2.0 KiB
% Enums
An enum
in Rust is a type that represents data that could be one of
several possible variants:
enum Message {
Quit,
ChangeColor(i32, i32, i32),
Move { x: i32, y: i32 },
Write(String),
}
Each variant can optionally have data associated with it. The syntax for
defining variants resembles the syntaxes used to define structs: you can
have variants with no data (like unit-like structs), variants with named
data, and variants with unnamed data (like tuple structs). Unlike
separate struct definitions, however, an enum
is a single type. A
value of the enum can match any of the variants. For this reason, an
enum is sometimes called a ‘sum type’: the set of possible values of the
enum is the sum of the sets of possible values for each variant.
We use the ::
syntax to use the name of each variant: they’re scoped by the name
of the enum
itself. This allows both of these to work:
# enum Message {
# Move { x: i32, y: i32 },
# }
let x: Message = Message::Move { x: 3, y: 4 };
enum BoardGameTurn {
Move { squares: i32 },
Pass,
}
let y: BoardGameTurn = BoardGameTurn::Move { squares: 1 };
Both variants are named Move
, but since they’re scoped to the name of
the enum, they can both be used without conflict.
A value of an enum type contains information about which variant it is, in addition to any data associated with that variant. This is sometimes referred to as a ‘tagged union’, since the data includes a ‘tag’ indicating what type it is. The compiler uses this information to enforce that you’re accessing the data in the enum safely. For instance, you can’t simply try to destructure a value as if it were one of the possible variants:
fn process_color_change(msg: Message) {
let Message::ChangeColor(r, g, b) = msg; // compile-time error
}
We’ll see how to safely get data out of enums when we learn about the
match
and if let
statements in the next few
chapters.