rust/src/rustc/middle/trans/common.rs

1014 lines
32 KiB
Rust

/**
Code that is useful in various trans modules.
*/
import libc::c_uint;
import vec::unsafe::to_ptr;
import std::map::{hashmap,set};
import syntax::{ast, ast_map};
import driver::session;
import session::session;
import middle::{resolve, ty};
import back::{link, abi, upcall};
import syntax::codemap::span;
import lib::llvm::{llvm, target_data, type_names, associate_type,
name_has_type};
import lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef, BuilderRef};
import lib::llvm::{True, False, Bool};
import metadata::{csearch};
import metadata::common::link_meta;
import syntax::ast_map::path;
import util::ppaux::ty_to_str;
type namegen = fn@(~str) -> ~str;
fn new_namegen() -> namegen {
let i = @mut 0;
ret fn@(prefix: ~str) -> ~str { *i += 1; prefix + int::str(*i) };
}
type tydesc_info =
{ty: ty::t,
tydesc: ValueRef,
size: ValueRef,
align: ValueRef,
mut take_glue: option<ValueRef>,
mut drop_glue: option<ValueRef>,
mut free_glue: option<ValueRef>,
mut visit_glue: option<ValueRef>};
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
type stats =
{mut n_static_tydescs: uint,
mut n_glues_created: uint,
mut n_null_glues: uint,
mut n_real_glues: uint,
llvm_insn_ctxt: @mut ~[~str],
llvm_insns: hashmap<~str, uint>,
fn_times: @mut ~[{ident: ~str, time: int}]};
class BuilderRef_res {
let B: BuilderRef;
new(B: BuilderRef) { self.B = B; }
drop { llvm::LLVMDisposeBuilder(self.B); }
}
// Crate context. Every crate we compile has one of these.
type crate_ctxt = {
sess: session::session,
llmod: ModuleRef,
td: target_data,
tn: type_names,
externs: hashmap<~str, ValueRef>,
intrinsics: hashmap<~str, ValueRef>,
item_vals: hashmap<ast::node_id, ValueRef>,
exp_map: resolve::exp_map,
reachable: reachable::map,
item_symbols: hashmap<ast::node_id, ~str>,
mut main_fn: option<ValueRef>,
link_meta: link_meta,
enum_sizes: hashmap<ty::t, uint>,
discrims: hashmap<ast::def_id, ValueRef>,
discrim_symbols: hashmap<ast::node_id, ~str>,
tydescs: hashmap<ty::t, @tydesc_info>,
// Track mapping of external ids to local items imported for inlining
external: hashmap<ast::def_id, option<ast::node_id>>,
// Cache instances of monomorphized functions
monomorphized: hashmap<mono_id, ValueRef>,
monomorphizing: hashmap<ast::def_id, uint>,
// Cache computed type parameter uses (see type_use.rs)
type_use_cache: hashmap<ast::def_id, ~[type_use::type_uses]>,
// Cache generated vtables
vtables: hashmap<mono_id, ValueRef>,
// Cache of constant strings,
const_cstr_cache: hashmap<~str, ValueRef>,
module_data: hashmap<~str, ValueRef>,
lltypes: hashmap<ty::t, TypeRef>,
names: namegen,
sha: std::sha1::sha1,
type_sha1s: hashmap<ty::t, ~str>,
type_short_names: hashmap<ty::t, ~str>,
all_llvm_symbols: set<~str>,
tcx: ty::ctxt,
maps: astencode::maps,
stats: stats,
upcalls: @upcall::upcalls,
tydesc_type: TypeRef,
int_type: TypeRef,
float_type: TypeRef,
task_type: TypeRef,
opaque_vec_type: TypeRef,
builder: BuilderRef_res,
shape_cx: shape::ctxt,
crate_map: ValueRef,
dbg_cx: option<debuginfo::debug_ctxt>,
// Mapping from class constructors to parent class --
// used in base::trans_closure
// parent_class must be a def_id because ctors can be
// inlined, so the parent may be in a different crate
class_ctors: hashmap<ast::node_id, ast::def_id>,
mut do_not_commit_warning_issued: bool};
// Types used for llself.
type val_self_pair = {v: ValueRef, t: ty::t};
enum local_val { local_mem(ValueRef), local_imm(ValueRef), }
type param_substs = {tys: ~[ty::t],
vtables: option<typeck::vtable_res>,
bounds: @~[ty::param_bounds]};
// Function context. Every LLVM function we create will have one of
// these.
type fn_ctxt = @{
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
llfn: ValueRef,
// The two implicit arguments that arrive in the function we're creating.
// For instance, foo(int, int) is really foo(ret*, env*, int, int).
llenv: ValueRef,
llretptr: ValueRef,
// These elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A block for all the function's static allocas, so that LLVM
// will coalesce them into a single alloca call.
mut llstaticallocas: BasicBlockRef,
// A block containing code that copies incoming arguments to space
// already allocated by code in one of the llallocas blocks.
// (LLVM requires that arguments be copied to local allocas before
// allowing most any operation to be performed on them.)
mut llloadenv: BasicBlockRef,
mut llreturn: BasicBlockRef,
// The 'self' value currently in use in this function, if there
// is one.
mut llself: option<val_self_pair>,
// The a value alloca'd for calls to upcalls.rust_personality. Used when
// outputting the resume instruction.
mut personality: option<ValueRef>,
// If this is a for-loop body that returns, this holds the pointers needed
// for that
mut loop_ret: option<{flagptr: ValueRef, retptr: ValueRef}>,
// Maps arguments to allocas created for them in llallocas.
llargs: hashmap<ast::node_id, local_val>,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
lllocals: hashmap<ast::node_id, local_val>,
// Same as above, but for closure upvars
llupvars: hashmap<ast::node_id, ValueRef>,
// The node_id of the function, or -1 if it doesn't correspond to
// a user-defined function.
id: ast::node_id,
// If this function is being monomorphized, this contains the type
// substitutions used.
param_substs: option<param_substs>,
// The source span and nesting context where this function comes from, for
// error reporting and symbol generation.
span: option<span>,
path: path,
// This function's enclosing crate context.
ccx: @crate_ctxt
};
fn warn_not_to_commit(ccx: @crate_ctxt, msg: ~str) {
if !ccx.do_not_commit_warning_issued {
ccx.do_not_commit_warning_issued = true;
ccx.sess.warn(msg + ~" -- do not commit like this!");
}
}
// Heap selectors. Indicate which heap something should go on.
enum heap {
heap_shared,
heap_exchange,
}
enum cleantype {
normal_exit_only,
normal_exit_and_unwind
}
enum cleanup {
clean(fn@(block) -> block, cleantype),
clean_temp(ValueRef, fn@(block) -> block, cleantype),
}
// Used to remember and reuse existing cleanup paths
// target: none means the path ends in an resume instruction
type cleanup_path = {target: option<BasicBlockRef>,
dest: BasicBlockRef};
fn scope_clean_changed(info: scope_info) {
if info.cleanup_paths.len() > 0u { info.cleanup_paths = ~[]; }
info.landing_pad = none;
}
fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype {
if ty::type_needs_unwind_cleanup(cx, ty) {
normal_exit_and_unwind
} else {
normal_exit_only
}
}
fn add_clean(cx: block, val: ValueRef, ty: ty::t) {
if !ty::type_needs_drop(cx.tcx(), ty) { ret; }
#debug["add_clean(%s, %s, %s)",
cx.to_str(), val_str(cx.ccx().tn, val),
ty_to_str(cx.ccx().tcx, ty)];
let cleanup_type = cleanup_type(cx.tcx(), ty);
do in_scope_cx(cx) |info| {
vec::push(info.cleanups, clean(|a| base::drop_ty(a, val, ty),
cleanup_type));
scope_clean_changed(info);
}
}
fn add_clean_temp(cx: block, val: ValueRef, ty: ty::t) {
if !ty::type_needs_drop(cx.tcx(), ty) { ret; }
#debug["add_clean_temp(%s, %s, %s)",
cx.to_str(), val_str(cx.ccx().tn, val),
ty_to_str(cx.ccx().tcx, ty)];
let cleanup_type = cleanup_type(cx.tcx(), ty);
fn do_drop(bcx: block, val: ValueRef, ty: ty::t) ->
block {
if ty::type_is_immediate(ty) {
ret base::drop_ty_immediate(bcx, val, ty);
} else {
ret base::drop_ty(bcx, val, ty);
}
}
do in_scope_cx(cx) |info| {
vec::push(info.cleanups, clean_temp(val, |a| do_drop(a, val, ty),
cleanup_type));
scope_clean_changed(info);
}
}
fn add_clean_temp_mem(cx: block, val: ValueRef, ty: ty::t) {
if !ty::type_needs_drop(cx.tcx(), ty) { ret; }
#debug["add_clean_temp_mem(%s, %s, %s)",
cx.to_str(), val_str(cx.ccx().tn, val),
ty_to_str(cx.ccx().tcx, ty)];
let cleanup_type = cleanup_type(cx.tcx(), ty);
do in_scope_cx(cx) |info| {
vec::push(info.cleanups,
clean_temp(val, |a| base::drop_ty(a, val, ty),
cleanup_type));
scope_clean_changed(info);
}
}
fn add_clean_free(cx: block, ptr: ValueRef, heap: heap) {
let free_fn = alt heap {
heap_shared { |a| base::trans_free(a, ptr) }
heap_exchange { |a| base::trans_unique_free(a, ptr) }
};
do in_scope_cx(cx) |info| {
vec::push(info.cleanups, clean_temp(ptr, free_fn,
normal_exit_and_unwind));
scope_clean_changed(info);
}
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
fn revoke_clean(cx: block, val: ValueRef) {
do in_scope_cx(cx) |info| {
do option::iter(vec::position(info.cleanups, |cu| {
alt cu { clean_temp(v, _, _) if v == val { true } _ { false } }
})) |i| {
info.cleanups =
vec::append(vec::slice(info.cleanups, 0u, i),
// FIXME (#2880): use view here.
vec::slice(info.cleanups,
i + 1u,
info.cleanups.len()));
scope_clean_changed(info);
}
}
}
enum block_kind {
// A scope at the end of which temporary values created inside of it are
// cleaned up. May correspond to an actual block in the language, but also
// to an implicit scope, for example, calls introduce an implicit scope in
// which the arguments are evaluated and cleaned up.
block_scope(scope_info),
// A non-scope block is a basic block created as a translation artifact
// from translating code that expresses conditional logic rather than by
// explicit { ... } block structure in the source language. It's called a
// non-scope block because it doesn't introduce a new variable scope.
block_non_scope,
}
type scope_info = {
loop_break: option<block>,
// A list of functions that must be run at when leaving this
// block, cleaning up any variables that were introduced in the
// block.
mut cleanups: ~[cleanup],
// Existing cleanup paths that may be reused, indexed by destination and
// cleared when the set of cleanups changes.
mut cleanup_paths: ~[cleanup_path],
// Unwinding landing pad. Also cleared when cleanups change.
mut landing_pad: option<BasicBlockRef>,
};
impl node_info for @ast::expr {
fn info() -> option<node_info> {
some({id: self.id, span: self.span})
}
}
impl node_info for ast::blk {
fn info() -> option<node_info> {
some({id: self.node.id, span: self.span})
}
}
impl node_info for option<@ast::expr> {
fn info() -> option<node_info> {
self.chain(|s| s.info())
}
}
type node_info = {
id: ast::node_id,
span: span
};
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
class block_ {
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The block pointing to this one in the function's digraph.
let llbb: BasicBlockRef;
let mut terminated: bool;
let mut unreachable: bool;
let parent: option<block>;
// The 'kind' of basic block this is.
let kind: block_kind;
// info about the AST node this block originated from, if any
let node_info: option<node_info>;
// The function context for the function to which this block is
// attached.
let fcx: fn_ctxt;
new(llbb: BasicBlockRef, parent: option<block>, -kind: block_kind,
node_info: option<node_info>, fcx: fn_ctxt) {
// sigh
self.llbb = llbb; self.terminated = false; self.unreachable = false;
self.parent = parent; self.kind = kind; self.node_info = node_info;
self.fcx = fcx;
}
}
/* This must be enum and not type, or trans goes into an infinite loop (#2572)
*/
enum block = @block_;
fn mk_block(llbb: BasicBlockRef, parent: option<block>, -kind: block_kind,
node_info: option<node_info>, fcx: fn_ctxt) -> block {
block(@block_(llbb, parent, kind, node_info, fcx))
}
// First two args are retptr, env
const first_real_arg: uint = 2u;
type result = {bcx: block, val: ValueRef};
type result_t = {bcx: block, val: ValueRef, ty: ty::t};
fn rslt(bcx: block, val: ValueRef) -> result {
{bcx: bcx, val: val}
}
fn ty_str(tn: type_names, t: TypeRef) -> ~str {
ret lib::llvm::type_to_str(tn, t);
}
fn val_ty(v: ValueRef) -> TypeRef { ret llvm::LLVMTypeOf(v); }
fn val_str(tn: type_names, v: ValueRef) -> ~str { ret ty_str(tn, val_ty(v)); }
// Returns the nth element of the given LLVM structure type.
fn struct_elt(llstructty: TypeRef, n: uint) -> TypeRef unsafe {
let elt_count = llvm::LLVMCountStructElementTypes(llstructty) as uint;
assert (n < elt_count);
let elt_tys = vec::from_elem(elt_count, T_nil());
llvm::LLVMGetStructElementTypes(llstructty, to_ptr(elt_tys));
ret llvm::LLVMGetElementType(elt_tys[n]);
}
fn in_scope_cx(cx: block, f: fn(scope_info)) {
let mut cur = cx;
loop {
alt cur.kind {
block_scope(inf) { f(inf); ret; }
_ {}
}
cur = block_parent(cur);
}
}
fn block_parent(cx: block) -> block {
alt cx.parent {
some(b) { b }
none { cx.sess().bug(#fmt("block_parent called on root block %?",
cx)); }
}
}
// Accessors
impl bcx_cxs for block {
pure fn ccx() -> @crate_ctxt { self.fcx.ccx }
pure fn tcx() -> ty::ctxt { self.fcx.ccx.tcx }
pure fn sess() -> session { self.fcx.ccx.sess }
fn val_str(val: ValueRef) -> ~str {
val_str(self.ccx().tn, val)
}
fn ty_to_str(t: ty::t) -> ~str {
ty_to_str(self.tcx(), t)
}
fn to_str() -> ~str {
alt self.node_info {
some(node_info) {
#fmt["[block %d]", node_info.id]
}
none {
#fmt["[block %x]", ptr::addr_of(*self) as uint]
}
}
}
}
// LLVM type constructors.
fn T_void() -> TypeRef {
// Note: For the time being llvm is kinda busted here, it has the notion
// of a 'void' type that can only occur as part of the signature of a
// function, but no general unit type of 0-sized value. This is, afaict,
// vestigial from its C heritage, and we'll be attempting to submit a
// patch upstream to fix it. In the mean time we only model function
// outputs (Rust functions and C functions) using T_void, and model the
// Rust general purpose nil type you can construct as 1-bit (always
// zero). This makes the result incorrect for now -- things like a tuple
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
// have any other options until it's fixed upstream.
ret llvm::LLVMVoidType();
}
fn T_nil() -> TypeRef {
// NB: See above in T_void().
ret llvm::LLVMInt1Type();
}
fn T_metadata() -> TypeRef { ret llvm::LLVMMetadataType(); }
fn T_i1() -> TypeRef { ret llvm::LLVMInt1Type(); }
fn T_i8() -> TypeRef { ret llvm::LLVMInt8Type(); }
fn T_i16() -> TypeRef { ret llvm::LLVMInt16Type(); }
fn T_i32() -> TypeRef { ret llvm::LLVMInt32Type(); }
fn T_i64() -> TypeRef { ret llvm::LLVMInt64Type(); }
fn T_f32() -> TypeRef { ret llvm::LLVMFloatType(); }
fn T_f64() -> TypeRef { ret llvm::LLVMDoubleType(); }
fn T_bool() -> TypeRef { ret T_i1(); }
fn T_int(targ_cfg: @session::config) -> TypeRef {
ret alt targ_cfg.arch {
session::arch_x86 { T_i32() }
session::arch_x86_64 { T_i64() }
session::arch_arm { T_i32() }
};
}
fn T_int_ty(cx: @crate_ctxt, t: ast::int_ty) -> TypeRef {
alt t {
ast::ty_i { cx.int_type }
ast::ty_char { T_char() }
ast::ty_i8 { T_i8() }
ast::ty_i16 { T_i16() }
ast::ty_i32 { T_i32() }
ast::ty_i64 { T_i64() }
}
}
fn T_uint_ty(cx: @crate_ctxt, t: ast::uint_ty) -> TypeRef {
alt t {
ast::ty_u { cx.int_type }
ast::ty_u8 { T_i8() }
ast::ty_u16 { T_i16() }
ast::ty_u32 { T_i32() }
ast::ty_u64 { T_i64() }
}
}
fn T_float_ty(cx: @crate_ctxt, t: ast::float_ty) -> TypeRef {
alt t {
ast::ty_f { cx.float_type }
ast::ty_f32 { T_f32() }
ast::ty_f64 { T_f64() }
}
}
fn T_float(targ_cfg: @session::config) -> TypeRef {
ret alt targ_cfg.arch {
session::arch_x86 { T_f64() }
session::arch_x86_64 { T_f64() }
session::arch_arm { T_f64() }
};
}
fn T_char() -> TypeRef { ret T_i32(); }
fn T_size_t(targ_cfg: @session::config) -> TypeRef {
ret T_int(targ_cfg);
}
fn T_fn(inputs: ~[TypeRef], output: TypeRef) -> TypeRef unsafe {
ret llvm::LLVMFunctionType(output, to_ptr(inputs),
inputs.len() as c_uint,
False);
}
fn T_fn_pair(cx: @crate_ctxt, tfn: TypeRef) -> TypeRef {
ret T_struct(~[T_ptr(tfn), T_opaque_cbox_ptr(cx)]);
}
fn T_ptr(t: TypeRef) -> TypeRef {
ret llvm::LLVMPointerType(t, 0u as c_uint);
}
fn T_struct(elts: ~[TypeRef]) -> TypeRef unsafe {
ret llvm::LLVMStructType(to_ptr(elts), elts.len() as c_uint, False);
}
fn T_named_struct(name: ~str) -> TypeRef {
let c = llvm::LLVMGetGlobalContext();
ret str::as_c_str(name, |buf| llvm::LLVMStructCreateNamed(c, buf));
}
fn set_struct_body(t: TypeRef, elts: ~[TypeRef]) unsafe {
llvm::LLVMStructSetBody(t, to_ptr(elts),
elts.len() as c_uint, False);
}
fn T_empty_struct() -> TypeRef { ret T_struct(~[]); }
// A vtable is, in reality, a vtable pointer followed by zero or more pointers
// to tydescs and other vtables that it closes over. But the types and number
// of those are rarely known to the code that needs to manipulate them, so
// they are described by this opaque type.
fn T_vtable() -> TypeRef { T_array(T_ptr(T_i8()), 1u) }
fn T_task(targ_cfg: @session::config) -> TypeRef {
let t = T_named_struct(~"task");
// Refcount
// Delegate pointer
// Stack segment pointer
// Runtime SP
// Rust SP
// GC chain
// Domain pointer
// Crate cache pointer
let t_int = T_int(targ_cfg);
let elems =
~[t_int, t_int, t_int, t_int,
t_int, t_int, t_int, t_int];
set_struct_body(t, elems);
ret t;
}
fn T_tydesc_field(cx: @crate_ctxt, field: uint) -> TypeRef unsafe {
// Bit of a kludge: pick the fn typeref out of the tydesc..
let tydesc_elts: ~[TypeRef] =
vec::from_elem::<TypeRef>(abi::n_tydesc_fields,
T_nil());
llvm::LLVMGetStructElementTypes(cx.tydesc_type,
to_ptr::<TypeRef>(tydesc_elts));
let t = llvm::LLVMGetElementType(tydesc_elts[field]);
ret t;
}
fn T_glue_fn(cx: @crate_ctxt) -> TypeRef {
let s = ~"glue_fn";
alt name_has_type(cx.tn, s) { some(t) { ret t; } _ {} }
let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue);
associate_type(cx.tn, s, t);
ret t;
}
fn T_tydesc(targ_cfg: @session::config) -> TypeRef {
let tydesc = T_named_struct(~"tydesc");
let tydescpp = T_ptr(T_ptr(tydesc));
let pvoid = T_ptr(T_i8());
let glue_fn_ty =
T_ptr(T_fn(~[T_ptr(T_nil()), T_ptr(T_nil()), tydescpp,
pvoid], T_void()));
let int_type = T_int(targ_cfg);
let elems =
~[int_type, int_type,
glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty,
T_ptr(T_i8()), T_ptr(T_i8())];
set_struct_body(tydesc, elems);
ret tydesc;
}
fn T_array(t: TypeRef, n: uint) -> TypeRef {
ret llvm::LLVMArrayType(t, n as c_uint);
}
// Interior vector.
fn T_vec2(targ_cfg: @session::config, t: TypeRef) -> TypeRef {
ret T_struct(~[T_int(targ_cfg), // fill
T_int(targ_cfg), // alloc
T_array(t, 0u)]); // elements
}
fn T_vec(ccx: @crate_ctxt, t: TypeRef) -> TypeRef {
ret T_vec2(ccx.sess.targ_cfg, t);
}
// Note that the size of this one is in bytes.
fn T_opaque_vec(targ_cfg: @session::config) -> TypeRef {
ret T_vec2(targ_cfg, T_i8());
}
// Let T be the content of a box @T. tuplify_box_ty(t) returns the
// representation of @T as a tuple (i.e., the ty::t version of what T_box()
// returns).
fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
let ptr = ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm});
ret ty::mk_tup(tcx, ~[ty::mk_uint(tcx), ty::mk_type(tcx),
ptr, ptr,
t]);
}
fn T_box_header_fields(cx: @crate_ctxt) -> ~[TypeRef] {
let ptr = T_ptr(T_i8());
ret ~[cx.int_type, T_ptr(cx.tydesc_type), ptr, ptr];
}
fn T_box_header(cx: @crate_ctxt) -> TypeRef {
ret T_struct(T_box_header_fields(cx));
}
fn T_box(cx: @crate_ctxt, t: TypeRef) -> TypeRef {
ret T_struct(vec::append(T_box_header_fields(cx), ~[t]));
}
fn T_box_ptr(t: TypeRef) -> TypeRef {
const box_addrspace: uint = 1u;
ret llvm::LLVMPointerType(t, box_addrspace as c_uint);
}
fn T_opaque_box(cx: @crate_ctxt) -> TypeRef {
ret T_box(cx, T_i8());
}
fn T_opaque_box_ptr(cx: @crate_ctxt) -> TypeRef {
ret T_box_ptr(T_opaque_box(cx));
}
fn T_unique(cx: @crate_ctxt, t: TypeRef) -> TypeRef {
ret T_struct(vec::append(T_box_header_fields(cx), ~[t]));
}
fn T_unique_ptr(t: TypeRef) -> TypeRef {
const unique_addrspace: uint = 1u;
ret llvm::LLVMPointerType(t, unique_addrspace as c_uint);
}
fn T_port(cx: @crate_ctxt, _t: TypeRef) -> TypeRef {
ret T_struct(~[cx.int_type]); // Refcount
}
fn T_chan(cx: @crate_ctxt, _t: TypeRef) -> TypeRef {
ret T_struct(~[cx.int_type]); // Refcount
}
fn T_taskptr(cx: @crate_ctxt) -> TypeRef { ret T_ptr(cx.task_type); }
// This type must never be used directly; it must always be cast away.
fn T_typaram(tn: type_names) -> TypeRef {
let s = ~"typaram";
alt name_has_type(tn, s) { some(t) { ret t; } _ {} }
let t = T_i8();
associate_type(tn, s, t);
ret t;
}
fn T_typaram_ptr(tn: type_names) -> TypeRef { ret T_ptr(T_typaram(tn)); }
fn T_opaque_cbox_ptr(cx: @crate_ctxt) -> TypeRef {
// closures look like boxes (even when they are fn~ or fn&)
// see trans_closure.rs
ret T_opaque_box_ptr(cx);
}
fn T_enum_discrim(cx: @crate_ctxt) -> TypeRef {
ret cx.int_type;
}
fn T_opaque_enum(cx: @crate_ctxt) -> TypeRef {
let s = ~"opaque_enum";
alt name_has_type(cx.tn, s) { some(t) { ret t; } _ {} }
let t = T_struct(~[T_enum_discrim(cx), T_i8()]);
associate_type(cx.tn, s, t);
ret t;
}
fn T_opaque_enum_ptr(cx: @crate_ctxt) -> TypeRef {
ret T_ptr(T_opaque_enum(cx));
}
fn T_captured_tydescs(cx: @crate_ctxt, n: uint) -> TypeRef {
ret T_struct(vec::from_elem::<TypeRef>(n, T_ptr(cx.tydesc_type)));
}
fn T_opaque_trait(cx: @crate_ctxt) -> TypeRef {
T_struct(~[T_ptr(cx.tydesc_type), T_opaque_box_ptr(cx)])
}
fn T_opaque_port_ptr() -> TypeRef { ret T_ptr(T_i8()); }
fn T_opaque_chan_ptr() -> TypeRef { ret T_ptr(T_i8()); }
// LLVM constant constructors.
fn C_null(t: TypeRef) -> ValueRef { ret llvm::LLVMConstNull(t); }
fn C_integral(t: TypeRef, u: u64, sign_extend: Bool) -> ValueRef {
ret llvm::LLVMConstInt(t, u, sign_extend);
}
fn C_floating(s: ~str, t: TypeRef) -> ValueRef {
ret str::as_c_str(s, |buf| llvm::LLVMConstRealOfString(t, buf));
}
fn C_nil() -> ValueRef {
// NB: See comment above in T_void().
ret C_integral(T_i1(), 0u64, False);
}
fn C_bool(b: bool) -> ValueRef {
C_integral(T_bool(), if b { 1u64 } else { 0u64 }, False)
}
fn C_i32(i: i32) -> ValueRef {
ret C_integral(T_i32(), i as u64, True);
}
fn C_i64(i: i64) -> ValueRef {
ret C_integral(T_i64(), i as u64, True);
}
fn C_int(cx: @crate_ctxt, i: int) -> ValueRef {
ret C_integral(cx.int_type, i as u64, True);
}
fn C_uint(cx: @crate_ctxt, i: uint) -> ValueRef {
ret C_integral(cx.int_type, i as u64, False);
}
fn C_u8(i: uint) -> ValueRef { ret C_integral(T_i8(), i as u64, False); }
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
fn C_cstr(cx: @crate_ctxt, s: ~str) -> ValueRef {
alt cx.const_cstr_cache.find(s) {
some(llval) { ret llval; }
none { }
}
let sc = do str::as_c_str(s) |buf| {
llvm::LLVMConstString(buf, str::len(s) as c_uint, False)
};
let g =
str::as_c_str(cx.names(~"str"),
|buf| llvm::LLVMAddGlobal(cx.llmod, val_ty(sc), buf));
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
cx.const_cstr_cache.insert(s, g);
ret g;
}
fn C_estr_slice(cx: @crate_ctxt, s: ~str) -> ValueRef {
let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), T_ptr(T_i8()));
C_struct(~[cs, C_uint(cx, str::len(s) + 1u /* +1 for null */)])
}
// Returns a Plain Old LLVM String:
fn C_postr(s: ~str) -> ValueRef {
ret do str::as_c_str(s) |buf| {
llvm::LLVMConstString(buf, str::len(s) as c_uint, False)
};
}
fn C_zero_byte_arr(size: uint) -> ValueRef unsafe {
let mut i = 0u;
let mut elts: ~[ValueRef] = ~[];
while i < size { vec::push(elts, C_u8(0u)); i += 1u; }
ret llvm::LLVMConstArray(T_i8(), vec::unsafe::to_ptr(elts),
elts.len() as c_uint);
}
fn C_struct(elts: ~[ValueRef]) -> ValueRef unsafe {
ret llvm::LLVMConstStruct(vec::unsafe::to_ptr(elts),
elts.len() as c_uint, False);
}
fn C_named_struct(T: TypeRef, elts: ~[ValueRef]) -> ValueRef unsafe {
ret llvm::LLVMConstNamedStruct(T, vec::unsafe::to_ptr(elts),
elts.len() as c_uint);
}
fn C_array(ty: TypeRef, elts: ~[ValueRef]) -> ValueRef unsafe {
ret llvm::LLVMConstArray(ty, vec::unsafe::to_ptr(elts),
elts.len() as c_uint);
}
fn C_bytes(bytes: ~[u8]) -> ValueRef unsafe {
ret llvm::LLVMConstString(
unsafe::reinterpret_cast(vec::unsafe::to_ptr(bytes)),
bytes.len() as c_uint, False);
}
fn C_shape(ccx: @crate_ctxt, bytes: ~[u8]) -> ValueRef {
let llshape = C_bytes(bytes);
let llglobal = str::as_c_str(ccx.names(~"shape"), |buf| {
llvm::LLVMAddGlobal(ccx.llmod, val_ty(llshape), buf)
});
llvm::LLVMSetInitializer(llglobal, llshape);
llvm::LLVMSetGlobalConstant(llglobal, True);
lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage);
ret llvm::LLVMConstPointerCast(llglobal, T_ptr(T_i8()));
}
fn get_param(fndecl: ValueRef, param: uint) -> ValueRef {
llvm::LLVMGetParam(fndecl, param as c_uint)
}
// Used to identify cached monomorphized functions and vtables
enum mono_param_id {
mono_precise(ty::t, option<~[mono_id]>),
mono_any,
mono_repr(uint /* size */, uint /* align */),
}
type mono_id = @{def: ast::def_id, params: ~[mono_param_id]};
fn hash_mono_id(&&mi: mono_id) -> uint {
let mut h = syntax::ast_util::hash_def(mi.def);
for vec::each(mi.params) |param| {
h = h * alt param {
mono_precise(ty, vts) {
let mut h = ty::type_id(ty);
do option::iter(vts) |vts| {
for vec::each(vts) |vt| { h += hash_mono_id(vt); }
}
h
}
mono_any { 1u }
mono_repr(sz, align) { sz * (align + 2u) }
}
}
h
}
fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
ret build::Select(cx, cond, b, a);
}
fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
ret build::Select(cx, cond, a, b);
}
fn align_to(cx: block, off: ValueRef, align: ValueRef) -> ValueRef {
let mask = build::Sub(cx, align, C_int(cx.ccx(), 1));
let bumped = build::Add(cx, off, mask);
ret build::And(cx, bumped, build::Not(cx, mask));
}
fn path_str(p: path) -> ~str {
let mut r = ~"", first = true;
for vec::each(p) |e| {
alt e { ast_map::path_name(s) | ast_map::path_mod(s) {
if first { first = false; }
else { r += ~"::"; }
r += *s;
} }
}
r
}
fn node_id_type(bcx: block, id: ast::node_id) -> ty::t {
let tcx = bcx.tcx();
let t = ty::node_id_to_type(tcx, id);
alt bcx.fcx.param_substs {
some(substs) { ty::subst_tps(tcx, substs.tys, t) }
_ { assert !ty::type_has_params(t); t }
}
}
fn expr_ty(bcx: block, ex: @ast::expr) -> ty::t {
node_id_type(bcx, ex.id)
}
fn node_id_type_params(bcx: block, id: ast::node_id) -> ~[ty::t] {
let tcx = bcx.tcx();
let params = ty::node_id_to_type_params(tcx, id);
alt bcx.fcx.param_substs {
some(substs) {
vec::map(params, |t| ty::subst_tps(tcx, substs.tys, t))
}
_ { params }
}
}
fn field_idx_strict(cx: ty::ctxt, sp: span, ident: ast::ident,
fields: ~[ty::field])
-> uint {
alt ty::field_idx(ident, fields) {
none { cx.sess.span_bug(sp, #fmt("base expr doesn't appear to \
have a field named %s", *ident)); }
some(i) { i }
}
}
fn dummy_substs(tps: ~[ty::t]) -> ty::substs {
{self_r: some(ty::re_bound(ty::br_self)),
self_ty: none,
tps: tps}
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//