// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * A module for propagating forward dataflow information. The analysis * assumes that the items to be propagated can be represented as bits * and thus uses bitvectors. Your job is simply to specify the so-called * GEN and KILL bits for each expression. */ use std::cast; use std::io; use std::uint; use std::vec; use std::hashmap::HashMap; use syntax::ast; use syntax::ast_util; use syntax::ast_util::id_range; use syntax::print::{pp, pprust}; use middle::ty; use middle::typeck; use util::ppaux::Repr; pub struct DataFlowContext { priv tcx: ty::ctxt, priv method_map: typeck::method_map, /// the data flow operator priv oper: O, /// number of bits to propagate per id priv bits_per_id: uint, /// number of words we will use to store bits_per_id. /// equal to bits_per_id/uint::bits rounded up. priv words_per_id: uint, // mapping from node to bitset index. priv nodeid_to_bitset: HashMap, // Bit sets per id. The following three fields (`gens`, `kills`, // and `on_entry`) all have the same structure. For each id in // `id_range`, there is a range of words equal to `words_per_id`. // So, to access the bits for any given id, you take a slice of // the full vector (see the method `compute_id_range()`). /// bits generated as we exit the scope `id`. Updated by `add_gen()`. priv gens: ~[uint], /// bits killed as we exit the scope `id`. Updated by `add_kill()`. priv kills: ~[uint], /// bits that are valid on entry to the scope `id`. Updated by /// `propagate()`. priv on_entry: ~[uint] } /// Parameterization for the precise form of data flow that is used. pub trait DataFlowOperator { /// Specifies the initial value for each bit in the `on_entry` set fn initial_value(&self) -> bool; /// Joins two predecessor bits together, typically either `|` or `&` fn join(&self, succ: uint, pred: uint) -> uint; /// True if we should propagate through closures fn walk_closures(&self) -> bool; } struct PropagationContext<'self, O> { dfcx: &'self mut DataFlowContext, changed: bool } #[deriving(Eq)] enum LoopKind { /// A `while` or `loop` loop TrueLoop, /// A `for` "loop" (i.e., really a func call where `break`, `return`, /// and `loop` all essentially perform an early return from the closure) ForLoop } struct LoopScope<'self> { loop_id: ast::node_id, loop_kind: LoopKind, break_bits: ~[uint] } impl DataFlowContext { pub fn new(tcx: ty::ctxt, method_map: typeck::method_map, oper: O, id_range: id_range, bits_per_id: uint) -> DataFlowContext { let words_per_id = (bits_per_id + uint::bits - 1) / uint::bits; debug!("DataFlowContext::new(id_range=%?, bits_per_id=%?, words_per_id=%?)", id_range, bits_per_id, words_per_id); let gens = ~[]; let kills = ~[]; let on_entry = ~[]; DataFlowContext { tcx: tcx, method_map: method_map, words_per_id: words_per_id, nodeid_to_bitset: HashMap::new(), bits_per_id: bits_per_id, oper: oper, gens: gens, kills: kills, on_entry: on_entry } } pub fn add_gen(&mut self, id: ast::node_id, bit: uint) { //! Indicates that `id` generates `bit` debug!("add_gen(id=%?, bit=%?)", id, bit); let (start, end) = self.compute_id_range(id); { let gens = self.gens.mut_slice(start, end); set_bit(gens, bit); } } pub fn add_kill(&mut self, id: ast::node_id, bit: uint) { //! Indicates that `id` kills `bit` debug!("add_kill(id=%?, bit=%?)", id, bit); let (start, end) = self.compute_id_range(id); { let kills = self.kills.mut_slice(start, end); set_bit(kills, bit); } } fn apply_gen_kill(&mut self, id: ast::node_id, bits: &mut [uint]) { //! Applies the gen and kill sets for `id` to `bits` debug!("apply_gen_kill(id=%?, bits=%s) [before]", id, mut_bits_to_str(bits)); let (start, end) = self.compute_id_range(id); let gens = self.gens.slice(start, end); bitwise(bits, gens, |a, b| a | b); let kills = self.kills.slice(start, end); bitwise(bits, kills, |a, b| a & !b); debug!("apply_gen_kill(id=%?, bits=%s) [after]", id, mut_bits_to_str(bits)); } fn apply_kill(&mut self, id: ast::node_id, bits: &mut [uint]) { debug!("apply_kill(id=%?, bits=%s) [before]", id, mut_bits_to_str(bits)); let (start, end) = self.compute_id_range(id); let kills = self.kills.slice(start, end); bitwise(bits, kills, |a, b| a & !b); debug!("apply_kill(id=%?, bits=%s) [after]", id, mut_bits_to_str(bits)); } fn compute_id_range_frozen(&self, id: ast::node_id) -> (uint, uint) { let n = *self.nodeid_to_bitset.get(&id); let start = n * self.words_per_id; let end = start + self.words_per_id; (start, end) } fn compute_id_range(&mut self, id: ast::node_id) -> (uint, uint) { let mut expanded = false; let len = self.nodeid_to_bitset.len(); let n = do self.nodeid_to_bitset.find_or_insert_with(id) |_| { expanded = true; len }; if expanded { let entry = if self.oper.initial_value() { uint::max_value } else {0}; for self.words_per_id.times { self.gens.push(0); self.kills.push(0); self.on_entry.push(entry); } } let start = *n * self.words_per_id; let end = start + self.words_per_id; assert!(start < self.gens.len()); assert!(end <= self.gens.len()); assert!(self.gens.len() == self.kills.len()); assert!(self.gens.len() == self.on_entry.len()); (start, end) } pub fn each_bit_on_entry_frozen(&self, id: ast::node_id, f: &fn(uint) -> bool) -> bool { //! Iterates through each bit that is set on entry to `id`. //! Only useful after `propagate()` has been called. if !self.nodeid_to_bitset.contains_key(&id) { return true; } let (start, end) = self.compute_id_range_frozen(id); let on_entry = self.on_entry.slice(start, end); debug!("each_bit_on_entry_frozen(id=%?, on_entry=%s)", id, bits_to_str(on_entry)); self.each_bit(on_entry, f) } pub fn each_bit_on_entry(&mut self, id: ast::node_id, f: &fn(uint) -> bool) -> bool { //! Iterates through each bit that is set on entry to `id`. //! Only useful after `propagate()` has been called. let (start, end) = self.compute_id_range(id); let on_entry = self.on_entry.slice(start, end); debug!("each_bit_on_entry(id=%?, on_entry=%s)", id, bits_to_str(on_entry)); self.each_bit(on_entry, f) } pub fn each_gen_bit(&mut self, id: ast::node_id, f: &fn(uint) -> bool) -> bool { //! Iterates through each bit in the gen set for `id`. let (start, end) = self.compute_id_range(id); let gens = self.gens.slice(start, end); debug!("each_gen_bit(id=%?, gens=%s)", id, bits_to_str(gens)); self.each_bit(gens, f) } pub fn each_gen_bit_frozen(&self, id: ast::node_id, f: &fn(uint) -> bool) -> bool { //! Iterates through each bit in the gen set for `id`. if !self.nodeid_to_bitset.contains_key(&id) { return true; } let (start, end) = self.compute_id_range_frozen(id); let gens = self.gens.slice(start, end); debug!("each_gen_bit(id=%?, gens=%s)", id, bits_to_str(gens)); self.each_bit(gens, f) } fn each_bit(&self, words: &[uint], f: &fn(uint) -> bool) -> bool { //! Helper for iterating over the bits in a bit set. for words.iter().enumerate().advance |(word_index, &word)| { if word != 0 { let base_index = word_index * uint::bits; for uint::range(0, uint::bits) |offset| { let bit = 1 << offset; if (word & bit) != 0 { // NB: we round up the total number of bits // that we store in any given bit set so that // it is an even multiple of uint::bits. This // means that there may be some stray bits at // the end that do not correspond to any // actual value. So before we callback, check // whether the bit_index is greater than the // actual value the user specified and stop // iterating if so. let bit_index = base_index + offset; if bit_index >= self.bits_per_id { return true; } else if !f(bit_index) { return false; } } } } } return true; } } impl DataFlowContext { // ^^^^^^^^^^^^ only needed for pretty printing pub fn propagate(&mut self, blk: &ast::blk) { //! Performs the data flow analysis. if self.bits_per_id == 0 { // Optimize the surprisingly common degenerate case. return; } let mut propcx = PropagationContext { dfcx: self, changed: true }; let mut temp = vec::from_elem(self.words_per_id, 0); let mut loop_scopes = ~[]; while propcx.changed { propcx.changed = false; propcx.reset(temp); propcx.walk_block(blk, temp, &mut loop_scopes); } debug!("Dataflow result:"); debug!("%s", { let this = @copy *self; this.pretty_print_to(io::stderr(), blk); "" }); } fn pretty_print_to(@self, wr: @io::Writer, blk: &ast::blk) { let pre: @fn(pprust::ann_node) = |node| { let (ps, id) = match node { pprust::node_expr(ps, expr) => (ps, expr.id), pprust::node_block(ps, blk) => (ps, blk.node.id), pprust::node_item(ps, _) => (ps, 0), pprust::node_pat(ps, pat) => (ps, pat.id) }; if self.nodeid_to_bitset.contains_key(&id) { let (start, end) = self.compute_id_range_frozen(id); let on_entry = self.on_entry.slice(start, end); let entry_str = bits_to_str(on_entry); let gens = self.gens.slice(start, end); let gens_str = if gens.iter().any(|&u| u != 0) { fmt!(" gen: %s", bits_to_str(gens)) } else { ~"" }; let kills = self.kills.slice(start, end); let kills_str = if kills.iter().any(|&u| u != 0) { fmt!(" kill: %s", bits_to_str(kills)) } else { ~"" }; let comment_str = fmt!("id %d: %s%s%s", id, entry_str, gens_str, kills_str); pprust::synth_comment(ps, comment_str); pp::space(ps.s); } }; let post: @fn(pprust::ann_node) = |_| { }; let ps = pprust::rust_printer_annotated( wr, self.tcx.sess.intr(), pprust::pp_ann {pre:pre, post:post}); pprust::cbox(ps, pprust::indent_unit); pprust::ibox(ps, 0u); pprust::print_block(ps, blk); pp::eof(ps.s); } } impl<'self, O:DataFlowOperator> PropagationContext<'self, O> { fn tcx(&self) -> ty::ctxt { self.dfcx.tcx } fn walk_block(&mut self, blk: &ast::blk, in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { debug!("DataFlowContext::walk_block(blk.node.id=%?, in_out=%s)", blk.node.id, bits_to_str(reslice(in_out))); self.merge_with_entry_set(blk.node.id, in_out); for blk.node.stmts.iter().advance |&stmt| { self.walk_stmt(stmt, in_out, loop_scopes); } self.walk_opt_expr(blk.node.expr, in_out, loop_scopes); self.dfcx.apply_gen_kill(blk.node.id, in_out); } fn walk_stmt(&mut self, stmt: @ast::stmt, in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { match stmt.node { ast::stmt_decl(decl, _) => { self.walk_decl(decl, in_out, loop_scopes); } ast::stmt_expr(expr, _) | ast::stmt_semi(expr, _) => { self.walk_expr(expr, in_out, loop_scopes); } ast::stmt_mac(*) => { self.tcx().sess.span_bug(stmt.span, "unexpanded macro"); } } } fn walk_decl(&mut self, decl: @ast::decl, in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { match decl.node { ast::decl_local(local) => { self.walk_opt_expr(local.node.init, in_out, loop_scopes); self.walk_pat(local.node.pat, in_out, loop_scopes); } ast::decl_item(_) => {} } } fn walk_expr(&mut self, expr: @ast::expr, in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { debug!("DataFlowContext::walk_expr(expr=%s, in_out=%s)", expr.repr(self.dfcx.tcx), bits_to_str(reslice(in_out))); self.merge_with_entry_set(expr.id, in_out); match expr.node { ast::expr_fn_block(ref decl, ref body) => { if self.dfcx.oper.walk_closures() { // In the absence of once fns, we must assume that // every function body will execute more than // once. Thus we treat every function body like a // loop. // // What is subtle and a bit tricky, also, is how // to deal with the "output" bits---that is, what // do we consider to be the successor of a // function body, given that it could be called // from any point within its lifetime? What we do // is to add their effects immediately as of the // point of creation. Of course we have to ensure // that this is sound for the analyses which make // use of dataflow. // // In the case of the initedness checker (which // does not currently use dataflow, but I hope to // convert at some point), we will simply not walk // closures at all, so it's a moot point. // // In the case of the borrow checker, this means // the loans which would be created by calling a // function come into effect immediately when the // function is created. This is guaranteed to be // earlier than the point at which the loan // actually comes into scope (which is the point // at which the closure is *called*). Because // loans persist until the scope of the loans is // exited, it is always a safe approximation to // have a loan begin earlier than it actually will // at runtime, so this should be sound. // // We stil have to be careful in the region // checker and borrow checker to treat function // bodies like loops, which implies some // limitations. For example, a closure cannot root // a managed box for longer than its body. // // General control flow looks like this: // // +- (expr) <----------+ // | | | // | v | // | (body) -----------+--> (exit) // | | | // | + (break/loop) -+ // | | // +--------------------+ // // This is a bit more conservative than a loop. // Note that we must assume that even after a // `break` occurs (e.g., in a `for` loop) that the // closure may be reinvoked. // // One difference from other loops is that `loop` // and `break` statements which target a closure // both simply add to the `break_bits`. // func_bits represents the state when the function // returns let mut func_bits = reslice(in_out).to_owned(); loop_scopes.push(LoopScope { loop_id: expr.id, loop_kind: ForLoop, break_bits: reslice(in_out).to_owned() }); for decl.inputs.iter().advance |input| { self.walk_pat(input.pat, func_bits, loop_scopes); } self.walk_block(body, func_bits, loop_scopes); // add the bits from any early return via `break`, // `continue`, or `return` into `func_bits` let loop_scope = loop_scopes.pop(); join_bits(&self.dfcx.oper, loop_scope.break_bits, func_bits); // add `func_bits` to the entry bits for `expr`, // since we must assume the function may be called // more than once self.add_to_entry_set(expr.id, reslice(func_bits)); // the final exit bits include whatever was present // in the original, joined with the bits from the function join_bits(&self.dfcx.oper, func_bits, in_out); } } ast::expr_if(cond, ref then, els) => { // // (cond) // | // v // ( ) // / \ // | | // v v // (then)(els) // | | // v v // ( succ ) // self.walk_expr(cond, in_out, loop_scopes); let mut then_bits = reslice(in_out).to_owned(); self.walk_block(then, then_bits, loop_scopes); self.walk_opt_expr(els, in_out, loop_scopes); join_bits(&self.dfcx.oper, then_bits, in_out); } ast::expr_while(cond, ref blk) => { // // (expr) <--+ // | | // v | // +--(cond) | // | | | // | v | // v (blk) ----+ // | // <--+ (break) // self.walk_expr(cond, in_out, loop_scopes); let mut body_bits = reslice(in_out).to_owned(); loop_scopes.push(LoopScope { loop_id: expr.id, loop_kind: TrueLoop, break_bits: reslice(in_out).to_owned() }); self.walk_block(blk, body_bits, loop_scopes); self.add_to_entry_set(expr.id, body_bits); let new_loop_scope = loop_scopes.pop(); copy_bits(new_loop_scope.break_bits, in_out); } ast::expr_loop(ref blk, _) => { // // (expr) <--+ // | | // v | // (blk) ----+ // | // <--+ (break) // let mut body_bits = reslice(in_out).to_owned(); self.reset(in_out); loop_scopes.push(LoopScope { loop_id: expr.id, loop_kind: TrueLoop, break_bits: reslice(in_out).to_owned() }); self.walk_block(blk, body_bits, loop_scopes); self.add_to_entry_set(expr.id, body_bits); let new_loop_scope = loop_scopes.pop(); assert_eq!(new_loop_scope.loop_id, expr.id); copy_bits(new_loop_scope.break_bits, in_out); } ast::expr_match(discr, ref arms) => { // // (discr) // / | \ // | | | // v v v // (..arms..) // | | | // v v v // ( succ ) // // self.walk_expr(discr, in_out, loop_scopes); let mut guards = reslice(in_out).to_owned(); // We know that exactly one arm will be taken, so we // can start out with a blank slate and just union // together the bits from each arm: self.reset(in_out); for arms.iter().advance |arm| { // in_out reflects the discr and all guards to date self.walk_opt_expr(arm.guard, guards, loop_scopes); // determine the bits for the body and then union // them into `in_out`, which reflects all bodies to date let mut body = reslice(guards).to_owned(); self.walk_pat_alternatives(arm.pats, body, loop_scopes); self.walk_block(&arm.body, body, loop_scopes); join_bits(&self.dfcx.oper, body, in_out); } } ast::expr_ret(o_e) => { self.walk_opt_expr(o_e, in_out, loop_scopes); // is this a return from a `for`-loop closure? match loop_scopes.iter().position(|s| s.loop_kind == ForLoop) { Some(i) => { // if so, add the in_out bits to the state // upon exit. Remember that we cannot count // upon the `for` loop function not to invoke // the closure again etc. self.break_from_to(expr, &mut loop_scopes[i], in_out); } None => {} } self.reset(in_out); } ast::expr_break(label) => { let scope = self.find_scope(expr, label, loop_scopes); self.break_from_to(expr, scope, in_out); self.reset(in_out); } ast::expr_again(label) => { let scope = self.find_scope(expr, label, loop_scopes); match scope.loop_kind { TrueLoop => { self.pop_scopes(expr, scope, in_out); self.add_to_entry_set(scope.loop_id, reslice(in_out)); } ForLoop => { // If this `loop` construct is looping back to a `for` // loop, then `loop` is really just a return from the // closure. Therefore, we treat it the same as `break`. // See case for `expr_fn_block` for more details. self.break_from_to(expr, scope, in_out); } } self.reset(in_out); } ast::expr_assign(l, r) | ast::expr_assign_op(_, _, l, r) => { self.walk_expr(r, in_out, loop_scopes); self.walk_expr(l, in_out, loop_scopes); } ast::expr_vec(ref exprs, _) => { self.walk_exprs(*exprs, in_out, loop_scopes) } ast::expr_repeat(l, r, _) => { self.walk_expr(l, in_out, loop_scopes); self.walk_expr(r, in_out, loop_scopes); } ast::expr_struct(_, ref fields, with_expr) => { for fields.iter().advance |field| { self.walk_expr(field.node.expr, in_out, loop_scopes); } self.walk_opt_expr(with_expr, in_out, loop_scopes); } ast::expr_call(f, ref args, _) => { self.walk_call(f.id, expr.id, f, *args, in_out, loop_scopes); } ast::expr_method_call(callee_id, rcvr, _, _, ref args, _) => { self.walk_call(callee_id, expr.id, rcvr, *args, in_out, loop_scopes); } ast::expr_index(callee_id, l, r) | ast::expr_binary(callee_id, _, l, r) if self.is_method_call(expr) => { self.walk_call(callee_id, expr.id, l, [r], in_out, loop_scopes); } ast::expr_unary(callee_id, _, e) if self.is_method_call(expr) => { self.walk_call(callee_id, expr.id, e, [], in_out, loop_scopes); } ast::expr_tup(ref exprs) => { self.walk_exprs(*exprs, in_out, loop_scopes); } ast::expr_binary(_, op, l, r) if ast_util::lazy_binop(op) => { self.walk_expr(l, in_out, loop_scopes); let temp = reslice(in_out).to_owned(); self.walk_expr(r, in_out, loop_scopes); join_bits(&self.dfcx.oper, temp, in_out); } ast::expr_log(l, r) | ast::expr_index(_, l, r) | ast::expr_binary(_, _, l, r) => { self.walk_exprs([l, r], in_out, loop_scopes); } ast::expr_lit(*) | ast::expr_path(*) | ast::expr_self => { } ast::expr_addr_of(_, e) | ast::expr_copy(e) | ast::expr_loop_body(e) | ast::expr_do_body(e) | ast::expr_cast(e, _) | ast::expr_unary(_, _, e) | ast::expr_paren(e) | ast::expr_vstore(e, _) | ast::expr_field(e, _, _) => { self.walk_expr(e, in_out, loop_scopes); } ast::expr_inline_asm(ref inline_asm) => { for inline_asm.inputs.iter().advance |&(_, expr)| { self.walk_expr(expr, in_out, loop_scopes); } for inline_asm.outputs.iter().advance |&(_, expr)| { self.walk_expr(expr, in_out, loop_scopes); } } ast::expr_block(ref blk) => { self.walk_block(blk, in_out, loop_scopes); } ast::expr_mac(*) => { self.tcx().sess.span_bug(expr.span, "unexpanded macro"); } } self.dfcx.apply_gen_kill(expr.id, in_out); } fn pop_scopes(&mut self, from_expr: @ast::expr, to_scope: &mut LoopScope, in_out: &mut [uint]) { //! Whenever you have a `break` or a `loop` statement, flow //! exits through any number of enclosing scopes on its //! way to the new destination. This function applies the kill //! sets of those enclosing scopes to `in_out` (those kill sets //! concern items that are going out of scope). let tcx = self.tcx(); let region_maps = tcx.region_maps; debug!("pop_scopes(from_expr=%s, to_scope=%?, in_out=%s)", from_expr.repr(tcx), to_scope.loop_id, bits_to_str(reslice(in_out))); let mut id = from_expr.id; while id != to_scope.loop_id { self.dfcx.apply_kill(id, in_out); match region_maps.opt_encl_scope(id) { Some(i) => { id = i; } None => { tcx.sess.span_bug( from_expr.span, fmt!("pop_scopes(from_expr=%s, to_scope=%?) \ to_scope does not enclose from_expr", from_expr.repr(tcx), to_scope.loop_id)); } } } } fn break_from_to(&mut self, from_expr: @ast::expr, to_scope: &mut LoopScope, in_out: &mut [uint]) { self.pop_scopes(from_expr, to_scope, in_out); self.dfcx.apply_kill(from_expr.id, in_out); join_bits(&self.dfcx.oper, reslice(in_out), to_scope.break_bits); debug!("break_from_to(from_expr=%s, to_scope=%?) final break_bits=%s", from_expr.repr(self.tcx()), to_scope.loop_id, bits_to_str(reslice(in_out))); } fn walk_exprs(&mut self, exprs: &[@ast::expr], in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { for exprs.iter().advance |&expr| { self.walk_expr(expr, in_out, loop_scopes); } } fn walk_opt_expr(&mut self, opt_expr: Option<@ast::expr>, in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { for opt_expr.iter().advance |&expr| { self.walk_expr(expr, in_out, loop_scopes); } } fn walk_call(&mut self, _callee_id: ast::node_id, call_id: ast::node_id, arg0: @ast::expr, args: &[@ast::expr], in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { self.walk_expr(arg0, in_out, loop_scopes); self.walk_exprs(args, in_out, loop_scopes); // FIXME(#6268) nested method calls // self.merge_with_entry_set(callee_id, in_out); // self.dfcx.apply_gen_kill(callee_id, in_out); let return_ty = ty::node_id_to_type(self.tcx(), call_id); let fails = ty::type_is_bot(return_ty); if fails { self.reset(in_out); } } fn walk_pat(&mut self, pat: @ast::pat, in_out: &mut [uint], _loop_scopes: &mut ~[LoopScope]) { debug!("DataFlowContext::walk_pat(pat=%s, in_out=%s)", pat.repr(self.dfcx.tcx), bits_to_str(reslice(in_out))); for ast_util::walk_pat(pat) |p| { debug!(" p.id=%? in_out=%s", p.id, bits_to_str(reslice(in_out))); self.merge_with_entry_set(p.id, in_out); self.dfcx.apply_gen_kill(p.id, in_out); } } fn walk_pat_alternatives(&mut self, pats: &[@ast::pat], in_out: &mut [uint], loop_scopes: &mut ~[LoopScope]) { if pats.len() == 1 { // Common special case: return self.walk_pat(pats[0], in_out, loop_scopes); } // In the general case, the patterns in `pats` are // alternatives, so we must treat this like an N-way select // statement. let initial_state = reslice(in_out).to_owned(); for pats.iter().advance |&pat| { let mut temp = copy initial_state; self.walk_pat(pat, temp, loop_scopes); join_bits(&self.dfcx.oper, temp, in_out); } } fn find_scope<'a>(&self, expr: @ast::expr, label: Option, loop_scopes: &'a mut ~[LoopScope]) -> &'a mut LoopScope { let index = match label { None => { let len = loop_scopes.len(); len - 1 } Some(_) => { match self.tcx().def_map.find(&expr.id) { Some(&ast::def_label(loop_id)) => { match loop_scopes.iter().position(|l| l.loop_id == loop_id) { Some(i) => i, None => { self.tcx().sess.span_bug( expr.span, fmt!("No loop scope for id %?", loop_id)); } } } r => { self.tcx().sess.span_bug( expr.span, fmt!("Bad entry `%?` in def_map for label", r)); } } } }; &mut loop_scopes[index] } fn is_method_call(&self, expr: @ast::expr) -> bool { self.dfcx.method_map.contains_key(&expr.id) } fn reset(&mut self, bits: &mut [uint]) { let e = if self.dfcx.oper.initial_value() {uint::max_value} else {0}; for bits.mut_iter().advance |b| { *b = e; } } fn add_to_entry_set(&mut self, id: ast::node_id, pred_bits: &[uint]) { debug!("add_to_entry_set(id=%?, pred_bits=%s)", id, bits_to_str(pred_bits)); let (start, end) = self.dfcx.compute_id_range(id); let changed = { // FIXME(#5074) awkward construction let on_entry = self.dfcx.on_entry.mut_slice(start, end); join_bits(&self.dfcx.oper, pred_bits, on_entry) }; if changed { debug!("changed entry set for %? to %s", id, bits_to_str(self.dfcx.on_entry.slice(start, end))); self.changed = true; } } fn merge_with_entry_set(&mut self, id: ast::node_id, pred_bits: &mut [uint]) { debug!("merge_with_entry_set(id=%?, pred_bits=%s)", id, mut_bits_to_str(pred_bits)); let (start, end) = self.dfcx.compute_id_range(id); let changed = { // FIXME(#5074) awkward construction let on_entry = self.dfcx.on_entry.mut_slice(start, end); let changed = join_bits(&self.dfcx.oper, reslice(pred_bits), on_entry); copy_bits(reslice(on_entry), pred_bits); changed }; if changed { debug!("changed entry set for %? to %s", id, bits_to_str(self.dfcx.on_entry.slice(start, end))); self.changed = true; } } } fn mut_bits_to_str(words: &mut [uint]) -> ~str { bits_to_str(reslice(words)) } fn bits_to_str(words: &[uint]) -> ~str { let mut result = ~""; let mut sep = '['; // Note: this is a little endian printout of bytes. for words.iter().advance |&word| { let mut v = word; for uint::range(0, uint::bytes) |_| { result.push_char(sep); result.push_str(fmt!("%02x", v & 0xFF)); v >>= 8; sep = '-'; } } result.push_char(']'); return result; } fn copy_bits(in_vec: &[uint], out_vec: &mut [uint]) -> bool { bitwise(out_vec, in_vec, |_, b| b) } fn join_bits(oper: &O, in_vec: &[uint], out_vec: &mut [uint]) -> bool { bitwise(out_vec, in_vec, |a, b| oper.join(a, b)) } #[inline] fn bitwise(out_vec: &mut [uint], in_vec: &[uint], op: &fn(uint, uint) -> uint) -> bool { assert_eq!(out_vec.len(), in_vec.len()); let mut changed = false; for uint::range(0, out_vec.len()) |i| { let old_val = out_vec[i]; let new_val = op(old_val, in_vec[i]); out_vec[i] = new_val; changed |= (old_val != new_val); } return changed; } fn set_bit(words: &mut [uint], bit: uint) -> bool { debug!("set_bit: words=%s bit=%s", mut_bits_to_str(words), bit_str(bit)); let word = bit / uint::bits; let bit_in_word = bit % uint::bits; let bit_mask = 1 << bit_in_word; debug!("word=%u bit_in_word=%u bit_mask=%u", word, bit_in_word, word); let oldv = words[word]; let newv = oldv | bit_mask; words[word] = newv; oldv != newv } fn bit_str(bit: uint) -> ~str { let byte = bit >> 8; let lobits = 1 << (bit & 0xFF); fmt!("[%u:%u-%02x]", bit, byte, lobits) } fn reslice<'a>(v: &'a mut [uint]) -> &'a [uint] { // bFIXME(#5074) this function should not be necessary at all unsafe { cast::transmute(v) } }