/** Code that is useful in various trans modules. */ import libc::c_uint; import vec::unsafe::to_ptr; import std::map::{hashmap,set}; import syntax::{ast, ast_map}; import driver::session; import session::session; import middle::{resolve, ty}; import back::{link, abi, upcall}; import syntax::codemap::span; import lib::llvm::{llvm, target_data, type_names, associate_type, name_has_type}; import lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef, BuilderRef}; import lib::llvm::{True, False, Bool}; import metadata::{csearch}; import metadata::common::link_meta; import syntax::ast_map::path; import util::ppaux::ty_to_str; type namegen = fn@(~str) -> ~str; fn new_namegen() -> namegen { let i = @mut 0; ret fn@(prefix: ~str) -> ~str { *i += 1; prefix + int::str(*i) }; } type tydesc_info = {ty: ty::t, tydesc: ValueRef, size: ValueRef, align: ValueRef, mut take_glue: option, mut drop_glue: option, mut free_glue: option, mut visit_glue: option}; /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ type stats = {mut n_static_tydescs: uint, mut n_glues_created: uint, mut n_null_glues: uint, mut n_real_glues: uint, llvm_insn_ctxt: @mut ~[~str], llvm_insns: hashmap<~str, uint>, fn_times: @mut ~[{ident: ~str, time: int}]}; class BuilderRef_res { let B: BuilderRef; new(B: BuilderRef) { self.B = B; } drop { llvm::LLVMDisposeBuilder(self.B); } } // Crate context. Every crate we compile has one of these. type crate_ctxt = { sess: session::session, llmod: ModuleRef, td: target_data, tn: type_names, externs: hashmap<~str, ValueRef>, intrinsics: hashmap<~str, ValueRef>, item_vals: hashmap, exp_map: resolve::exp_map, reachable: reachable::map, item_symbols: hashmap, mut main_fn: option, link_meta: link_meta, enum_sizes: hashmap, discrims: hashmap, discrim_symbols: hashmap, tydescs: hashmap, // Track mapping of external ids to local items imported for inlining external: hashmap>, // Cache instances of monomorphized functions monomorphized: hashmap, monomorphizing: hashmap, // Cache computed type parameter uses (see type_use.rs) type_use_cache: hashmap, // Cache generated vtables vtables: hashmap, // Cache of constant strings, const_cstr_cache: hashmap<~str, ValueRef>, module_data: hashmap<~str, ValueRef>, lltypes: hashmap, names: namegen, sha: std::sha1::sha1, type_sha1s: hashmap, type_short_names: hashmap, all_llvm_symbols: set<~str>, tcx: ty::ctxt, maps: astencode::maps, stats: stats, upcalls: @upcall::upcalls, tydesc_type: TypeRef, int_type: TypeRef, float_type: TypeRef, task_type: TypeRef, opaque_vec_type: TypeRef, builder: BuilderRef_res, shape_cx: shape::ctxt, crate_map: ValueRef, dbg_cx: option, // Mapping from class constructors to parent class -- // used in base::trans_closure // parent_class must be a def_id because ctors can be // inlined, so the parent may be in a different crate class_ctors: hashmap, mut do_not_commit_warning_issued: bool}; // Types used for llself. type val_self_pair = {v: ValueRef, t: ty::t}; enum local_val { local_mem(ValueRef), local_imm(ValueRef), } type param_substs = {tys: ~[ty::t], vtables: option, bounds: @~[ty::param_bounds]}; // Function context. Every LLVM function we create will have one of // these. type fn_ctxt = @{ // The ValueRef returned from a call to llvm::LLVMAddFunction; the // address of the first instruction in the sequence of // instructions for this function that will go in the .text // section of the executable we're generating. llfn: ValueRef, // The two implicit arguments that arrive in the function we're creating. // For instance, foo(int, int) is really foo(ret*, env*, int, int). llenv: ValueRef, llretptr: ValueRef, // These elements: "hoisted basic blocks" containing // administrative activities that have to happen in only one place in // the function, due to LLVM's quirks. // A block for all the function's static allocas, so that LLVM // will coalesce them into a single alloca call. mut llstaticallocas: BasicBlockRef, // A block containing code that copies incoming arguments to space // already allocated by code in one of the llallocas blocks. // (LLVM requires that arguments be copied to local allocas before // allowing most any operation to be performed on them.) mut llloadenv: BasicBlockRef, mut llreturn: BasicBlockRef, // The 'self' value currently in use in this function, if there // is one. mut llself: option, // The a value alloca'd for calls to upcalls.rust_personality. Used when // outputting the resume instruction. mut personality: option, // If this is a for-loop body that returns, this holds the pointers needed // for that mut loop_ret: option<{flagptr: ValueRef, retptr: ValueRef}>, // Maps arguments to allocas created for them in llallocas. llargs: hashmap, // Maps the def_ids for local variables to the allocas created for // them in llallocas. lllocals: hashmap, // Same as above, but for closure upvars llupvars: hashmap, // The node_id of the function, or -1 if it doesn't correspond to // a user-defined function. id: ast::node_id, // If this function is being monomorphized, this contains the type // substitutions used. param_substs: option, // The source span and nesting context where this function comes from, for // error reporting and symbol generation. span: option, path: path, // This function's enclosing crate context. ccx: @crate_ctxt }; fn warn_not_to_commit(ccx: @crate_ctxt, msg: ~str) { if !ccx.do_not_commit_warning_issued { ccx.do_not_commit_warning_issued = true; ccx.sess.warn(msg + ~" -- do not commit like this!"); } } // Heap selectors. Indicate which heap something should go on. enum heap { heap_shared, heap_exchange, } enum cleantype { normal_exit_only, normal_exit_and_unwind } enum cleanup { clean(fn@(block) -> block, cleantype), clean_temp(ValueRef, fn@(block) -> block, cleantype), } // Used to remember and reuse existing cleanup paths // target: none means the path ends in an resume instruction type cleanup_path = {target: option, dest: BasicBlockRef}; fn scope_clean_changed(info: scope_info) { if info.cleanup_paths.len() > 0u { info.cleanup_paths = ~[]; } info.landing_pad = none; } fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype { if ty::type_needs_unwind_cleanup(cx, ty) { normal_exit_and_unwind } else { normal_exit_only } } fn add_clean(cx: block, val: ValueRef, ty: ty::t) { if !ty::type_needs_drop(cx.tcx(), ty) { ret; } #debug["add_clean(%s, %s, %s)", cx.to_str(), val_str(cx.ccx().tn, val), ty_to_str(cx.ccx().tcx, ty)]; let cleanup_type = cleanup_type(cx.tcx(), ty); do in_scope_cx(cx) |info| { vec::push(info.cleanups, clean(|a| base::drop_ty(a, val, ty), cleanup_type)); scope_clean_changed(info); } } fn add_clean_temp(cx: block, val: ValueRef, ty: ty::t) { if !ty::type_needs_drop(cx.tcx(), ty) { ret; } #debug["add_clean_temp(%s, %s, %s)", cx.to_str(), val_str(cx.ccx().tn, val), ty_to_str(cx.ccx().tcx, ty)]; let cleanup_type = cleanup_type(cx.tcx(), ty); fn do_drop(bcx: block, val: ValueRef, ty: ty::t) -> block { if ty::type_is_immediate(ty) { ret base::drop_ty_immediate(bcx, val, ty); } else { ret base::drop_ty(bcx, val, ty); } } do in_scope_cx(cx) |info| { vec::push(info.cleanups, clean_temp(val, |a| do_drop(a, val, ty), cleanup_type)); scope_clean_changed(info); } } fn add_clean_temp_mem(cx: block, val: ValueRef, ty: ty::t) { if !ty::type_needs_drop(cx.tcx(), ty) { ret; } #debug["add_clean_temp_mem(%s, %s, %s)", cx.to_str(), val_str(cx.ccx().tn, val), ty_to_str(cx.ccx().tcx, ty)]; let cleanup_type = cleanup_type(cx.tcx(), ty); do in_scope_cx(cx) |info| { vec::push(info.cleanups, clean_temp(val, |a| base::drop_ty(a, val, ty), cleanup_type)); scope_clean_changed(info); } } fn add_clean_free(cx: block, ptr: ValueRef, heap: heap) { let free_fn = alt heap { heap_shared { |a| base::trans_free(a, ptr) } heap_exchange { |a| base::trans_unique_free(a, ptr) } }; do in_scope_cx(cx) |info| { vec::push(info.cleanups, clean_temp(ptr, free_fn, normal_exit_and_unwind)); scope_clean_changed(info); } } // Note that this only works for temporaries. We should, at some point, move // to a system where we can also cancel the cleanup on local variables, but // this will be more involved. For now, we simply zero out the local, and the // drop glue checks whether it is zero. fn revoke_clean(cx: block, val: ValueRef) { do in_scope_cx(cx) |info| { do option::iter(vec::position(info.cleanups, |cu| { alt cu { clean_temp(v, _, _) if v == val { true } _ { false } } })) |i| { info.cleanups = vec::append(vec::slice(info.cleanups, 0u, i), // FIXME (#2880): use view here. vec::slice(info.cleanups, i + 1u, info.cleanups.len())); scope_clean_changed(info); } } } enum block_kind { // A scope at the end of which temporary values created inside of it are // cleaned up. May correspond to an actual block in the language, but also // to an implicit scope, for example, calls introduce an implicit scope in // which the arguments are evaluated and cleaned up. block_scope(scope_info), // A non-scope block is a basic block created as a translation artifact // from translating code that expresses conditional logic rather than by // explicit { ... } block structure in the source language. It's called a // non-scope block because it doesn't introduce a new variable scope. block_non_scope, } type scope_info = { loop_break: option, // A list of functions that must be run at when leaving this // block, cleaning up any variables that were introduced in the // block. mut cleanups: ~[cleanup], // Existing cleanup paths that may be reused, indexed by destination and // cleared when the set of cleanups changes. mut cleanup_paths: ~[cleanup_path], // Unwinding landing pad. Also cleared when cleanups change. mut landing_pad: option, }; impl node_info for @ast::expr { fn info() -> option { some({id: self.id, span: self.span}) } } impl node_info for ast::blk { fn info() -> option { some({id: self.node.id, span: self.span}) } } impl node_info for option<@ast::expr> { fn info() -> option { self.chain(|s| s.info()) } } type node_info = { id: ast::node_id, span: span }; // Basic block context. We create a block context for each basic block // (single-entry, single-exit sequence of instructions) we generate from Rust // code. Each basic block we generate is attached to a function, typically // with many basic blocks per function. All the basic blocks attached to a // function are organized as a directed graph. class block_ { // The BasicBlockRef returned from a call to // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic // block to the function pointed to by llfn. We insert // instructions into that block by way of this block context. // The block pointing to this one in the function's digraph. let llbb: BasicBlockRef; let mut terminated: bool; let mut unreachable: bool; let parent: option; // The 'kind' of basic block this is. let kind: block_kind; // info about the AST node this block originated from, if any let node_info: option; // The function context for the function to which this block is // attached. let fcx: fn_ctxt; new(llbb: BasicBlockRef, parent: option, -kind: block_kind, node_info: option, fcx: fn_ctxt) { // sigh self.llbb = llbb; self.terminated = false; self.unreachable = false; self.parent = parent; self.kind = kind; self.node_info = node_info; self.fcx = fcx; } } /* This must be enum and not type, or trans goes into an infinite loop (#2572) */ enum block = @block_; fn mk_block(llbb: BasicBlockRef, parent: option, -kind: block_kind, node_info: option, fcx: fn_ctxt) -> block { block(@block_(llbb, parent, kind, node_info, fcx)) } // First two args are retptr, env const first_real_arg: uint = 2u; type result = {bcx: block, val: ValueRef}; type result_t = {bcx: block, val: ValueRef, ty: ty::t}; fn rslt(bcx: block, val: ValueRef) -> result { {bcx: bcx, val: val} } fn ty_str(tn: type_names, t: TypeRef) -> ~str { ret lib::llvm::type_to_str(tn, t); } fn val_ty(v: ValueRef) -> TypeRef { ret llvm::LLVMTypeOf(v); } fn val_str(tn: type_names, v: ValueRef) -> ~str { ret ty_str(tn, val_ty(v)); } // Returns the nth element of the given LLVM structure type. fn struct_elt(llstructty: TypeRef, n: uint) -> TypeRef unsafe { let elt_count = llvm::LLVMCountStructElementTypes(llstructty) as uint; assert (n < elt_count); let elt_tys = vec::from_elem(elt_count, T_nil()); llvm::LLVMGetStructElementTypes(llstructty, to_ptr(elt_tys)); ret llvm::LLVMGetElementType(elt_tys[n]); } fn in_scope_cx(cx: block, f: fn(scope_info)) { let mut cur = cx; loop { alt cur.kind { block_scope(inf) { f(inf); ret; } _ {} } cur = block_parent(cur); } } fn block_parent(cx: block) -> block { alt cx.parent { some(b) { b } none { cx.sess().bug(#fmt("block_parent called on root block %?", cx)); } } } // Accessors impl bcx_cxs for block { pure fn ccx() -> @crate_ctxt { self.fcx.ccx } pure fn tcx() -> ty::ctxt { self.fcx.ccx.tcx } pure fn sess() -> session { self.fcx.ccx.sess } fn val_str(val: ValueRef) -> ~str { val_str(self.ccx().tn, val) } fn ty_to_str(t: ty::t) -> ~str { ty_to_str(self.tcx(), t) } fn to_str() -> ~str { alt self.node_info { some(node_info) { #fmt["[block %d]", node_info.id] } none { #fmt["[block %x]", ptr::addr_of(*self) as uint] } } } } // LLVM type constructors. fn T_void() -> TypeRef { // Note: For the time being llvm is kinda busted here, it has the notion // of a 'void' type that can only occur as part of the signature of a // function, but no general unit type of 0-sized value. This is, afaict, // vestigial from its C heritage, and we'll be attempting to submit a // patch upstream to fix it. In the mean time we only model function // outputs (Rust functions and C functions) using T_void, and model the // Rust general purpose nil type you can construct as 1-bit (always // zero). This makes the result incorrect for now -- things like a tuple // of 10 nil values will have 10-bit size -- but it doesn't seem like we // have any other options until it's fixed upstream. ret llvm::LLVMVoidType(); } fn T_nil() -> TypeRef { // NB: See above in T_void(). ret llvm::LLVMInt1Type(); } fn T_metadata() -> TypeRef { ret llvm::LLVMMetadataType(); } fn T_i1() -> TypeRef { ret llvm::LLVMInt1Type(); } fn T_i8() -> TypeRef { ret llvm::LLVMInt8Type(); } fn T_i16() -> TypeRef { ret llvm::LLVMInt16Type(); } fn T_i32() -> TypeRef { ret llvm::LLVMInt32Type(); } fn T_i64() -> TypeRef { ret llvm::LLVMInt64Type(); } fn T_f32() -> TypeRef { ret llvm::LLVMFloatType(); } fn T_f64() -> TypeRef { ret llvm::LLVMDoubleType(); } fn T_bool() -> TypeRef { ret T_i1(); } fn T_int(targ_cfg: @session::config) -> TypeRef { ret alt targ_cfg.arch { session::arch_x86 { T_i32() } session::arch_x86_64 { T_i64() } session::arch_arm { T_i32() } }; } fn T_int_ty(cx: @crate_ctxt, t: ast::int_ty) -> TypeRef { alt t { ast::ty_i { cx.int_type } ast::ty_char { T_char() } ast::ty_i8 { T_i8() } ast::ty_i16 { T_i16() } ast::ty_i32 { T_i32() } ast::ty_i64 { T_i64() } } } fn T_uint_ty(cx: @crate_ctxt, t: ast::uint_ty) -> TypeRef { alt t { ast::ty_u { cx.int_type } ast::ty_u8 { T_i8() } ast::ty_u16 { T_i16() } ast::ty_u32 { T_i32() } ast::ty_u64 { T_i64() } } } fn T_float_ty(cx: @crate_ctxt, t: ast::float_ty) -> TypeRef { alt t { ast::ty_f { cx.float_type } ast::ty_f32 { T_f32() } ast::ty_f64 { T_f64() } } } fn T_float(targ_cfg: @session::config) -> TypeRef { ret alt targ_cfg.arch { session::arch_x86 { T_f64() } session::arch_x86_64 { T_f64() } session::arch_arm { T_f64() } }; } fn T_char() -> TypeRef { ret T_i32(); } fn T_size_t(targ_cfg: @session::config) -> TypeRef { ret T_int(targ_cfg); } fn T_fn(inputs: ~[TypeRef], output: TypeRef) -> TypeRef unsafe { ret llvm::LLVMFunctionType(output, to_ptr(inputs), inputs.len() as c_uint, False); } fn T_fn_pair(cx: @crate_ctxt, tfn: TypeRef) -> TypeRef { ret T_struct(~[T_ptr(tfn), T_opaque_cbox_ptr(cx)]); } fn T_ptr(t: TypeRef) -> TypeRef { ret llvm::LLVMPointerType(t, 0u as c_uint); } fn T_struct(elts: ~[TypeRef]) -> TypeRef unsafe { ret llvm::LLVMStructType(to_ptr(elts), elts.len() as c_uint, False); } fn T_named_struct(name: ~str) -> TypeRef { let c = llvm::LLVMGetGlobalContext(); ret str::as_c_str(name, |buf| llvm::LLVMStructCreateNamed(c, buf)); } fn set_struct_body(t: TypeRef, elts: ~[TypeRef]) unsafe { llvm::LLVMStructSetBody(t, to_ptr(elts), elts.len() as c_uint, False); } fn T_empty_struct() -> TypeRef { ret T_struct(~[]); } // A vtable is, in reality, a vtable pointer followed by zero or more pointers // to tydescs and other vtables that it closes over. But the types and number // of those are rarely known to the code that needs to manipulate them, so // they are described by this opaque type. fn T_vtable() -> TypeRef { T_array(T_ptr(T_i8()), 1u) } fn T_task(targ_cfg: @session::config) -> TypeRef { let t = T_named_struct(~"task"); // Refcount // Delegate pointer // Stack segment pointer // Runtime SP // Rust SP // GC chain // Domain pointer // Crate cache pointer let t_int = T_int(targ_cfg); let elems = ~[t_int, t_int, t_int, t_int, t_int, t_int, t_int, t_int]; set_struct_body(t, elems); ret t; } fn T_tydesc_field(cx: @crate_ctxt, field: uint) -> TypeRef unsafe { // Bit of a kludge: pick the fn typeref out of the tydesc.. let tydesc_elts: ~[TypeRef] = vec::from_elem::(abi::n_tydesc_fields, T_nil()); llvm::LLVMGetStructElementTypes(cx.tydesc_type, to_ptr::(tydesc_elts)); let t = llvm::LLVMGetElementType(tydesc_elts[field]); ret t; } fn T_glue_fn(cx: @crate_ctxt) -> TypeRef { let s = ~"glue_fn"; alt name_has_type(cx.tn, s) { some(t) { ret t; } _ {} } let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue); associate_type(cx.tn, s, t); ret t; } fn T_tydesc(targ_cfg: @session::config) -> TypeRef { let tydesc = T_named_struct(~"tydesc"); let tydescpp = T_ptr(T_ptr(tydesc)); let pvoid = T_ptr(T_i8()); let glue_fn_ty = T_ptr(T_fn(~[T_ptr(T_nil()), T_ptr(T_nil()), tydescpp, pvoid], T_void())); let int_type = T_int(targ_cfg); let elems = ~[int_type, int_type, glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty, T_ptr(T_i8()), T_ptr(T_i8())]; set_struct_body(tydesc, elems); ret tydesc; } fn T_array(t: TypeRef, n: uint) -> TypeRef { ret llvm::LLVMArrayType(t, n as c_uint); } // Interior vector. fn T_vec2(targ_cfg: @session::config, t: TypeRef) -> TypeRef { ret T_struct(~[T_int(targ_cfg), // fill T_int(targ_cfg), // alloc T_array(t, 0u)]); // elements } fn T_vec(ccx: @crate_ctxt, t: TypeRef) -> TypeRef { ret T_vec2(ccx.sess.targ_cfg, t); } // Note that the size of this one is in bytes. fn T_opaque_vec(targ_cfg: @session::config) -> TypeRef { ret T_vec2(targ_cfg, T_i8()); } // Let T be the content of a box @T. tuplify_box_ty(t) returns the // representation of @T as a tuple (i.e., the ty::t version of what T_box() // returns). fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let ptr = ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm}); ret ty::mk_tup(tcx, ~[ty::mk_uint(tcx), ty::mk_type(tcx), ptr, ptr, t]); } fn T_box_header_fields(cx: @crate_ctxt) -> ~[TypeRef] { let ptr = T_ptr(T_i8()); ret ~[cx.int_type, T_ptr(cx.tydesc_type), ptr, ptr]; } fn T_box_header(cx: @crate_ctxt) -> TypeRef { ret T_struct(T_box_header_fields(cx)); } fn T_box(cx: @crate_ctxt, t: TypeRef) -> TypeRef { ret T_struct(vec::append(T_box_header_fields(cx), ~[t])); } fn T_box_ptr(t: TypeRef) -> TypeRef { const box_addrspace: uint = 1u; ret llvm::LLVMPointerType(t, box_addrspace as c_uint); } fn T_opaque_box(cx: @crate_ctxt) -> TypeRef { ret T_box(cx, T_i8()); } fn T_opaque_box_ptr(cx: @crate_ctxt) -> TypeRef { ret T_box_ptr(T_opaque_box(cx)); } fn T_unique(cx: @crate_ctxt, t: TypeRef) -> TypeRef { ret T_struct(vec::append(T_box_header_fields(cx), ~[t])); } fn T_unique_ptr(t: TypeRef) -> TypeRef { const unique_addrspace: uint = 1u; ret llvm::LLVMPointerType(t, unique_addrspace as c_uint); } fn T_port(cx: @crate_ctxt, _t: TypeRef) -> TypeRef { ret T_struct(~[cx.int_type]); // Refcount } fn T_chan(cx: @crate_ctxt, _t: TypeRef) -> TypeRef { ret T_struct(~[cx.int_type]); // Refcount } fn T_taskptr(cx: @crate_ctxt) -> TypeRef { ret T_ptr(cx.task_type); } // This type must never be used directly; it must always be cast away. fn T_typaram(tn: type_names) -> TypeRef { let s = ~"typaram"; alt name_has_type(tn, s) { some(t) { ret t; } _ {} } let t = T_i8(); associate_type(tn, s, t); ret t; } fn T_typaram_ptr(tn: type_names) -> TypeRef { ret T_ptr(T_typaram(tn)); } fn T_opaque_cbox_ptr(cx: @crate_ctxt) -> TypeRef { // closures look like boxes (even when they are fn~ or fn&) // see trans_closure.rs ret T_opaque_box_ptr(cx); } fn T_enum_discrim(cx: @crate_ctxt) -> TypeRef { ret cx.int_type; } fn T_opaque_enum(cx: @crate_ctxt) -> TypeRef { let s = ~"opaque_enum"; alt name_has_type(cx.tn, s) { some(t) { ret t; } _ {} } let t = T_struct(~[T_enum_discrim(cx), T_i8()]); associate_type(cx.tn, s, t); ret t; } fn T_opaque_enum_ptr(cx: @crate_ctxt) -> TypeRef { ret T_ptr(T_opaque_enum(cx)); } fn T_captured_tydescs(cx: @crate_ctxt, n: uint) -> TypeRef { ret T_struct(vec::from_elem::(n, T_ptr(cx.tydesc_type))); } fn T_opaque_trait(cx: @crate_ctxt) -> TypeRef { T_struct(~[T_ptr(cx.tydesc_type), T_opaque_box_ptr(cx)]) } fn T_opaque_port_ptr() -> TypeRef { ret T_ptr(T_i8()); } fn T_opaque_chan_ptr() -> TypeRef { ret T_ptr(T_i8()); } // LLVM constant constructors. fn C_null(t: TypeRef) -> ValueRef { ret llvm::LLVMConstNull(t); } fn C_integral(t: TypeRef, u: u64, sign_extend: Bool) -> ValueRef { ret llvm::LLVMConstInt(t, u, sign_extend); } fn C_floating(s: ~str, t: TypeRef) -> ValueRef { ret str::as_c_str(s, |buf| llvm::LLVMConstRealOfString(t, buf)); } fn C_nil() -> ValueRef { // NB: See comment above in T_void(). ret C_integral(T_i1(), 0u64, False); } fn C_bool(b: bool) -> ValueRef { C_integral(T_bool(), if b { 1u64 } else { 0u64 }, False) } fn C_i32(i: i32) -> ValueRef { ret C_integral(T_i32(), i as u64, True); } fn C_i64(i: i64) -> ValueRef { ret C_integral(T_i64(), i as u64, True); } fn C_int(cx: @crate_ctxt, i: int) -> ValueRef { ret C_integral(cx.int_type, i as u64, True); } fn C_uint(cx: @crate_ctxt, i: uint) -> ValueRef { ret C_integral(cx.int_type, i as u64, False); } fn C_u8(i: uint) -> ValueRef { ret C_integral(T_i8(), i as u64, False); } // This is a 'c-like' raw string, which differs from // our boxed-and-length-annotated strings. fn C_cstr(cx: @crate_ctxt, s: ~str) -> ValueRef { alt cx.const_cstr_cache.find(s) { some(llval) { ret llval; } none { } } let sc = do str::as_c_str(s) |buf| { llvm::LLVMConstString(buf, str::len(s) as c_uint, False) }; let g = str::as_c_str(cx.names(~"str"), |buf| llvm::LLVMAddGlobal(cx.llmod, val_ty(sc), buf)); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage); cx.const_cstr_cache.insert(s, g); ret g; } fn C_estr_slice(cx: @crate_ctxt, s: ~str) -> ValueRef { let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), T_ptr(T_i8())); C_struct(~[cs, C_uint(cx, str::len(s) + 1u /* +1 for null */)]) } // Returns a Plain Old LLVM String: fn C_postr(s: ~str) -> ValueRef { ret do str::as_c_str(s) |buf| { llvm::LLVMConstString(buf, str::len(s) as c_uint, False) }; } fn C_zero_byte_arr(size: uint) -> ValueRef unsafe { let mut i = 0u; let mut elts: ~[ValueRef] = ~[]; while i < size { vec::push(elts, C_u8(0u)); i += 1u; } ret llvm::LLVMConstArray(T_i8(), vec::unsafe::to_ptr(elts), elts.len() as c_uint); } fn C_struct(elts: ~[ValueRef]) -> ValueRef unsafe { ret llvm::LLVMConstStruct(vec::unsafe::to_ptr(elts), elts.len() as c_uint, False); } fn C_named_struct(T: TypeRef, elts: ~[ValueRef]) -> ValueRef unsafe { ret llvm::LLVMConstNamedStruct(T, vec::unsafe::to_ptr(elts), elts.len() as c_uint); } fn C_array(ty: TypeRef, elts: ~[ValueRef]) -> ValueRef unsafe { ret llvm::LLVMConstArray(ty, vec::unsafe::to_ptr(elts), elts.len() as c_uint); } fn C_bytes(bytes: ~[u8]) -> ValueRef unsafe { ret llvm::LLVMConstString( unsafe::reinterpret_cast(vec::unsafe::to_ptr(bytes)), bytes.len() as c_uint, False); } fn C_shape(ccx: @crate_ctxt, bytes: ~[u8]) -> ValueRef { let llshape = C_bytes(bytes); let llglobal = str::as_c_str(ccx.names(~"shape"), |buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(llshape), buf) }); llvm::LLVMSetInitializer(llglobal, llshape); llvm::LLVMSetGlobalConstant(llglobal, True); lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage); ret llvm::LLVMConstPointerCast(llglobal, T_ptr(T_i8())); } fn get_param(fndecl: ValueRef, param: uint) -> ValueRef { llvm::LLVMGetParam(fndecl, param as c_uint) } // Used to identify cached monomorphized functions and vtables enum mono_param_id { mono_precise(ty::t, option<~[mono_id]>), mono_any, mono_repr(uint /* size */, uint /* align */), } type mono_id = @{def: ast::def_id, params: ~[mono_param_id]}; fn hash_mono_id(&&mi: mono_id) -> uint { let mut h = syntax::ast_util::hash_def(mi.def); for vec::each(mi.params) |param| { h = h * alt param { mono_precise(ty, vts) { let mut h = ty::type_id(ty); do option::iter(vts) |vts| { for vec::each(vts) |vt| { h += hash_mono_id(vt); } } h } mono_any { 1u } mono_repr(sz, align) { sz * (align + 2u) } } } h } fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); ret build::Select(cx, cond, b, a); } fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let cond = build::ICmp(cx, lib::llvm::IntULT, a, b); ret build::Select(cx, cond, a, b); } fn align_to(cx: block, off: ValueRef, align: ValueRef) -> ValueRef { let mask = build::Sub(cx, align, C_int(cx.ccx(), 1)); let bumped = build::Add(cx, off, mask); ret build::And(cx, bumped, build::Not(cx, mask)); } fn path_str(p: path) -> ~str { let mut r = ~"", first = true; for vec::each(p) |e| { alt e { ast_map::path_name(s) | ast_map::path_mod(s) { if first { first = false; } else { r += ~"::"; } r += *s; } } } r } fn node_id_type(bcx: block, id: ast::node_id) -> ty::t { let tcx = bcx.tcx(); let t = ty::node_id_to_type(tcx, id); alt bcx.fcx.param_substs { some(substs) { ty::subst_tps(tcx, substs.tys, t) } _ { assert !ty::type_has_params(t); t } } } fn expr_ty(bcx: block, ex: @ast::expr) -> ty::t { node_id_type(bcx, ex.id) } fn node_id_type_params(bcx: block, id: ast::node_id) -> ~[ty::t] { let tcx = bcx.tcx(); let params = ty::node_id_to_type_params(tcx, id); alt bcx.fcx.param_substs { some(substs) { vec::map(params, |t| ty::subst_tps(tcx, substs.tys, t)) } _ { params } } } fn field_idx_strict(cx: ty::ctxt, sp: span, ident: ast::ident, fields: ~[ty::field]) -> uint { alt ty::field_idx(ident, fields) { none { cx.sess.span_bug(sp, #fmt("base expr doesn't appear to \ have a field named %s", *ident)); } some(i) { i } } } fn dummy_substs(tps: ~[ty::t]) -> ty::substs { {self_r: some(ty::re_bound(ty::br_self)), self_ty: none, tps: tps} } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //