rust/src/librustc/middle/dataflow.rs
Niko Matsakis 729b07f83c Modify borrow checker to visit irrefutable patterns that appear in
let and function arguments; modify type checker to store type
information for all patterns and handles some missing cases.
2013-07-08 13:55:10 -04:00

1058 lines
37 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* A module for propagating forward dataflow information. The analysis
* assumes that the items to be propagated can be represented as bits
* and thus uses bitvectors. Your job is simply to specify the so-called
* GEN and KILL bits for each expression.
*/
use std::cast;
use std::io;
use std::uint;
use std::vec;
use std::hashmap::HashMap;
use syntax::ast;
use syntax::ast_util;
use syntax::ast_util::id_range;
use syntax::print::{pp, pprust};
use middle::ty;
use middle::typeck;
use util::ppaux::Repr;
pub struct DataFlowContext<O> {
priv tcx: ty::ctxt,
priv method_map: typeck::method_map,
/// the data flow operator
priv oper: O,
/// number of bits to propagate per id
priv bits_per_id: uint,
/// number of words we will use to store bits_per_id.
/// equal to bits_per_id/uint::bits rounded up.
priv words_per_id: uint,
// mapping from node to bitset index.
priv nodeid_to_bitset: HashMap<ast::node_id,uint>,
// Bit sets per id. The following three fields (`gens`, `kills`,
// and `on_entry`) all have the same structure. For each id in
// `id_range`, there is a range of words equal to `words_per_id`.
// So, to access the bits for any given id, you take a slice of
// the full vector (see the method `compute_id_range()`).
/// bits generated as we exit the scope `id`. Updated by `add_gen()`.
priv gens: ~[uint],
/// bits killed as we exit the scope `id`. Updated by `add_kill()`.
priv kills: ~[uint],
/// bits that are valid on entry to the scope `id`. Updated by
/// `propagate()`.
priv on_entry: ~[uint]
}
/// Parameterization for the precise form of data flow that is used.
pub trait DataFlowOperator {
/// Specifies the initial value for each bit in the `on_entry` set
fn initial_value(&self) -> bool;
/// Joins two predecessor bits together, typically either `|` or `&`
fn join(&self, succ: uint, pred: uint) -> uint;
/// True if we should propagate through closures
fn walk_closures(&self) -> bool;
}
struct PropagationContext<'self, O> {
dfcx: &'self mut DataFlowContext<O>,
changed: bool
}
#[deriving(Eq)]
enum LoopKind {
/// A `while` or `loop` loop
TrueLoop,
/// A `for` "loop" (i.e., really a func call where `break`, `return`,
/// and `loop` all essentially perform an early return from the closure)
ForLoop
}
struct LoopScope<'self> {
loop_id: ast::node_id,
loop_kind: LoopKind,
break_bits: ~[uint]
}
impl<O:DataFlowOperator> DataFlowContext<O> {
pub fn new(tcx: ty::ctxt,
method_map: typeck::method_map,
oper: O,
id_range: id_range,
bits_per_id: uint) -> DataFlowContext<O> {
let words_per_id = (bits_per_id + uint::bits - 1) / uint::bits;
debug!("DataFlowContext::new(id_range=%?, bits_per_id=%?, words_per_id=%?)",
id_range, bits_per_id, words_per_id);
let gens = ~[];
let kills = ~[];
let on_entry = ~[];
DataFlowContext {
tcx: tcx,
method_map: method_map,
words_per_id: words_per_id,
nodeid_to_bitset: HashMap::new(),
bits_per_id: bits_per_id,
oper: oper,
gens: gens,
kills: kills,
on_entry: on_entry
}
}
pub fn add_gen(&mut self, id: ast::node_id, bit: uint) {
//! Indicates that `id` generates `bit`
debug!("add_gen(id=%?, bit=%?)", id, bit);
let (start, end) = self.compute_id_range(id);
{
let gens = self.gens.mut_slice(start, end);
set_bit(gens, bit);
}
}
pub fn add_kill(&mut self, id: ast::node_id, bit: uint) {
//! Indicates that `id` kills `bit`
debug!("add_kill(id=%?, bit=%?)", id, bit);
let (start, end) = self.compute_id_range(id);
{
let kills = self.kills.mut_slice(start, end);
set_bit(kills, bit);
}
}
fn apply_gen_kill(&mut self, id: ast::node_id, bits: &mut [uint]) {
//! Applies the gen and kill sets for `id` to `bits`
debug!("apply_gen_kill(id=%?, bits=%s) [before]",
id, mut_bits_to_str(bits));
let (start, end) = self.compute_id_range(id);
let gens = self.gens.slice(start, end);
bitwise(bits, gens, |a, b| a | b);
let kills = self.kills.slice(start, end);
bitwise(bits, kills, |a, b| a & !b);
debug!("apply_gen_kill(id=%?, bits=%s) [after]",
id, mut_bits_to_str(bits));
}
fn apply_kill(&mut self, id: ast::node_id, bits: &mut [uint]) {
debug!("apply_kill(id=%?, bits=%s) [before]",
id, mut_bits_to_str(bits));
let (start, end) = self.compute_id_range(id);
let kills = self.kills.slice(start, end);
bitwise(bits, kills, |a, b| a & !b);
debug!("apply_kill(id=%?, bits=%s) [after]",
id, mut_bits_to_str(bits));
}
fn compute_id_range_frozen(&self, id: ast::node_id) -> (uint, uint) {
let n = *self.nodeid_to_bitset.get(&id);
let start = n * self.words_per_id;
let end = start + self.words_per_id;
(start, end)
}
fn compute_id_range(&mut self, id: ast::node_id) -> (uint, uint) {
let mut expanded = false;
let len = self.nodeid_to_bitset.len();
let n = do self.nodeid_to_bitset.find_or_insert_with(id) |_| {
expanded = true;
len
};
if expanded {
let entry = if self.oper.initial_value() { uint::max_value } else {0};
for self.words_per_id.times {
self.gens.push(0);
self.kills.push(0);
self.on_entry.push(entry);
}
}
let start = *n * self.words_per_id;
let end = start + self.words_per_id;
assert!(start < self.gens.len());
assert!(end <= self.gens.len());
assert!(self.gens.len() == self.kills.len());
assert!(self.gens.len() == self.on_entry.len());
(start, end)
}
pub fn each_bit_on_entry_frozen(&self,
id: ast::node_id,
f: &fn(uint) -> bool) -> bool {
//! Iterates through each bit that is set on entry to `id`.
//! Only useful after `propagate()` has been called.
if !self.nodeid_to_bitset.contains_key(&id) {
return true;
}
let (start, end) = self.compute_id_range_frozen(id);
let on_entry = self.on_entry.slice(start, end);
debug!("each_bit_on_entry_frozen(id=%?, on_entry=%s)",
id, bits_to_str(on_entry));
self.each_bit(on_entry, f)
}
pub fn each_bit_on_entry(&mut self,
id: ast::node_id,
f: &fn(uint) -> bool) -> bool {
//! Iterates through each bit that is set on entry to `id`.
//! Only useful after `propagate()` has been called.
let (start, end) = self.compute_id_range(id);
let on_entry = self.on_entry.slice(start, end);
debug!("each_bit_on_entry(id=%?, on_entry=%s)",
id, bits_to_str(on_entry));
self.each_bit(on_entry, f)
}
pub fn each_gen_bit(&mut self,
id: ast::node_id,
f: &fn(uint) -> bool) -> bool {
//! Iterates through each bit in the gen set for `id`.
let (start, end) = self.compute_id_range(id);
let gens = self.gens.slice(start, end);
debug!("each_gen_bit(id=%?, gens=%s)",
id, bits_to_str(gens));
self.each_bit(gens, f)
}
pub fn each_gen_bit_frozen(&self,
id: ast::node_id,
f: &fn(uint) -> bool) -> bool {
//! Iterates through each bit in the gen set for `id`.
if !self.nodeid_to_bitset.contains_key(&id) {
return true;
}
let (start, end) = self.compute_id_range_frozen(id);
let gens = self.gens.slice(start, end);
debug!("each_gen_bit(id=%?, gens=%s)",
id, bits_to_str(gens));
self.each_bit(gens, f)
}
fn each_bit(&self,
words: &[uint],
f: &fn(uint) -> bool) -> bool {
//! Helper for iterating over the bits in a bit set.
for words.iter().enumerate().advance |(word_index, &word)| {
if word != 0 {
let base_index = word_index * uint::bits;
for uint::range(0, uint::bits) |offset| {
let bit = 1 << offset;
if (word & bit) != 0 {
// NB: we round up the total number of bits
// that we store in any given bit set so that
// it is an even multiple of uint::bits. This
// means that there may be some stray bits at
// the end that do not correspond to any
// actual value. So before we callback, check
// whether the bit_index is greater than the
// actual value the user specified and stop
// iterating if so.
let bit_index = base_index + offset;
if bit_index >= self.bits_per_id {
return true;
} else if !f(bit_index) {
return false;
}
}
}
}
}
return true;
}
}
impl<O:DataFlowOperator+Copy+'static> DataFlowContext<O> {
// ^^^^^^^^^^^^ only needed for pretty printing
pub fn propagate(&mut self, blk: &ast::blk) {
//! Performs the data flow analysis.
if self.bits_per_id == 0 {
// Optimize the surprisingly common degenerate case.
return;
}
let mut propcx = PropagationContext {
dfcx: self,
changed: true
};
let mut temp = vec::from_elem(self.words_per_id, 0);
let mut loop_scopes = ~[];
while propcx.changed {
propcx.changed = false;
propcx.reset(temp);
propcx.walk_block(blk, temp, &mut loop_scopes);
}
debug!("Dataflow result:");
debug!("%s", {
let this = @copy *self;
this.pretty_print_to(io::stderr(), blk);
""
});
}
fn pretty_print_to(@self, wr: @io::Writer, blk: &ast::blk) {
let pre: @fn(pprust::ann_node) = |node| {
let (ps, id) = match node {
pprust::node_expr(ps, expr) => (ps, expr.id),
pprust::node_block(ps, blk) => (ps, blk.node.id),
pprust::node_item(ps, _) => (ps, 0),
pprust::node_pat(ps, pat) => (ps, pat.id)
};
if self.nodeid_to_bitset.contains_key(&id) {
let (start, end) = self.compute_id_range_frozen(id);
let on_entry = self.on_entry.slice(start, end);
let entry_str = bits_to_str(on_entry);
let gens = self.gens.slice(start, end);
let gens_str = if gens.iter().any(|&u| u != 0) {
fmt!(" gen: %s", bits_to_str(gens))
} else {
~""
};
let kills = self.kills.slice(start, end);
let kills_str = if kills.iter().any(|&u| u != 0) {
fmt!(" kill: %s", bits_to_str(kills))
} else {
~""
};
let comment_str = fmt!("id %d: %s%s%s",
id, entry_str, gens_str, kills_str);
pprust::synth_comment(ps, comment_str);
pp::space(ps.s);
}
};
let post: @fn(pprust::ann_node) = |_| {
};
let ps = pprust::rust_printer_annotated(
wr, self.tcx.sess.intr(),
pprust::pp_ann {pre:pre, post:post});
pprust::cbox(ps, pprust::indent_unit);
pprust::ibox(ps, 0u);
pprust::print_block(ps, blk);
pp::eof(ps.s);
}
}
impl<'self, O:DataFlowOperator> PropagationContext<'self, O> {
fn tcx(&self) -> ty::ctxt {
self.dfcx.tcx
}
fn walk_block(&mut self,
blk: &ast::blk,
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
debug!("DataFlowContext::walk_block(blk.node.id=%?, in_out=%s)",
blk.node.id, bits_to_str(reslice(in_out)));
self.merge_with_entry_set(blk.node.id, in_out);
for blk.node.stmts.iter().advance |&stmt| {
self.walk_stmt(stmt, in_out, loop_scopes);
}
self.walk_opt_expr(blk.node.expr, in_out, loop_scopes);
self.dfcx.apply_gen_kill(blk.node.id, in_out);
}
fn walk_stmt(&mut self,
stmt: @ast::stmt,
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
match stmt.node {
ast::stmt_decl(decl, _) => {
self.walk_decl(decl, in_out, loop_scopes);
}
ast::stmt_expr(expr, _) | ast::stmt_semi(expr, _) => {
self.walk_expr(expr, in_out, loop_scopes);
}
ast::stmt_mac(*) => {
self.tcx().sess.span_bug(stmt.span, "unexpanded macro");
}
}
}
fn walk_decl(&mut self,
decl: @ast::decl,
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
match decl.node {
ast::decl_local(local) => {
self.walk_opt_expr(local.node.init, in_out, loop_scopes);
self.walk_pat(local.node.pat, in_out, loop_scopes);
}
ast::decl_item(_) => {}
}
}
fn walk_expr(&mut self,
expr: @ast::expr,
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
debug!("DataFlowContext::walk_expr(expr=%s, in_out=%s)",
expr.repr(self.dfcx.tcx), bits_to_str(reslice(in_out)));
self.merge_with_entry_set(expr.id, in_out);
match expr.node {
ast::expr_fn_block(ref decl, ref body) => {
if self.dfcx.oper.walk_closures() {
// In the absence of once fns, we must assume that
// every function body will execute more than
// once. Thus we treat every function body like a
// loop.
//
// What is subtle and a bit tricky, also, is how
// to deal with the "output" bits---that is, what
// do we consider to be the successor of a
// function body, given that it could be called
// from any point within its lifetime? What we do
// is to add their effects immediately as of the
// point of creation. Of course we have to ensure
// that this is sound for the analyses which make
// use of dataflow.
//
// In the case of the initedness checker (which
// does not currently use dataflow, but I hope to
// convert at some point), we will simply not walk
// closures at all, so it's a moot point.
//
// In the case of the borrow checker, this means
// the loans which would be created by calling a
// function come into effect immediately when the
// function is created. This is guaranteed to be
// earlier than the point at which the loan
// actually comes into scope (which is the point
// at which the closure is *called*). Because
// loans persist until the scope of the loans is
// exited, it is always a safe approximation to
// have a loan begin earlier than it actually will
// at runtime, so this should be sound.
//
// We stil have to be careful in the region
// checker and borrow checker to treat function
// bodies like loops, which implies some
// limitations. For example, a closure cannot root
// a managed box for longer than its body.
//
// General control flow looks like this:
//
// +- (expr) <----------+
// | | |
// | v |
// | (body) -----------+--> (exit)
// | | |
// | + (break/loop) -+
// | |
// +--------------------+
//
// This is a bit more conservative than a loop.
// Note that we must assume that even after a
// `break` occurs (e.g., in a `for` loop) that the
// closure may be reinvoked.
//
// One difference from other loops is that `loop`
// and `break` statements which target a closure
// both simply add to the `break_bits`.
// func_bits represents the state when the function
// returns
let mut func_bits = reslice(in_out).to_owned();
loop_scopes.push(LoopScope {
loop_id: expr.id,
loop_kind: ForLoop,
break_bits: reslice(in_out).to_owned()
});
for decl.inputs.iter().advance |input| {
self.walk_pat(input.pat, func_bits, loop_scopes);
}
self.walk_block(body, func_bits, loop_scopes);
// add the bits from any early return via `break`,
// `continue`, or `return` into `func_bits`
let loop_scope = loop_scopes.pop();
join_bits(&self.dfcx.oper, loop_scope.break_bits, func_bits);
// add `func_bits` to the entry bits for `expr`,
// since we must assume the function may be called
// more than once
self.add_to_entry_set(expr.id, reslice(func_bits));
// the final exit bits include whatever was present
// in the original, joined with the bits from the function
join_bits(&self.dfcx.oper, func_bits, in_out);
}
}
ast::expr_if(cond, ref then, els) => {
//
// (cond)
// |
// v
// ( )
// / \
// | |
// v v
// (then)(els)
// | |
// v v
// ( succ )
//
self.walk_expr(cond, in_out, loop_scopes);
let mut then_bits = reslice(in_out).to_owned();
self.walk_block(then, then_bits, loop_scopes);
self.walk_opt_expr(els, in_out, loop_scopes);
join_bits(&self.dfcx.oper, then_bits, in_out);
}
ast::expr_while(cond, ref blk) => {
//
// (expr) <--+
// | |
// v |
// +--(cond) |
// | | |
// | v |
// v (blk) ----+
// |
// <--+ (break)
//
self.walk_expr(cond, in_out, loop_scopes);
let mut body_bits = reslice(in_out).to_owned();
loop_scopes.push(LoopScope {
loop_id: expr.id,
loop_kind: TrueLoop,
break_bits: reslice(in_out).to_owned()
});
self.walk_block(blk, body_bits, loop_scopes);
self.add_to_entry_set(expr.id, body_bits);
let new_loop_scope = loop_scopes.pop();
copy_bits(new_loop_scope.break_bits, in_out);
}
ast::expr_loop(ref blk, _) => {
//
// (expr) <--+
// | |
// v |
// (blk) ----+
// |
// <--+ (break)
//
let mut body_bits = reslice(in_out).to_owned();
self.reset(in_out);
loop_scopes.push(LoopScope {
loop_id: expr.id,
loop_kind: TrueLoop,
break_bits: reslice(in_out).to_owned()
});
self.walk_block(blk, body_bits, loop_scopes);
self.add_to_entry_set(expr.id, body_bits);
let new_loop_scope = loop_scopes.pop();
assert_eq!(new_loop_scope.loop_id, expr.id);
copy_bits(new_loop_scope.break_bits, in_out);
}
ast::expr_match(discr, ref arms) => {
//
// (discr)
// / | \
// | | |
// v v v
// (..arms..)
// | | |
// v v v
// ( succ )
//
//
self.walk_expr(discr, in_out, loop_scopes);
let mut guards = reslice(in_out).to_owned();
// We know that exactly one arm will be taken, so we
// can start out with a blank slate and just union
// together the bits from each arm:
self.reset(in_out);
for arms.iter().advance |arm| {
// in_out reflects the discr and all guards to date
self.walk_opt_expr(arm.guard, guards, loop_scopes);
// determine the bits for the body and then union
// them into `in_out`, which reflects all bodies to date
let mut body = reslice(guards).to_owned();
self.walk_pat_alternatives(arm.pats, body, loop_scopes);
self.walk_block(&arm.body, body, loop_scopes);
join_bits(&self.dfcx.oper, body, in_out);
}
}
ast::expr_ret(o_e) => {
self.walk_opt_expr(o_e, in_out, loop_scopes);
// is this a return from a `for`-loop closure?
match loop_scopes.iter().position(|s| s.loop_kind == ForLoop) {
Some(i) => {
// if so, add the in_out bits to the state
// upon exit. Remember that we cannot count
// upon the `for` loop function not to invoke
// the closure again etc.
self.break_from_to(expr, &mut loop_scopes[i], in_out);
}
None => {}
}
self.reset(in_out);
}
ast::expr_break(label) => {
let scope = self.find_scope(expr, label, loop_scopes);
self.break_from_to(expr, scope, in_out);
self.reset(in_out);
}
ast::expr_again(label) => {
let scope = self.find_scope(expr, label, loop_scopes);
match scope.loop_kind {
TrueLoop => {
self.pop_scopes(expr, scope, in_out);
self.add_to_entry_set(scope.loop_id, reslice(in_out));
}
ForLoop => {
// If this `loop` construct is looping back to a `for`
// loop, then `loop` is really just a return from the
// closure. Therefore, we treat it the same as `break`.
// See case for `expr_fn_block` for more details.
self.break_from_to(expr, scope, in_out);
}
}
self.reset(in_out);
}
ast::expr_assign(l, r) |
ast::expr_assign_op(_, _, l, r) => {
self.walk_expr(r, in_out, loop_scopes);
self.walk_expr(l, in_out, loop_scopes);
}
ast::expr_vec(ref exprs, _) => {
self.walk_exprs(*exprs, in_out, loop_scopes)
}
ast::expr_repeat(l, r, _) => {
self.walk_expr(l, in_out, loop_scopes);
self.walk_expr(r, in_out, loop_scopes);
}
ast::expr_struct(_, ref fields, with_expr) => {
for fields.iter().advance |field| {
self.walk_expr(field.node.expr, in_out, loop_scopes);
}
self.walk_opt_expr(with_expr, in_out, loop_scopes);
}
ast::expr_call(f, ref args, _) => {
self.walk_call(f.id, expr.id,
f, *args, in_out, loop_scopes);
}
ast::expr_method_call(callee_id, rcvr, _, _, ref args, _) => {
self.walk_call(callee_id, expr.id,
rcvr, *args, in_out, loop_scopes);
}
ast::expr_index(callee_id, l, r) |
ast::expr_binary(callee_id, _, l, r) if self.is_method_call(expr) => {
self.walk_call(callee_id, expr.id,
l, [r], in_out, loop_scopes);
}
ast::expr_unary(callee_id, _, e) if self.is_method_call(expr) => {
self.walk_call(callee_id, expr.id,
e, [], in_out, loop_scopes);
}
ast::expr_tup(ref exprs) => {
self.walk_exprs(*exprs, in_out, loop_scopes);
}
ast::expr_binary(_, op, l, r) if ast_util::lazy_binop(op) => {
self.walk_expr(l, in_out, loop_scopes);
let temp = reslice(in_out).to_owned();
self.walk_expr(r, in_out, loop_scopes);
join_bits(&self.dfcx.oper, temp, in_out);
}
ast::expr_log(l, r) |
ast::expr_index(_, l, r) |
ast::expr_binary(_, _, l, r) => {
self.walk_exprs([l, r], in_out, loop_scopes);
}
ast::expr_lit(*) |
ast::expr_path(*) |
ast::expr_self => {
}
ast::expr_addr_of(_, e) |
ast::expr_copy(e) |
ast::expr_loop_body(e) |
ast::expr_do_body(e) |
ast::expr_cast(e, _) |
ast::expr_unary(_, _, e) |
ast::expr_paren(e) |
ast::expr_vstore(e, _) |
ast::expr_field(e, _, _) => {
self.walk_expr(e, in_out, loop_scopes);
}
ast::expr_inline_asm(ref inline_asm) => {
for inline_asm.inputs.iter().advance |&(_, expr)| {
self.walk_expr(expr, in_out, loop_scopes);
}
for inline_asm.outputs.iter().advance |&(_, expr)| {
self.walk_expr(expr, in_out, loop_scopes);
}
}
ast::expr_block(ref blk) => {
self.walk_block(blk, in_out, loop_scopes);
}
ast::expr_mac(*) => {
self.tcx().sess.span_bug(expr.span, "unexpanded macro");
}
}
self.dfcx.apply_gen_kill(expr.id, in_out);
}
fn pop_scopes(&mut self,
from_expr: @ast::expr,
to_scope: &mut LoopScope,
in_out: &mut [uint]) {
//! Whenever you have a `break` or a `loop` statement, flow
//! exits through any number of enclosing scopes on its
//! way to the new destination. This function applies the kill
//! sets of those enclosing scopes to `in_out` (those kill sets
//! concern items that are going out of scope).
let tcx = self.tcx();
let region_maps = tcx.region_maps;
debug!("pop_scopes(from_expr=%s, to_scope=%?, in_out=%s)",
from_expr.repr(tcx), to_scope.loop_id,
bits_to_str(reslice(in_out)));
let mut id = from_expr.id;
while id != to_scope.loop_id {
self.dfcx.apply_kill(id, in_out);
match region_maps.opt_encl_scope(id) {
Some(i) => { id = i; }
None => {
tcx.sess.span_bug(
from_expr.span,
fmt!("pop_scopes(from_expr=%s, to_scope=%?) \
to_scope does not enclose from_expr",
from_expr.repr(tcx), to_scope.loop_id));
}
}
}
}
fn break_from_to(&mut self,
from_expr: @ast::expr,
to_scope: &mut LoopScope,
in_out: &mut [uint]) {
self.pop_scopes(from_expr, to_scope, in_out);
self.dfcx.apply_kill(from_expr.id, in_out);
join_bits(&self.dfcx.oper, reslice(in_out), to_scope.break_bits);
debug!("break_from_to(from_expr=%s, to_scope=%?) final break_bits=%s",
from_expr.repr(self.tcx()),
to_scope.loop_id,
bits_to_str(reslice(in_out)));
}
fn walk_exprs(&mut self,
exprs: &[@ast::expr],
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
for exprs.iter().advance |&expr| {
self.walk_expr(expr, in_out, loop_scopes);
}
}
fn walk_opt_expr(&mut self,
opt_expr: Option<@ast::expr>,
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
for opt_expr.iter().advance |&expr| {
self.walk_expr(expr, in_out, loop_scopes);
}
}
fn walk_call(&mut self,
_callee_id: ast::node_id,
call_id: ast::node_id,
arg0: @ast::expr,
args: &[@ast::expr],
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
self.walk_expr(arg0, in_out, loop_scopes);
self.walk_exprs(args, in_out, loop_scopes);
// FIXME(#6268) nested method calls
// self.merge_with_entry_set(callee_id, in_out);
// self.dfcx.apply_gen_kill(callee_id, in_out);
let return_ty = ty::node_id_to_type(self.tcx(), call_id);
let fails = ty::type_is_bot(return_ty);
if fails {
self.reset(in_out);
}
}
fn walk_pat(&mut self,
pat: @ast::pat,
in_out: &mut [uint],
_loop_scopes: &mut ~[LoopScope]) {
debug!("DataFlowContext::walk_pat(pat=%s, in_out=%s)",
pat.repr(self.dfcx.tcx), bits_to_str(reslice(in_out)));
for ast_util::walk_pat(pat) |p| {
debug!(" p.id=%? in_out=%s", p.id, bits_to_str(reslice(in_out)));
self.merge_with_entry_set(p.id, in_out);
self.dfcx.apply_gen_kill(p.id, in_out);
}
}
fn walk_pat_alternatives(&mut self,
pats: &[@ast::pat],
in_out: &mut [uint],
loop_scopes: &mut ~[LoopScope]) {
if pats.len() == 1 {
// Common special case:
return self.walk_pat(pats[0], in_out, loop_scopes);
}
// In the general case, the patterns in `pats` are
// alternatives, so we must treat this like an N-way select
// statement.
let initial_state = reslice(in_out).to_owned();
for pats.iter().advance |&pat| {
let mut temp = copy initial_state;
self.walk_pat(pat, temp, loop_scopes);
join_bits(&self.dfcx.oper, temp, in_out);
}
}
fn find_scope<'a>(&self,
expr: @ast::expr,
label: Option<ast::ident>,
loop_scopes: &'a mut ~[LoopScope]) -> &'a mut LoopScope {
let index = match label {
None => {
let len = loop_scopes.len();
len - 1
}
Some(_) => {
match self.tcx().def_map.find(&expr.id) {
Some(&ast::def_label(loop_id)) => {
match loop_scopes.iter().position(|l| l.loop_id == loop_id) {
Some(i) => i,
None => {
self.tcx().sess.span_bug(
expr.span,
fmt!("No loop scope for id %?", loop_id));
}
}
}
r => {
self.tcx().sess.span_bug(
expr.span,
fmt!("Bad entry `%?` in def_map for label", r));
}
}
}
};
&mut loop_scopes[index]
}
fn is_method_call(&self, expr: @ast::expr) -> bool {
self.dfcx.method_map.contains_key(&expr.id)
}
fn reset(&mut self, bits: &mut [uint]) {
let e = if self.dfcx.oper.initial_value() {uint::max_value} else {0};
for bits.mut_iter().advance |b| { *b = e; }
}
fn add_to_entry_set(&mut self, id: ast::node_id, pred_bits: &[uint]) {
debug!("add_to_entry_set(id=%?, pred_bits=%s)",
id, bits_to_str(pred_bits));
let (start, end) = self.dfcx.compute_id_range(id);
let changed = { // FIXME(#5074) awkward construction
let on_entry = self.dfcx.on_entry.mut_slice(start, end);
join_bits(&self.dfcx.oper, pred_bits, on_entry)
};
if changed {
debug!("changed entry set for %? to %s",
id, bits_to_str(self.dfcx.on_entry.slice(start, end)));
self.changed = true;
}
}
fn merge_with_entry_set(&mut self,
id: ast::node_id,
pred_bits: &mut [uint]) {
debug!("merge_with_entry_set(id=%?, pred_bits=%s)",
id, mut_bits_to_str(pred_bits));
let (start, end) = self.dfcx.compute_id_range(id);
let changed = { // FIXME(#5074) awkward construction
let on_entry = self.dfcx.on_entry.mut_slice(start, end);
let changed = join_bits(&self.dfcx.oper, reslice(pred_bits), on_entry);
copy_bits(reslice(on_entry), pred_bits);
changed
};
if changed {
debug!("changed entry set for %? to %s",
id, bits_to_str(self.dfcx.on_entry.slice(start, end)));
self.changed = true;
}
}
}
fn mut_bits_to_str(words: &mut [uint]) -> ~str {
bits_to_str(reslice(words))
}
fn bits_to_str(words: &[uint]) -> ~str {
let mut result = ~"";
let mut sep = '[';
// Note: this is a little endian printout of bytes.
for words.iter().advance |&word| {
let mut v = word;
for uint::range(0, uint::bytes) |_| {
result.push_char(sep);
result.push_str(fmt!("%02x", v & 0xFF));
v >>= 8;
sep = '-';
}
}
result.push_char(']');
return result;
}
fn copy_bits(in_vec: &[uint], out_vec: &mut [uint]) -> bool {
bitwise(out_vec, in_vec, |_, b| b)
}
fn join_bits<O:DataFlowOperator>(oper: &O,
in_vec: &[uint],
out_vec: &mut [uint]) -> bool {
bitwise(out_vec, in_vec, |a, b| oper.join(a, b))
}
#[inline]
fn bitwise(out_vec: &mut [uint],
in_vec: &[uint],
op: &fn(uint, uint) -> uint) -> bool {
assert_eq!(out_vec.len(), in_vec.len());
let mut changed = false;
for uint::range(0, out_vec.len()) |i| {
let old_val = out_vec[i];
let new_val = op(old_val, in_vec[i]);
out_vec[i] = new_val;
changed |= (old_val != new_val);
}
return changed;
}
fn set_bit(words: &mut [uint], bit: uint) -> bool {
debug!("set_bit: words=%s bit=%s",
mut_bits_to_str(words), bit_str(bit));
let word = bit / uint::bits;
let bit_in_word = bit % uint::bits;
let bit_mask = 1 << bit_in_word;
debug!("word=%u bit_in_word=%u bit_mask=%u", word, bit_in_word, word);
let oldv = words[word];
let newv = oldv | bit_mask;
words[word] = newv;
oldv != newv
}
fn bit_str(bit: uint) -> ~str {
let byte = bit >> 8;
let lobits = 1 << (bit & 0xFF);
fmt!("[%u:%u-%02x]", bit, byte, lobits)
}
fn reslice<'a>(v: &'a mut [uint]) -> &'a [uint] {
// bFIXME(#5074) this function should not be necessary at all
unsafe {
cast::transmute(v)
}
}