixup(ty: Type, cls: &mut [RegClass]) { let mut i = 0u; let ty_kind = ty.kind(); let e = cls.len(); if cls.len() > 2u && (ty_kind == Struct || ty_kind == Array) { if cls[i].is_sse() { i += 1u; while i < e { if cls[i] != SSEUp { all_mem(cls); return; } i += 1u; } } else { all_mem(cls); return } } else { while i < e { if cls[i] == Memory { all_mem(cls); return; } if cls[i] == X87Up { // for darwin // cls[i] = SSEDs; all_mem(cls); return; } if cls[i] == SSEUp { cls[i] = SSEDv; } else if cls[i].is_sse() { i += 1; while i != e && cls[i] == SSEUp { i += 1u; } } else if cls[i] == X87 { i += 1; while i != e && cls[i] == X87Up { i += 1u; } } else { i += 1; } } } } let words = (ty_size(ty) + 7) / 8; let mut cls = vec::from_elem(words, NoClass); if words > 4 { all_mem(cls); return cls; } classify(ty, cls, 0, 0); fixup(ty, cls); return cls; } fn llreg_ty(cls: &[RegClass]) -> Type { fn llvec_len(cls: &[RegClass]) -> uint { let mut len = 1u; for cls.iter().advance |c| { if *c != SSEUp { break; } len += 1u; } return len; } let mut tys = ~[]; let mut i = 0u; let e = cls.len(); while i < e { match cls[i] { Int => { tys.push(Type::i64()); } SSEFv => { let vec_len = llvec_len(cls.tailn(i + 1u)); let vec_ty = Type::vector(&Type::f32(), (vec_len * 2u) as u64); tys.push(vec_ty); i += vec_len; loop; } SSEFs => { tys.push(Type::f32()); } SSEDs => { tys.push(Type::f64()); } _ => fail!("llregtype: unhandled class") } i += 1u; } return Type::struct_(tys, false); } fn x86_64_tys(atys: &[Type], rty: Type, ret_def: bool) -> FnType { fn x86_64_ty(ty: Type, is_mem_cls: &fn(cls: &[RegClass]) -> bool, attr: Attribute) -> (LLVMType, Option) { let (cast, attr, ty) = if !ty.is_reg_ty() { let cls = classify_ty(ty); if is_mem_cls(cls) { (false, option::Some(attr), ty.ptr_to()) } else { (true, option::None, llreg_ty(cls)) } } else { (false, option::None, ty) }; (LLVMType { cast: cast, ty: ty }, attr) } let mut arg_tys = ~[]; let mut attrs = ~[]; for atys.iter().advance |t| { let (ty, attr) = x86_64_ty(*t, |cls| cls.is_pass_byval(), ByValAttribute); arg_tys.push(ty); attrs.push(attr); } let mut (ret_ty, ret_attr) = x86_64_ty(rty, |cls| cls.is_ret_bysret(), StructRetAttribute); let sret = ret_attr.is_some(); if sret { arg_tys = vec::append(~[ret_ty], arg_tys); ret_ty = LLVMType { cast: false, ty: Type::void() }; attrs = vec::append(~[ret_attr], attrs); } else if !ret_def { ret_ty = LLVMType { cast: false, ty: Type::void() }; } return FnType { arg_tys: arg_tys, ret_ty: ret_ty, attrs: attrs, sret: sret }; } enum X86_64_ABIInfo { X86_64_ABIInfo } impl ABIInfo for X86_64_ABIInfo { fn compute_info(&self, atys: &[Type], rty: Type, ret_def: bool) -> FnType { return x86_64_tys(atys, rty, ret_def); } } pub fn abi_info() -> @ABIInfo { return @X86_64_ABIInfo as @ABIInfo; }