rust/src/comp/middle/trans.rs

8660 lines
338 KiB
Rust

// trans.rs: Translate the completed AST to the LLVM IR.
//
// Some functions here, such as trans_block and trans_expr, return a value --
// the result of the translation to LLVM -- while others, such as trans_fn,
// trans_obj, and trans_item, are called only for the side effect of adding a
// particular definition to the LLVM IR output we're producing.
//
// Hopefully useful general knowledge about trans:
//
// * There's no way to find out the ty::t type of a ValueRef. Doing so
// would be "trying to get the eggs out of an omelette" (credit:
// pcwalton). You can, instead, find out its TypeRef by calling val_ty,
// but many TypeRefs correspond to one ty::t; for instance, tup(int, int,
// int) and rec(x=int, y=int, z=int) will have the same TypeRef.
import std::int;
import std::str;
import std::uint;
import std::str::rustrt::sbuf;
import std::map;
import std::map::hashmap;
import std::option;
import std::option::some;
import std::option::none;
import std::fs;
import syntax::ast;
import syntax::walk;
import driver::session;
import middle::ty;
import back::link;
import back::x86;
import back::abi;
import back::upcall;
import syntax::visit;
import visit::vt;
import util::common;
import util::common::*;
import std::map::new_int_hash;
import std::map::new_str_hash;
import syntax::codemap::span;
import lib::llvm::llvm;
import lib::llvm::builder;
import lib::llvm::target_data;
import lib::llvm::type_names;
import lib::llvm::mk_target_data;
import lib::llvm::mk_type_names;
import lib::llvm::llvm::ModuleRef;
import lib::llvm::llvm::ValueRef;
import lib::llvm::llvm::TypeRef;
import lib::llvm::llvm::TypeHandleRef;
import lib::llvm::llvm::BuilderRef;
import lib::llvm::llvm::BasicBlockRef;
import lib::llvm::False;
import lib::llvm::True;
import lib::llvm::Bool;
import link::mangle_internal_name_by_type_only;
import link::mangle_internal_name_by_seq;
import link::mangle_internal_name_by_path;
import link::mangle_internal_name_by_path_and_seq;
import link::mangle_exported_name;
import metadata::creader;
import metadata::csearch;
import metadata::cstore;
import util::ppaux::ty_to_str;
import util::ppaux::ty_to_short_str;
import syntax::print::pprust::expr_to_str;
import syntax::print::pprust::path_to_str;
import trans_common::*;
import trans_comm::trans_port;
import trans_comm::trans_chan;
import trans_comm::trans_spawn;
import trans_comm::trans_send;
import trans_comm::trans_recv;
obj namegen(mutable int i) {
fn next(str prefix) -> str { i += 1; ret prefix + int::str(i); }
}
type derived_tydesc_info = rec(ValueRef lltydesc, bool escapes);
type glue_fns = rec(ValueRef no_op_type_glue);
type tydesc_info =
rec(ty::t ty,
ValueRef tydesc,
ValueRef size,
ValueRef align,
mutable option::t[ValueRef] copy_glue,
mutable option::t[ValueRef] drop_glue,
mutable option::t[ValueRef] free_glue,
mutable option::t[ValueRef] cmp_glue,
uint[] ty_params);
/*
* A note on nomenclature of linking: "upcall", "extern" and "native".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* A "native" is an extern that references C code. Called with cdecl.
*
* An upcall is a native call generated by the compiler (not corresponding to
* any user-written call in the code) into librustrt, to perform some helper
* task such as bringing a task to life, allocating memory, etc.
*
*/
type stats =
rec(mutable uint n_static_tydescs,
mutable uint n_derived_tydescs,
mutable uint n_glues_created,
mutable uint n_null_glues,
mutable uint n_real_glues);
// Crate context. Every crate we compile has one of these.
type crate_ctxt =
rec(session::session sess,
ModuleRef llmod,
target_data td,
type_names tn,
hashmap[str, ValueRef] externs,
hashmap[str, ValueRef] intrinsics,
// A mapping from the def_id of each item in this crate to the address
// of the first instruction of the item's definition in the executable
// we're generating.
hashmap[ast::node_id, ValueRef] item_ids,
ast_map::map ast_map,
hashmap[ast::node_id, str] item_symbols,
mutable option::t[ValueRef] main_fn,
link::link_meta link_meta,
// TODO: hashmap[tup(tag_id,subtys), @tag_info]
hashmap[ty::t, uint] tag_sizes,
hashmap[ast::node_id, ValueRef] discrims,
hashmap[ast::node_id, str] discrim_symbols,
hashmap[ast::node_id, ValueRef] fn_pairs,
hashmap[ast::node_id, ValueRef] consts,
hashmap[ast::node_id, ()] obj_methods,
hashmap[ty::t, @tydesc_info] tydescs,
hashmap[str, ValueRef] module_data,
hashmap[ty::t, TypeRef] lltypes,
@glue_fns glues,
namegen names,
std::sha1::sha1 sha,
hashmap[ty::t, str] type_sha1s,
hashmap[ty::t, str] type_short_names,
ty::ctxt tcx,
stats stats,
@upcall::upcalls upcalls,
TypeRef rust_object_type,
TypeRef tydesc_type,
TypeRef task_type);
type local_ctxt =
rec(str[] path,
str[] module_path,
ast::ty_param[] obj_typarams,
ast::obj_field[] obj_fields,
@crate_ctxt ccx);
// Types used for llself.
type val_self_pair = rec(ValueRef v, ty::t t);
// Function context. Every LLVM function we create will have one of these.
type fn_ctxt =
rec(
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of instructions
// for this function that will go in the .text section of the
// executable we're generating.
ValueRef llfn,
// The three implicit arguments that arrive in the function we're
// creating. For instance, foo(int, int) is really foo(ret*, task*,
// env*, int, int). These are also available via
// llvm::LLVMGetParam(llfn, uint) where uint = 1, 2, 0 respectively,
// but we unpack them into these fields for convenience.
// Points to the current task.
ValueRef lltaskptr,
// Points to the current environment (bindings of variables to
// values), if this is a regular function; points to the current
// object, if this is a method.
ValueRef llenv,
// Points to where the return value of this function should end up.
ValueRef llretptr,
// The next three elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A block for all the function's static allocas, so that LLVM will
// coalesce them into a single alloca call.
mutable BasicBlockRef llstaticallocas,
// A block containing code that copies incoming arguments to space
// already allocated by code in one of the llallocas blocks. (LLVM
// requires that arguments be copied to local allocas before allowing
// most any operation to be performed on them.)
mutable BasicBlockRef llcopyargs,
// The first block containing derived tydescs received from the
// runtime. See description of derived_tydescs, below.
mutable BasicBlockRef llderivedtydescs_first,
// The last block of the llderivedtydescs group.
mutable BasicBlockRef llderivedtydescs,
// A block for all of the dynamically sized allocas. This must be
// after llderivedtydescs, because these sometimes depend on
// information computed from derived tydescs.
mutable BasicBlockRef lldynamicallocas,
// FIXME: Is llcopyargs actually the block containing the allocas for
// incoming function arguments? Or is it merely the block containing
// code that copies incoming args to space already alloca'd by code in
// llallocas?
// The 'self' object currently in use in this function, if there is
// one.
mutable option::t[val_self_pair] llself,
// If this function is actually a iter, a block containing the code
// called whenever the iter calls 'put'.
mutable option::t[ValueRef] lliterbody,
// The next four items: hash tables mapping from AST def_ids to
// LLVM-stuff-in-the-frame.
// Maps arguments to allocas created for them in llallocas.
hashmap[ast::node_id, ValueRef] llargs,
// Maps fields in objects to pointers into the interior of llself's
// body.
hashmap[ast::node_id, ValueRef] llobjfields,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
hashmap[ast::node_id, ValueRef] lllocals,
// The same as above, but for variables accessed via the frame pointer
// we pass into an iter, for access to the static environment of the
// iter-calling frame.
hashmap[ast::node_id, ValueRef] llupvars,
// For convenience, a vector of the incoming tydescs for each of this
// functions type parameters, fetched via llvm::LLVMGetParam. For
// example, for a function foo[A, B, C](), lltydescs contains the
// ValueRefs for the tydescs for A, B, and C.
mutable ValueRef[] lltydescs,
// Derived tydescs are tydescs created at runtime, for types that
// involve type parameters inside type constructors. For example,
// suppose a function parameterized by T creates a vector of type
// [T]. The function doesn't know what T is until runtime, and the
// function's caller knows T but doesn't know that a vector is
// involved. So a tydesc for [T] can't be created until runtime,
// when information about both "[T]" and "T" are available. When such
// a tydesc is created, we cache it in the derived_tydescs table for
// the next time that such a tydesc is needed.
hashmap[ty::t, derived_tydesc_info] derived_tydescs,
// The source span where this function comes from, for error
// reporting.
span sp,
// This function's enclosing local context.
@local_ctxt lcx);
tag cleanup {
clean(fn(&@block_ctxt) -> result);
clean_temp(ValueRef, fn(&@block_ctxt) -> result);
}
fn add_clean(&@block_ctxt cx, ValueRef val, ty::t ty) {
find_scope_cx(cx).cleanups += ~[clean(bind drop_slot(_, val, ty))];
}
fn add_clean_temp(&@block_ctxt cx, ValueRef val, ty::t ty) {
find_scope_cx(cx).cleanups += ~[clean_temp(val,
bind drop_ty(_, val, ty))];
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
fn revoke_clean(&@block_ctxt cx, ValueRef val) {
auto sc_cx = find_scope_cx(cx);
auto found = -1;
auto i = 0;
for (cleanup c in sc_cx.cleanups) {
alt (c) {
case (clean_temp(?v, _)) {
if (v as uint == val as uint) { found = i; break; }
}
case (_) {}
}
i += 1;
}
// The value does not have a cleanup associated with it. Might be a
// constant or some immediate value.
if (found == -1) { ret; }
// We found the cleanup and remove it
sc_cx.cleanups = std::ivec::slice(sc_cx.cleanups, 0u, found as uint) +
std::ivec::slice(sc_cx.cleanups, found as uint + 1u,
std::ivec::len(sc_cx.cleanups));
}
tag block_kind {
// A scope block is a basic block created by translating a block { ... }
// the the source language. Since these blocks create variable scope, any
// variables created in them that are still live at the end of the block
// must be dropped and cleaned up when the block ends.
SCOPE_BLOCK;
// A basic block created from the body of a loop. Contains pointers to
// which block to jump to in the case of "continue" or "break", with the
// "continue" block optional, because "while" and "do while" don't support
// "continue" (TODO: is this intentional?)
LOOP_SCOPE_BLOCK(option::t[@block_ctxt], @block_ctxt);
// A non-scope block is a basic block created as a translation artifact
// from translating code that expresses conditional logic rather than by
// explicit { ... } block structure in the source language. It's called a
// non-scope block because it doesn't introduce a new variable scope.
NON_SCOPE_BLOCK;
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
type block_ctxt =
rec(
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic block to
// the function pointed to by llfn. We insert instructions into that
// block by way of this block context.
BasicBlockRef llbb,
// The llvm::builder object serving as an interface to LLVM's
// LLVMBuild* functions.
builder build,
// The block pointing to this one in the function's digraph.
block_parent parent,
// The 'kind' of basic block this is.
block_kind kind,
// A list of functions that run at the end of translating this block,
// cleaning up any variables that were introduced in the block and
// need to go out of scope at the end of it.
mutable cleanup[] cleanups,
// The source span where this block comes from, for error reporting.
span sp,
// The function context for the function to which this block is
// attached.
@fn_ctxt fcx);
// FIXME: we should be able to use option::t[@block_parent] here but
// the infinite-tag check in rustboot gets upset.
tag block_parent { parent_none; parent_some(@block_ctxt); }
type result = rec(@block_ctxt bcx, ValueRef val);
type result_t = rec(@block_ctxt bcx, ValueRef val, ty::t ty);
fn extend_path(@local_ctxt cx, &str name) -> @local_ctxt {
ret @rec(path=cx.path + ~[name] with *cx);
}
fn rslt(@block_ctxt bcx, ValueRef val) -> result {
ret rec(bcx=bcx, val=val);
}
fn ty_str(type_names tn, TypeRef t) -> str {
ret lib::llvm::type_to_str(tn, t);
}
fn val_ty(ValueRef v) -> TypeRef { ret llvm::LLVMTypeOf(v); }
fn val_str(type_names tn, ValueRef v) -> str { ret ty_str(tn, val_ty(v)); }
// Returns the nth element of the given LLVM structure type.
fn struct_elt(TypeRef llstructty, uint n) -> TypeRef {
auto elt_count = llvm::LLVMCountStructElementTypes(llstructty);
assert (n < elt_count);
auto elt_tys = std::ivec::init_elt(T_nil(), elt_count);
llvm::LLVMGetStructElementTypes(llstructty, std::ivec::to_ptr(elt_tys));
ret llvm::LLVMGetElementType(elt_tys.(n));
}
// This function now fails if called on a type with dynamic size (as its
// return value was always meaningless in that case anyhow). Beware!
//
// TODO: Enforce via a predicate.
fn type_of(&@crate_ctxt cx, &span sp, &ty::t t) -> TypeRef {
if (ty::type_has_dynamic_size(cx.tcx, t)) {
cx.sess.span_fatal(sp,
"type_of() called on a type with dynamic size: " +
ty_to_str(cx.tcx, t));
}
ret type_of_inner(cx, sp, t);
}
fn type_of_explicit_args(&@crate_ctxt cx, &span sp, &ty::arg[] inputs)
-> TypeRef[] {
let TypeRef[] atys = ~[];
for (ty::arg arg in inputs) {
if (ty::type_has_dynamic_size(cx.tcx, arg.ty)) {
assert (arg.mode != ty::mo_val);
atys += ~[T_typaram_ptr(cx.tn)];
} else {
let TypeRef t;
alt (arg.mode) {
case (ty::mo_alias(_)) {
t = T_ptr(type_of_inner(cx, sp, arg.ty));
}
case (_) { t = type_of_inner(cx, sp, arg.ty); }
}
atys += ~[t];
}
}
ret atys;
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn type_of_fn_full(&@crate_ctxt cx, &span sp, ast::proto proto,
bool is_method, &ty::arg[] inputs,
&ty::t output, uint ty_param_count) -> TypeRef {
let TypeRef[] atys = ~[];
// Arg 0: Output pointer.
if (ty::type_has_dynamic_size(cx.tcx, output)) {
atys += ~[T_typaram_ptr(cx.tn)];
} else {
atys += ~[T_ptr(type_of_inner(cx, sp, output))];
}
// Arg 1: task pointer.
atys += ~[T_taskptr(*cx)];
// Arg 2: Env (closure-bindings / self-obj)
if (is_method) {
atys += ~[cx.rust_object_type];
} else {
atys += ~[T_opaque_closure_ptr(*cx)];
}
// Args >3: ty params, if not acquired via capture...
if (!is_method) {
auto i = 0u;
while (i < ty_param_count) {
atys += ~[T_ptr(cx.tydesc_type)];
i += 1u;
}
}
if (proto == ast::proto_iter) {
// If it's an iter, the 'output' type of the iter is actually the
// *input* type of the function we're given as our iter-block
// argument.
atys +=
~[T_fn_pair(*cx,
type_of_fn_full(cx, sp, ast::proto_fn, false,
~[rec(mode=ty::mo_alias(false),
ty=output)], ty::mk_nil(cx.tcx),
0u))];
}
// ... then explicit args.
atys += type_of_explicit_args(cx, sp, inputs);
ret T_fn(atys, llvm::LLVMVoidType());
}
fn type_of_fn(&@crate_ctxt cx, &span sp, ast::proto proto,
&ty::arg[] inputs, &ty::t output, uint ty_param_count) ->
TypeRef {
ret type_of_fn_full(cx, sp, proto, false, inputs, output,
ty_param_count);
}
fn type_of_native_fn(&@crate_ctxt cx, &span sp, ast::native_abi abi,
&ty::arg[] inputs, &ty::t output, uint ty_param_count)
-> TypeRef {
let TypeRef[] atys = ~[];
if (abi == ast::native_abi_rust) {
atys += ~[T_taskptr(*cx)];
auto i = 0u;
while (i < ty_param_count) {
atys += ~[T_ptr(cx.tydesc_type)];
i += 1u;
}
}
atys += type_of_explicit_args(cx, sp, inputs);
ret T_fn(atys, type_of_inner(cx, sp, output));
}
fn type_of_inner(&@crate_ctxt cx, &span sp, &ty::t t) -> TypeRef {
// Check the cache.
if (cx.lltypes.contains_key(t)) { ret cx.lltypes.get(t); }
let TypeRef llty = 0 as TypeRef;
alt (ty::struct(cx.tcx, t)) {
case (ty::ty_native(_)) { llty = T_ptr(T_i8()); }
case (ty::ty_nil) { llty = T_nil(); }
case (ty::ty_bot) {
llty = T_nil(); /* ...I guess? */
}
case (ty::ty_bool) { llty = T_bool(); }
case (ty::ty_int) { llty = T_int(); }
case (ty::ty_float) { llty = T_float(); }
case (ty::ty_uint) { llty = T_int(); }
case (ty::ty_machine(?tm)) {
alt (tm) {
case (ast::ty_i8) { llty = T_i8(); }
case (ast::ty_u8) { llty = T_i8(); }
case (ast::ty_i16) { llty = T_i16(); }
case (ast::ty_u16) { llty = T_i16(); }
case (ast::ty_i32) { llty = T_i32(); }
case (ast::ty_u32) { llty = T_i32(); }
case (ast::ty_i64) { llty = T_i64(); }
case (ast::ty_u64) { llty = T_i64(); }
case (ast::ty_f32) { llty = T_f32(); }
case (ast::ty_f64) { llty = T_f64(); }
}
}
case (ty::ty_char) { llty = T_char(); }
case (ty::ty_str) { llty = T_ptr(T_str()); }
case (ty::ty_istr) { llty = T_ivec(T_i8()); }
case (ty::ty_tag(?did, _)) { llty = type_of_tag(cx, sp, did, t); }
case (ty::ty_box(?mt)) {
llty = T_ptr(T_box(type_of_inner(cx, sp, mt.ty)));
}
case (ty::ty_vec(?mt)) {
llty = T_ptr(T_vec(type_of_inner(cx, sp, mt.ty)));
}
case (ty::ty_ivec(?mt)) {
if (ty::type_has_dynamic_size(cx.tcx, mt.ty)) {
llty = T_opaque_ivec();
} else { llty = T_ivec(type_of_inner(cx, sp, mt.ty)); }
}
case (ty::ty_ptr(?mt)) { llty = T_ptr(type_of_inner(cx, sp, mt.ty)); }
case (ty::ty_port(?t)) {
llty = T_ptr(T_port(type_of_inner(cx, sp, t)));
}
case (ty::ty_chan(?t)) {
llty = T_ptr(T_chan(type_of_inner(cx, sp, t)));
}
case (ty::ty_task) { llty = T_taskptr(*cx); }
case (ty::ty_tup(?elts)) {
let TypeRef[] tys = ~[];
for (ty::mt elt in elts) {
tys += ~[type_of_inner(cx, sp, elt.ty)];
}
llty = T_struct(tys);
}
case (ty::ty_rec(?fields)) {
let TypeRef[] tys = ~[];
for (ty::field f in fields) {
tys += ~[type_of_inner(cx, sp, f.mt.ty)];
}
llty = T_struct(tys);
}
case (ty::ty_fn(?proto, ?args, ?out, _, _)) {
llty = T_fn_pair(*cx, type_of_fn(cx, sp, proto, args, out, 0u));
}
case (ty::ty_native_fn(?abi, ?args, ?out)) {
auto nft = native_fn_wrapper_type(cx, sp, 0u, t);
llty = T_fn_pair(*cx, nft);
}
case (ty::ty_obj(?meths)) {
llty = cx.rust_object_type;
}
case (ty::ty_res(_, ?sub, ?tps)) {
auto sub1 = ty::substitute_type_params(cx.tcx, tps, sub);
ret T_struct(~[T_i32(), type_of_inner(cx, sp, sub1)]);
}
case (ty::ty_var(_)) {
cx.tcx.sess.span_fatal(sp, "trans::type_of called on ty_var");
}
case (ty::ty_param(_)) { llty = T_i8(); }
case (ty::ty_type) { llty = T_ptr(cx.tydesc_type); }
}
assert (llty as int != 0);
cx.lltypes.insert(t, llty);
ret llty;
}
fn type_of_tag(&@crate_ctxt cx, &span sp, &ast::def_id did, &ty::t t)
-> TypeRef {
auto degen = std::ivec::len(ty::tag_variants(cx.tcx, did)) == 1u;
if (ty::type_has_dynamic_size(cx.tcx, t)) {
if (degen) { ret T_i8(); }
else { ret T_opaque_tag(cx.tn); }
} else {
auto size = static_size_of_tag(cx, sp, t);
if (!degen) { ret T_tag(cx.tn, size); }
// LLVM does not like 0-size arrays, apparently
if (size == 0u) { size = 1u; }
ret T_array(T_i8(), size);
}
}
fn type_of_arg(@local_ctxt cx, &span sp, &ty::arg arg) -> TypeRef {
alt (ty::struct(cx.ccx.tcx, arg.ty)) {
case (ty::ty_param(_)) {
if (arg.mode != ty::mo_val) { ret T_typaram_ptr(cx.ccx.tn); }
}
case (_) {
// fall through
}
}
auto typ;
if (arg.mode != ty::mo_val) {
typ = T_ptr(type_of_inner(cx.ccx, sp, arg.ty));
} else { typ = type_of_inner(cx.ccx, sp, arg.ty); }
ret typ;
}
fn type_of_ty_param_count_and_ty(@local_ctxt lcx, &span sp,
&ty::ty_param_count_and_ty tpt) -> TypeRef {
alt (ty::struct(lcx.ccx.tcx, tpt._1)) {
case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) {
auto llfnty =
type_of_fn(lcx.ccx, sp, proto, inputs, output, tpt._0);
ret T_fn_pair(*lcx.ccx, llfnty);
}
case (_) {
// fall through
}
}
ret type_of(lcx.ccx, sp, tpt._1);
}
fn type_of_or_i8(&@block_ctxt bcx, ty::t typ) -> TypeRef {
if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, typ)) { ret T_i8(); }
ret type_of(bcx.fcx.lcx.ccx, bcx.sp, typ);
}
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
fn sanitize(&str s) -> str {
auto result = "";
for (u8 c in s) {
if (c == '@' as u8) {
result += "boxed_";
} else {
if (c == ',' as u8) {
result += "_";
} else {
if (c == '{' as u8 || c == '(' as u8) {
result += "_of_";
} else {
if (c != 10u8 && c != '}' as u8 && c != ')' as u8 &&
c != ' ' as u8 && c != '\t' as u8 &&
c != ';' as u8) {
auto v = [c];
result += str::from_bytes(v);
}
}
}
}
}
ret result;
}
fn decl_fn(ModuleRef llmod, &str name, uint cc, TypeRef llty) -> ValueRef {
let ValueRef llfn = llvm::LLVMAddFunction(llmod, str::buf(name), llty);
llvm::LLVMSetFunctionCallConv(llfn, cc);
ret llfn;
}
fn decl_cdecl_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef {
ret decl_fn(llmod, name, lib::llvm::LLVMCCallConv, llty);
}
fn decl_fastcall_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef {
ret decl_fn(llmod, name, lib::llvm::LLVMFastCallConv, llty);
}
// Only use this if you are going to actually define the function. It's
// not valid to simply declare a function as internal.
fn decl_internal_fastcall_fn(ModuleRef llmod, &str name, TypeRef llty) ->
ValueRef {
auto llfn = decl_fn(llmod, name, lib::llvm::LLVMFastCallConv, llty);
llvm::LLVMSetLinkage(llfn,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
ret llfn;
}
fn decl_glue(ModuleRef llmod, &crate_ctxt cx, &str s) -> ValueRef {
ret decl_cdecl_fn(llmod, s, T_fn(~[T_taskptr(cx)], T_void()));
}
fn get_extern_fn(&hashmap[str, ValueRef] externs, ModuleRef llmod, &str name,
uint cc, TypeRef ty) -> ValueRef {
if (externs.contains_key(name)) { ret externs.get(name); }
auto f = decl_fn(llmod, name, cc, ty);
externs.insert(name, f);
ret f;
}
fn get_extern_const(&hashmap[str, ValueRef] externs, ModuleRef llmod,
&str name, TypeRef ty) -> ValueRef {
if (externs.contains_key(name)) { ret externs.get(name); }
auto c = llvm::LLVMAddGlobal(llmod, ty, str::buf(name));
externs.insert(name, c);
ret c;
}
fn get_simple_extern_fn(&hashmap[str, ValueRef] externs, ModuleRef llmod,
&str name, int n_args) -> ValueRef {
auto inputs = std::ivec::init_elt[TypeRef](T_int(), n_args as uint);
auto output = T_int();
auto t = T_fn(inputs, output);
ret get_extern_fn(externs, llmod, name, lib::llvm::LLVMCCallConv, t);
}
fn trans_native_call(&builder b, @glue_fns glues, ValueRef lltaskptr,
&hashmap[str, ValueRef] externs, &type_names tn,
ModuleRef llmod, &str name, bool pass_task,
&ValueRef[] args) -> ValueRef {
let int n = std::ivec::len[ValueRef](args) as int;
let ValueRef llnative = get_simple_extern_fn(externs, llmod, name, n);
let ValueRef[] call_args = ~[];
for (ValueRef a in args) { call_args += ~[b.ZExtOrBitCast(a, T_int())]; }
ret b.Call(llnative, call_args);
}
fn trans_non_gc_free(&@block_ctxt cx, ValueRef v) -> result {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.free,
~[cx.fcx.lltaskptr, cx.build.PointerCast(v, T_ptr(T_i8())),
C_int(0)]);
ret rslt(cx, C_int(0));
}
fn trans_shared_free(&@block_ctxt cx, ValueRef v) -> result {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.shared_free,
~[cx.fcx.lltaskptr,
cx.build.PointerCast(v, T_ptr(T_i8()))]);
ret rslt(cx, C_int(0));
}
fn find_scope_cx(&@block_ctxt cx) -> @block_ctxt {
if (cx.kind != NON_SCOPE_BLOCK) { ret cx; }
alt (cx.parent) {
case (parent_some(?b)) { ret find_scope_cx(b); }
case (parent_none) {
cx.fcx.lcx.ccx.sess.bug("trans::find_scope_cx() " +
"called on parentless block_ctxt");
}
}
}
fn umax(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b);
ret cx.build.Select(cond, b, a);
}
fn umin(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b);
ret cx.build.Select(cond, a, b);
}
fn align_to(&@block_ctxt cx, ValueRef off, ValueRef align) -> ValueRef {
auto mask = cx.build.Sub(align, C_int(1));
auto bumped = cx.build.Add(off, mask);
ret cx.build.And(bumped, cx.build.Not(mask));
}
// Returns the real size of the given type for the current target.
fn llsize_of_real(&@crate_ctxt cx, TypeRef t) -> uint {
ret llvm::LLVMStoreSizeOfType(cx.td.lltd, t);
}
fn llsize_of(TypeRef t) -> ValueRef {
ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMSizeOf(t), T_int(),
False);
}
fn llalign_of(TypeRef t) -> ValueRef {
ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMAlignOf(t), T_int(),
False);
}
fn size_of(&@block_ctxt cx, &ty::t t) -> result {
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
ret rslt(cx, llsize_of(type_of(cx.fcx.lcx.ccx, cx.sp, t)));
}
ret dynamic_size_of(cx, t);
}
fn align_of(&@block_ctxt cx, &ty::t t) -> result {
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
ret rslt(cx, llalign_of(type_of(cx.fcx.lcx.ccx, cx.sp, t)));
}
ret dynamic_align_of(cx, t);
}
fn alloca(&@block_ctxt cx, TypeRef t) -> ValueRef {
ret new_builder(cx.fcx.llstaticallocas).Alloca(t);
}
fn array_alloca(&@block_ctxt cx, TypeRef t, ValueRef n) -> ValueRef {
ret new_builder(cx.fcx.lldynamicallocas).ArrayAlloca(t, n);
}
// Creates a simpler, size-equivalent type. The resulting type is guaranteed
// to have (a) the same size as the type that was passed in; (b) to be non-
// recursive. This is done by replacing all boxes in a type with boxed unit
// types.
fn simplify_type(&@crate_ctxt ccx, &ty::t typ) -> ty::t {
fn simplifier(@crate_ctxt ccx, ty::t typ) -> ty::t {
alt (ty::struct(ccx.tcx, typ)) {
case (ty::ty_box(_)) {
ret ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx));
}
case (ty::ty_vec(_)) {
ret ty::mk_imm_vec(ccx.tcx, ty::mk_nil(ccx.tcx));
}
case (ty::ty_fn(_, _, _, _, _)) {
ret ty::mk_imm_tup(ccx.tcx,
~[ty::mk_imm_box(ccx.tcx,
ty::mk_nil(ccx.tcx)),
ty::mk_imm_box(ccx.tcx,
ty::mk_nil(ccx.tcx))]);
}
case (ty::ty_obj(_)) {
ret ty::mk_imm_tup(ccx.tcx,
~[ty::mk_imm_box(ccx.tcx,
ty::mk_nil(ccx.tcx)),
ty::mk_imm_box(ccx.tcx,
ty::mk_nil(ccx.tcx))]);
}
case (ty::ty_res(_, ?sub, ?tps)) {
auto sub1 = ty::substitute_type_params(ccx.tcx, tps, sub);
ret ty::mk_imm_tup(ccx.tcx, ~[ty::mk_int(ccx.tcx),
simplify_type(ccx, sub1)]);
}
case (_) { ret typ; }
}
}
ret ty::fold_ty(ccx.tcx, ty::fm_general(bind simplifier(ccx, _)), typ);
}
// Computes the size of the data part of a non-dynamically-sized tag.
fn static_size_of_tag(&@crate_ctxt cx, &span sp, &ty::t t) -> uint {
if (ty::type_has_dynamic_size(cx.tcx, t)) {
cx.tcx.sess.span_fatal(sp,
"dynamically sized type passed to " +
"static_size_of_tag()");
}
if (cx.tag_sizes.contains_key(t)) { ret cx.tag_sizes.get(t); }
alt (ty::struct(cx.tcx, t)) {
case (ty::ty_tag(?tid, ?subtys)) {
// Compute max(variant sizes).
auto max_size = 0u;
auto variants = ty::tag_variants(cx.tcx, tid);
for (ty::variant_info variant in variants) {
auto tup_ty = simplify_type(cx, ty::mk_imm_tup(cx.tcx,
variant.args));
// Perform any type parameter substitutions.
tup_ty = ty::substitute_type_params(cx.tcx, subtys, tup_ty);
// Here we possibly do a recursive call.
auto this_size = llsize_of_real(cx, type_of(cx, sp, tup_ty));
if (max_size < this_size) { max_size = this_size; }
}
cx.tag_sizes.insert(t, max_size);
ret max_size;
}
case (_) {
cx.tcx.sess.span_fatal(sp,
"non-tag passed to " +
"static_size_of_tag()");
}
}
}
fn dynamic_size_of(&@block_ctxt cx, ty::t t) -> result {
fn align_elements(&@block_ctxt cx, &ty::t[] elts) -> result {
//
// C padding rules:
//
//
// - Pad after each element so that next element is aligned.
// - Pad after final structure member so that whole structure
// is aligned to max alignment of interior.
//
auto off = C_int(0);
auto max_align = C_int(1);
auto bcx = cx;
for (ty::t e in elts) {
auto elt_align = align_of(bcx, e);
bcx = elt_align.bcx;
auto elt_size = size_of(bcx, e);
bcx = elt_size.bcx;
auto aligned_off = align_to(bcx, off, elt_align.val);
off = bcx.build.Add(aligned_off, elt_size.val);
max_align = umax(bcx, max_align, elt_align.val);
}
off = align_to(bcx, off, max_align);
ret rslt(bcx, off);
}
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_param(?p)) {
auto szptr =
field_of_tydesc(cx, t, false, abi::tydesc_field_size);
ret rslt(szptr.bcx, szptr.bcx.build.Load(szptr.val));
}
case (ty::ty_tup(?elts)) {
let ty::t[] tys = ~[];
for (ty::mt mt in elts) { tys += ~[mt.ty]; }
ret align_elements(cx, tys);
}
case (ty::ty_rec(?flds)) {
let ty::t[] tys = ~[];
for (ty::field f in flds) { tys += ~[f.mt.ty]; }
ret align_elements(cx, tys);
}
case (ty::ty_tag(?tid, ?tps)) {
auto bcx = cx;
// Compute max(variant sizes).
let ValueRef max_size = alloca(bcx, T_int());
bcx.build.Store(C_int(0), max_size);
auto variants = ty::tag_variants(bcx.fcx.lcx.ccx.tcx, tid);
for (ty::variant_info variant in variants) {
// Perform type substitution on the raw argument types.
let ty::t[] raw_tys = variant.args;
let ty::t[] tys = ~[];
for (ty::t raw_ty in raw_tys) {
auto t = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx,
tps, raw_ty);
tys += ~[t];
}
auto rslt = align_elements(bcx, tys);
bcx = rslt.bcx;
auto this_size = rslt.val;
auto old_max_size = bcx.build.Load(max_size);
bcx.build.Store(umax(bcx, this_size, old_max_size), max_size);
}
auto max_size_val = bcx.build.Load(max_size);
auto total_size = if (std::ivec::len(variants) != 1u) {
bcx.build.Add(max_size_val, llsize_of(T_int()))
} else { max_size_val };
ret rslt(bcx, total_size);
}
case (ty::ty_ivec(?mt)) {
auto rs = size_of(cx, mt.ty);
auto bcx = rs.bcx;
auto llunitsz = rs.val;
auto llsz = bcx.build.Add(llsize_of(T_opaque_ivec()),
bcx.build.Mul(llunitsz, C_uint(abi::ivec_default_length)));
ret rslt(bcx, llsz);
}
}
}
fn dynamic_align_of(&@block_ctxt cx, &ty::t t) -> result {
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_param(?p)) {
auto aptr =
field_of_tydesc(cx, t, false, abi::tydesc_field_align);
ret rslt(aptr.bcx, aptr.bcx.build.Load(aptr.val));
}
case (ty::ty_tup(?elts)) {
auto a = C_int(1);
auto bcx = cx;
for (ty::mt e in elts) {
auto align = align_of(bcx, e.ty);
bcx = align.bcx;
a = umax(bcx, a, align.val);
}
ret rslt(bcx, a);
}
case (ty::ty_rec(?flds)) {
auto a = C_int(1);
auto bcx = cx;
for (ty::field f in flds) {
auto align = align_of(bcx, f.mt.ty);
bcx = align.bcx;
a = umax(bcx, a, align.val);
}
ret rslt(bcx, a);
}
case (ty::ty_tag(_, _)) {
ret rslt(cx, C_int(1)); // FIXME: stub
}
case (ty::ty_ivec(?tm)) {
auto rs = align_of(cx, tm.ty);
auto bcx = rs.bcx;
auto llunitalign = rs.val;
auto llalign = umax(bcx, llalign_of(T_int()), llunitalign);
ret rslt(bcx, llalign);
}
}
}
// Replacement for the LLVM 'GEP' instruction when field-indexing into a
// tuple-like structure (tup, rec) with a static index. This one is driven off
// ty::struct and knows what to do when it runs into a ty_param stuck in the
// middle of the thing it's GEP'ing into. Much like size_of and align_of,
// above.
fn GEP_tup_like(&@block_ctxt cx, &ty::t t, ValueRef base, &int[] ixs)
-> result {
assert (ty::type_is_tup_like(cx.fcx.lcx.ccx.tcx, t));
// It might be a static-known type. Handle this.
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
let ValueRef[] v = ~[];
for (int i in ixs) { v += ~[C_int(i)]; }
ret rslt(cx, cx.build.GEP(base, v));
}
// It is a dynamic-containing type that, if we convert directly to an LLVM
// TypeRef, will be all wrong; there's no proper LLVM type to represent
// it, and the lowering function will stick in i8* values for each
// ty_param, which is not right; the ty_params are all of some dynamic
// size.
//
// What we must do instead is sadder. We must look through the indices
// manually and split the input type into a prefix and a target. We then
// measure the prefix size, bump the input pointer by that amount, and
// cast to a pointer-to-target type.
// Given a type, an index vector and an element number N in that vector,
// calculate index X and the type that results by taking the first X-1
// elements of the type and splitting the Xth off. Return the prefix as
// well as the innermost Xth type.
fn split_type(&@crate_ctxt ccx, &ty::t t, &int[] ixs, uint n)
-> rec(ty::t[] prefix, ty::t target) {
let uint len = std::ivec::len[int](ixs);
// We don't support 0-index or 1-index GEPs: The former is nonsense
// and the latter would only be meaningful if we supported non-0
// values for the 0th index (we don't).
assert (len > 1u);
if (n == 0u) {
// Since we're starting from a value that's a pointer to a
// *single* structure, the first index (in GEP-ese) should just be
// 0, to yield the pointee.
assert (ixs.(n) == 0);
ret split_type(ccx, t, ixs, n + 1u);
}
assert (n < len);
let int ix = ixs.(n);
let ty::t[] prefix = ~[];
let int i = 0;
while (i < ix) {
prefix += ~[ty::get_element_type(ccx.tcx, t, i as uint)];
i += 1;
}
auto selected = ty::get_element_type(ccx.tcx, t, i as uint);
if (n == len - 1u) {
// We are at the innermost index.
ret rec(prefix=prefix, target=selected);
} else {
// Not the innermost index; call self recursively to dig deeper.
// Once we get an inner result, append it current prefix and
// return to caller.
auto inner = split_type(ccx, selected, ixs, n + 1u);
prefix += inner.prefix;
ret rec(prefix=prefix with inner);
}
}
// We make a fake prefix tuple-type here; luckily for measuring sizes
// the tuple parens are associative so it doesn't matter that we've
// flattened the incoming structure.
auto s = split_type(cx.fcx.lcx.ccx, t, ixs, 0u);
auto args = ~[];
for (ty::t typ in s.prefix) { args += ~[typ]; }
auto prefix_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, args);
auto bcx = cx;
auto sz = size_of(bcx, prefix_ty);
bcx = sz.bcx;
auto raw = bcx.build.PointerCast(base, T_ptr(T_i8()));
auto bumped = bcx.build.GEP(raw, ~[sz.val]);
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, s.target)) {
ret rslt(bcx, bumped);
}
auto typ = T_ptr(type_of(bcx.fcx.lcx.ccx, bcx.sp, s.target));
ret rslt(bcx, bcx.build.PointerCast(bumped, typ));
}
// Replacement for the LLVM 'GEP' instruction when field indexing into a tag.
// This function uses GEP_tup_like() above and automatically performs casts as
// appropriate. @llblobptr is the data part of a tag value; its actual type is
// meaningless, as it will be cast away.
fn GEP_tag(@block_ctxt cx, ValueRef llblobptr, &ast::def_id tag_id,
&ast::def_id variant_id, &ty::t[] ty_substs, int ix) -> result {
auto variant =
ty::tag_variant_with_id(cx.fcx.lcx.ccx.tcx, tag_id, variant_id);
// Synthesize a tuple type so that GEP_tup_like() can work its magic.
// Separately, store the type of the element we're interested in.
auto arg_tys = variant.args;
auto elem_ty = ty::mk_nil(cx.fcx.lcx.ccx.tcx); // typestate infelicity
auto i = 0;
let ty::t[] true_arg_tys = ~[];
for (ty::t aty in arg_tys) {
auto arg_ty =
ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, ty_substs, aty);
true_arg_tys += ~[arg_ty];
if (i == ix) { elem_ty = arg_ty; }
i += 1;
}
auto tup_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, true_arg_tys);
// Cast the blob pointer to the appropriate type, if we need to (i.e. if
// the blob pointer isn't dynamically sized).
let ValueRef llunionptr;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, tup_ty)) {
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, tup_ty);
llunionptr = cx.build.TruncOrBitCast(llblobptr, T_ptr(llty));
} else { llunionptr = llblobptr; }
// Do the GEP_tup_like().
auto rs = GEP_tup_like(cx, tup_ty, llunionptr, ~[0, ix]);
// Cast the result to the appropriate type, if necessary.
auto val;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elem_ty)) {
auto llelemty = type_of(rs.bcx.fcx.lcx.ccx, cx.sp, elem_ty);
val = rs.bcx.build.PointerCast(rs.val, T_ptr(llelemty));
} else { val = rs.val; }
ret rslt(rs.bcx, val);
}
// trans_raw_malloc: expects a type indicating which pointer type we want and
// a size indicating how much space we want malloc'd.
fn trans_raw_malloc(&@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize) ->
result {
// FIXME: need a table to collect tydesc globals.
auto tydesc = C_null(T_ptr(cx.fcx.lcx.ccx.tydesc_type));
auto rval =
cx.build.Call(cx.fcx.lcx.ccx.upcalls.malloc,
~[cx.fcx.lltaskptr, llsize, tydesc]);
ret rslt(cx, cx.build.PointerCast(rval, llptr_ty));
}
// trans_shared_malloc: expects a type indicating which pointer type we want
// and a size indicating how much space we want malloc'd.
fn trans_shared_malloc(&@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize) ->
result {
// FIXME: need a table to collect tydesc globals.
auto tydesc = C_null(T_ptr(cx.fcx.lcx.ccx.tydesc_type));
auto rval =
cx.build.Call(cx.fcx.lcx.ccx.upcalls.shared_malloc,
~[cx.fcx.lltaskptr, llsize, tydesc]);
ret rslt(cx, cx.build.PointerCast(rval, llptr_ty));
}
// trans_malloc_boxed: expects an unboxed type and returns a pointer to enough
// space for something of that type, along with space for a reference count;
// in other words, it allocates a box for something of that type.
fn trans_malloc_boxed(&@block_ctxt cx, ty::t t) -> result {
// Synthesize a fake box type structurally so we have something
// to measure the size of.
// We synthesize two types here because we want both the type of the
// pointer and the pointee. boxed_body is the type that we measure the
// size of; box_ptr is the type that's converted to a TypeRef and used as
// the pointer cast target in trans_raw_malloc.
auto boxed_body =
ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
// The mk_int here is the space being
// reserved for the refcount.
~[ty::mk_int(cx.fcx.lcx.ccx.tcx), t]);
auto box_ptr = ty::mk_imm_box(cx.fcx.lcx.ccx.tcx, t);
auto sz = size_of(cx, boxed_body);
// Grab the TypeRef type of box_ptr, because that's what trans_raw_malloc
// wants.
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, box_ptr);
ret trans_raw_malloc(sz.bcx, llty, sz.val);
}
// Type descriptor and type glue stuff
// Given a type and a field index into its corresponding type descriptor,
// returns an LLVM ValueRef of that field from the tydesc, generating the
// tydesc if necessary.
fn field_of_tydesc(&@block_ctxt cx, &ty::t t, bool escapes, int field) ->
result {
auto ti = none[@tydesc_info];
auto tydesc = get_tydesc(cx, t, escapes, ti);
ret rslt(tydesc.bcx,
tydesc.bcx.build.GEP(tydesc.val, ~[C_int(0), C_int(field)]));
}
// Given a type containing ty params, build a vector containing a ValueRef for
// each of the ty params it uses (from the current frame) and a vector of the
// indices of the ty params present in the type. This is used solely for
// constructing derived tydescs.
fn linearize_ty_params(&@block_ctxt cx, &ty::t t) -> tup(uint[], ValueRef[]) {
let ValueRef[] param_vals = ~[];
let uint[] param_defs = ~[];
type rr = rec(@block_ctxt cx,
mutable ValueRef[] vals,
mutable uint[] defs);
fn linearizer(@rr r, ty::t t) {
alt (ty::struct(r.cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_param(?pid)) {
let bool seen = false;
for (uint d in r.defs) { if (d == pid) { seen = true; } }
if (!seen) {
r.vals += ~[r.cx.fcx.lltydescs.(pid)];
r.defs += ~[pid];
}
}
case (_) { }
}
}
auto x = @rec(cx=cx, mutable vals=param_vals, mutable defs=param_defs);
auto f = bind linearizer(x, _);
ty::walk_ty(cx.fcx.lcx.ccx.tcx, f, t);
ret tup(x.defs, x.vals);
}
fn trans_stack_local_derived_tydesc(&@block_ctxt cx, ValueRef llsz,
ValueRef llalign, ValueRef llroottydesc,
ValueRef llparamtydescs) -> ValueRef {
auto llmyroottydesc = alloca(cx, cx.fcx.lcx.ccx.tydesc_type);
// By convention, desc 0 is the root descriptor.
llroottydesc = cx.build.Load(llroottydesc);
cx.build.Store(llroottydesc, llmyroottydesc);
// Store a pointer to the rest of the descriptors.
auto llfirstparam = cx.build.GEP(llparamtydescs, ~[C_int(0), C_int(0)]);
cx.build.Store(llfirstparam,
cx.build.GEP(llmyroottydesc, ~[C_int(0), C_int(0)]));
cx.build.Store(llsz, cx.build.GEP(llmyroottydesc, ~[C_int(0), C_int(1)]));
cx.build.Store(llalign,
cx.build.GEP(llmyroottydesc, ~[C_int(0), C_int(2)]));
ret llmyroottydesc;
}
fn get_derived_tydesc(&@block_ctxt cx, &ty::t t, bool escapes,
&mutable option::t[@tydesc_info] static_ti) -> result {
alt (cx.fcx.derived_tydescs.find(t)) {
case (some(?info)) {
// If the tydesc escapes in this context, the cached derived
// tydesc also has to be one that was marked as escaping.
if (!(escapes && !info.escapes)) { ret rslt(cx, info.lltydesc); }
}
case (none) {/* fall through */ }
}
cx.fcx.lcx.ccx.stats.n_derived_tydescs += 1u;
auto bcx = new_raw_block_ctxt(cx.fcx, cx.fcx.llderivedtydescs);
let uint n_params = ty::count_ty_params(bcx.fcx.lcx.ccx.tcx, t);
auto tys = linearize_ty_params(bcx, t);
assert (n_params == std::ivec::len[uint](tys._0));
assert (n_params == std::ivec::len[ValueRef](tys._1));
auto root_ti = get_static_tydesc(bcx, t, tys._0);
static_ti = some[@tydesc_info](root_ti);
lazily_emit_all_tydesc_glue(cx, static_ti);
auto root = root_ti.tydesc;
auto sz = size_of(bcx, t);
bcx = sz.bcx;
auto align = align_of(bcx, t);
bcx = align.bcx;
auto v;
if (escapes) {
auto tydescs =
alloca(bcx, /* for root*/
T_array(T_ptr(bcx.fcx.lcx.ccx.tydesc_type),
1u + n_params));
auto i = 0;
auto tdp = bcx.build.GEP(tydescs, ~[C_int(0), C_int(i)]);
bcx.build.Store(root, tdp);
i += 1;
for (ValueRef td in tys._1) {
auto tdp = bcx.build.GEP(tydescs, ~[C_int(0), C_int(i)]);
bcx.build.Store(td, tdp);
i += 1;
}
auto lltydescsptr =
bcx.build.PointerCast(tydescs,
T_ptr(T_ptr(bcx.fcx.lcx.ccx.tydesc_type)));
auto td_val =
bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.get_type_desc,
~[bcx.fcx.lltaskptr, C_null(T_ptr(T_nil())),
sz.val, align.val, C_int(1u + n_params as int),
lltydescsptr]);
v = td_val;
} else {
auto llparamtydescs =
alloca(bcx,
T_array(T_ptr(bcx.fcx.lcx.ccx.tydesc_type), n_params));
auto i = 0;
for (ValueRef td in tys._1) {
auto tdp = bcx.build.GEP(llparamtydescs, ~[C_int(0), C_int(i)]);
bcx.build.Store(td, tdp);
i += 1;
}
v =
trans_stack_local_derived_tydesc(bcx, sz.val, align.val, root,
llparamtydescs);
}
bcx.fcx.derived_tydescs.insert(t, rec(lltydesc=v, escapes=escapes));
ret rslt(cx, v);
}
fn get_tydesc(&@block_ctxt cx, &ty::t t, bool escapes,
&mutable option::t[@tydesc_info] static_ti) -> result {
// Is the supplied type a type param? If so, return the passed-in tydesc.
alt (ty::type_param(cx.fcx.lcx.ccx.tcx, t)) {
case (some(?id)) { ret rslt(cx, cx.fcx.lltydescs.(id)); }
case (none) {/* fall through */ }
}
// Does it contain a type param? If so, generate a derived tydesc.
if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, t)) {
ret get_derived_tydesc(cx, t, escapes, static_ti);
}
// Otherwise, generate a tydesc if necessary, and return it.
auto info = get_static_tydesc(cx, t, ~[]);
static_ti = some[@tydesc_info](info);
ret rslt(cx, info.tydesc);
}
fn get_static_tydesc(&@block_ctxt cx, &ty::t t, &uint[] ty_params)
-> @tydesc_info {
alt (cx.fcx.lcx.ccx.tydescs.find(t)) {
case (some(?info)) { ret info; }
case (none) {
cx.fcx.lcx.ccx.stats.n_static_tydescs += 1u;
auto info = declare_tydesc(cx.fcx.lcx, cx.sp, t, ty_params);
cx.fcx.lcx.ccx.tydescs.insert(t, info);
ret info;
}
}
}
fn set_no_inline(ValueRef f) {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::LLVMNoInlineAttribute as
lib::llvm::llvm::Attribute);
}
// Tell LLVM to emit the information necessary to unwind the stack for the
// function f.
fn set_uwtable(ValueRef f) {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::LLVMUWTableAttribute as
lib::llvm::llvm::Attribute);
}
fn set_always_inline(ValueRef f) {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::LLVMAlwaysInlineAttribute as
lib::llvm::llvm::Attribute);
}
fn set_glue_inlining(&@local_ctxt cx, ValueRef f, &ty::t t) {
if (ty::type_is_structural(cx.ccx.tcx, t)) {
set_no_inline(f);
} else { set_always_inline(f); }
}
// Generates the declaration for (but doesn't emit) a type descriptor.
fn declare_tydesc(&@local_ctxt cx, &span sp, &ty::t t, &uint[] ty_params)
-> @tydesc_info {
log "+++ declare_tydesc " + ty_to_str(cx.ccx.tcx, t);
auto ccx = cx.ccx;
auto llsize;
auto llalign;
if (!ty::type_has_dynamic_size(ccx.tcx, t)) {
auto llty = type_of(ccx, sp, t);
llsize = llsize_of(llty);
llalign = llalign_of(llty);
} else {
// These will be overwritten as the derived tydesc is generated, so
// we create placeholder values.
llsize = C_int(0);
llalign = C_int(0);
}
auto name;
if (cx.ccx.sess.get_opts().debuginfo) {
name = mangle_internal_name_by_type_only(cx.ccx, t, "tydesc");
name = sanitize(name);
} else { name = mangle_internal_name_by_seq(cx.ccx, "tydesc"); }
auto gvar =
llvm::LLVMAddGlobal(ccx.llmod, ccx.tydesc_type, str::buf(name));
auto info =
@rec(ty=t,
tydesc=gvar,
size=llsize,
align=llalign,
mutable copy_glue=none[ValueRef],
mutable drop_glue=none[ValueRef],
mutable free_glue=none[ValueRef],
mutable cmp_glue=none[ValueRef],
ty_params=ty_params);
log "--- declare_tydesc " + ty_to_str(cx.ccx.tcx, t);
ret info;
}
tag make_generic_glue_helper_fn {
mgghf_single(fn(&@block_ctxt, ValueRef, &ty::t) );
mgghf_cmp;
}
fn declare_generic_glue(&@local_ctxt cx, &ty::t t, TypeRef llfnty, &str name)
-> ValueRef {
auto fn_nm;
if (cx.ccx.sess.get_opts().debuginfo) {
fn_nm = mangle_internal_name_by_type_only(cx.ccx, t, "glue_" + name);
fn_nm = sanitize(fn_nm);
} else { fn_nm = mangle_internal_name_by_seq(cx.ccx, "glue_" + name); }
auto llfn = decl_cdecl_fn(cx.ccx.llmod, fn_nm, llfnty);
set_glue_inlining(cx, llfn, t);
ret llfn;
}
fn make_generic_glue(&@local_ctxt cx, &span sp, &ty::t t, ValueRef llfn,
&make_generic_glue_helper_fn helper,
&uint[] ty_params) -> ValueRef {
auto fcx = new_fn_ctxt(cx, sp, llfn);
llvm::LLVMSetLinkage(llfn,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
cx.ccx.stats.n_glues_created += 1u;
// Any nontrivial glue is with values passed *by alias*; this is a
// requirement since in many contexts glue is invoked indirectly and
// the caller has no idea if it's dealing with something that can be
// passed by value.
auto llty;
if (ty::type_has_dynamic_size(cx.ccx.tcx, t)) {
llty = T_ptr(T_i8());
} else { llty = T_ptr(type_of(cx.ccx, sp, t)); }
auto ty_param_count = std::ivec::len[uint](ty_params);
auto lltyparams = llvm::LLVMGetParam(llfn, 3u);
auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
auto lltydescs = ~[mutable];
auto p = 0u;
while (p < ty_param_count) {
auto llparam = copy_args_bcx.build.GEP(lltyparams,
~[C_int(p as int)]);
llparam = copy_args_bcx.build.Load(llparam);
std::ivec::grow_set(lltydescs, ty_params.(p), 0 as ValueRef, llparam);
p += 1u;
}
// TODO: Implement some kind of freeze operation in the standard library.
auto lltydescs_frozen = ~[];
for (ValueRef lltydesc in lltydescs) { lltydescs_frozen += ~[lltydesc]; }
fcx.lltydescs = lltydescs_frozen;
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto llrawptr0 = llvm::LLVMGetParam(llfn, 4u);
auto llval0 = bcx.build.BitCast(llrawptr0, llty);
alt (helper) {
case (mgghf_single(?single_fn)) { single_fn(bcx, llval0, t); }
case (mgghf_cmp) {
auto llrawptr1 = llvm::LLVMGetParam(llfn, 5u);
auto llval1 = bcx.build.BitCast(llrawptr1, llty);
auto llcmpval = llvm::LLVMGetParam(llfn, 6u);
make_cmp_glue(bcx, llval0, llval1, t, llcmpval);
}
}
finish_fn(fcx, lltop);
ret llfn;
}
fn emit_tydescs(&@crate_ctxt ccx) {
for each (@tup(ty::t, @tydesc_info) pair in ccx.tydescs.items()) {
auto glue_fn_ty = T_ptr(T_glue_fn(*ccx));
auto cmp_fn_ty = T_ptr(T_cmp_glue_fn(*ccx));
auto ti = pair._1;
auto copy_glue =
alt ({ ti.copy_glue }) {
case (none) {
ccx.stats.n_null_glues += 1u;
C_null(glue_fn_ty)
}
case (some(?v)) { ccx.stats.n_real_glues += 1u; v }
};
auto drop_glue =
alt ({ ti.drop_glue }) {
case (none) {
ccx.stats.n_null_glues += 1u;
C_null(glue_fn_ty)
}
case (some(?v)) { ccx.stats.n_real_glues += 1u; v }
};
auto free_glue =
alt ({ ti.free_glue }) {
case (none) {
ccx.stats.n_null_glues += 1u;
C_null(glue_fn_ty)
}
case (some(?v)) { ccx.stats.n_real_glues += 1u; v }
};
auto cmp_glue =
alt ({ ti.cmp_glue }) {
case (none) {
ccx.stats.n_null_glues += 1u;
C_null(cmp_fn_ty)
}
case (some(?v)) { ccx.stats.n_real_glues += 1u; v }
};
auto tydesc =
C_named_struct(ccx.tydesc_type,
~[C_null(T_ptr(T_ptr(ccx.tydesc_type))), ti.size,
ti.align, copy_glue, // copy_glue
drop_glue, // drop_glue
free_glue, // free_glue
C_null(glue_fn_ty), // sever_glue
C_null(glue_fn_ty), // mark_glue
C_null(glue_fn_ty), // obj_drop_glue
C_null(glue_fn_ty), // is_stateful
cmp_glue]); // cmp_glue
auto gvar = ti.tydesc;
llvm::LLVMSetInitializer(gvar, tydesc);
llvm::LLVMSetGlobalConstant(gvar, True);
llvm::LLVMSetLinkage(gvar,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
}
}
fn make_copy_glue(&@block_ctxt cx, ValueRef v, &ty::t t) {
// NB: v is an *alias* of type t here, not a direct value.
auto bcx;
if (ty::type_is_boxed(cx.fcx.lcx.ccx.tcx, t)) {
bcx = incr_refcnt_of_boxed(cx, cx.build.Load(v)).bcx;
} else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) {
bcx = duplicate_heap_parts_if_necessary(cx, v, t).bcx;
bcx = iter_structural_ty(bcx, v, t, bind copy_ty(_, _, _)).bcx;
} else { bcx = cx; }
bcx.build.RetVoid();
}
fn incr_refcnt_of_boxed(&@block_ctxt cx, ValueRef box_ptr) -> result {
auto rc_ptr =
cx.build.GEP(box_ptr, ~[C_int(0), C_int(abi::box_rc_field_refcnt)]);
auto rc = cx.build.Load(rc_ptr);
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto const_test =
cx.build.ICmp(lib::llvm::LLVMIntEQ, C_int(abi::const_refcount as int),
rc);
cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
rc = rc_adj_cx.build.Add(rc, C_int(1));
rc_adj_cx.build.Store(rc, rc_ptr);
rc_adj_cx.build.Br(next_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn make_free_glue(&@block_ctxt cx, ValueRef v0, &ty::t t) {
// NB: v is an *alias* of type t here, not a direct value.
auto rs = alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_str) {
auto v = cx.build.Load(v0);
trans_non_gc_free(cx, v)
}
case (ty::ty_vec(_)) {
auto v = cx.build.Load(v0);
auto rs = iter_sequence(cx, v, t, bind drop_ty(_, _, _));
// FIXME: switch gc/non-gc on layer of the type.
trans_non_gc_free(rs.bcx, v)
}
case (ty::ty_box(?body_mt)) {
auto v = cx.build.Load(v0);
auto body =
cx.build.GEP(v, ~[C_int(0), C_int(abi::box_rc_field_body)]);
auto body_ty = body_mt.ty;
auto body_val = load_if_immediate(cx, body, body_ty);
auto rs = drop_ty(cx, body_val, body_ty);
// FIXME: switch gc/non-gc on layer of the type.
trans_non_gc_free(rs.bcx, v)
}
case (ty::ty_port(_)) {
auto v = cx.build.Load(v0);
cx.build.Call(cx.fcx.lcx.ccx.upcalls.del_port,
~[cx.fcx.lltaskptr,
cx.build.PointerCast(v, T_opaque_port_ptr())]);
rslt(cx, C_int(0))
}
case (ty::ty_chan(_)) {
auto v = cx.build.Load(v0);
cx.build.Call(cx.fcx.lcx.ccx.upcalls.del_chan,
~[cx.fcx.lltaskptr,
cx.build.PointerCast(v, T_opaque_chan_ptr())]);
rslt(cx, C_int(0))
}
case (ty::ty_task) {
// TODO: call upcall_kill
rslt(cx, C_nil())
}
case (ty::ty_obj(_)) {
auto box_cell =
cx.build.GEP(v0, ~[C_int(0), C_int(abi::obj_field_box)]);
auto b = cx.build.Load(box_cell);
auto ccx = cx.fcx.lcx.ccx;
auto llbox_ty = T_opaque_obj_ptr(*ccx);
b = cx.build.PointerCast(b, llbox_ty);
auto body =
cx.build.GEP(b, ~[C_int(0), C_int(abi::box_rc_field_body)]);
auto tydescptr =
cx.build.GEP(body,
~[C_int(0), C_int(abi::obj_body_elt_tydesc)]);
auto tydesc = cx.build.Load(tydescptr);
auto cx_ = maybe_call_dtor(cx, v0);
// Call through the obj's own fields-drop glue first.
auto ti = none[@tydesc_info];
call_tydesc_glue_full(cx_, body, tydesc,
abi::tydesc_field_drop_glue, ti);
// Then free the body.
// FIXME: switch gc/non-gc on layer of the type.
trans_non_gc_free(cx_, b)
}
case (ty::ty_fn(_, _, _, _, _)) {
auto box_cell =
cx.build.GEP(v0, ~[C_int(0), C_int(abi::fn_field_box)]);
auto v = cx.build.Load(box_cell);
// Call through the closure's own fields-drop glue first.
auto body =
cx.build.GEP(v, ~[C_int(0), C_int(abi::box_rc_field_body)]);
auto bindings =
cx.build.GEP(body,
~[C_int(0), C_int(abi::closure_elt_bindings)]);
auto tydescptr =
cx.build.GEP(body,
~[C_int(0), C_int(abi::closure_elt_tydesc)]);
auto ti = none[@tydesc_info];
call_tydesc_glue_full(cx, bindings, cx.build.Load(tydescptr),
abi::tydesc_field_drop_glue, ti);
// Then free the body.
// FIXME: switch gc/non-gc on layer of the type.
trans_non_gc_free(cx, v)
}
case (_) { rslt(cx, C_nil()) }
};
rs.bcx.build.RetVoid();
}
fn maybe_free_ivec_heap_part(&@block_ctxt cx, ValueRef v0, ty::t unit_ty) ->
result {
auto llunitty = type_of_or_i8(cx, unit_ty);
auto stack_len =
cx.build.Load(cx.build.InBoundsGEP(v0,
~[C_int(0),
C_uint(abi::ivec_elt_len)]));
auto maybe_on_heap_cx = new_sub_block_ctxt(cx, "maybe_on_heap");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto maybe_on_heap =
cx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0));
cx.build.CondBr(maybe_on_heap, maybe_on_heap_cx.llbb, next_cx.llbb);
// Might be on the heap. Load the heap pointer and free it. (It's ok to
// free a null pointer.)
auto stub_ptr =
maybe_on_heap_cx.build.PointerCast(v0, T_ptr(T_ivec_heap(llunitty)));
auto heap_ptr =
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)];
auto m = maybe_on_heap_cx.build.InBoundsGEP(stub_ptr, v);
maybe_on_heap_cx.build.Load(m)
};
auto after_free_cx = trans_shared_free(maybe_on_heap_cx, heap_ptr).bcx;
after_free_cx.build.Br(next_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn make_drop_glue(&@block_ctxt cx, ValueRef v0, &ty::t t) {
// NB: v0 is an *alias* of type t here, not a direct value.
auto ccx = cx.fcx.lcx.ccx;
auto rs = alt (ty::struct(ccx.tcx, t)) {
case (ty::ty_str) { decr_refcnt_maybe_free(cx, v0, v0, t) }
case (ty::ty_vec(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) }
case (ty::ty_ivec(?tm)) {
auto v1;
if (ty::type_has_dynamic_size(ccx.tcx, tm.ty)) {
v1 = cx.build.PointerCast(v0, T_ptr(T_opaque_ivec()));
} else {
v1 = v0;
}
auto rslt = iter_structural_ty(cx, v1, t, drop_ty);
maybe_free_ivec_heap_part(rslt.bcx, v1, tm.ty)
}
case (ty::ty_box(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) }
case (ty::ty_port(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) }
case (ty::ty_chan(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) }
case (ty::ty_task) { decr_refcnt_maybe_free(cx, v0, v0, t) }
case (ty::ty_obj(_)) {
auto box_cell =
cx.build.GEP(v0, ~[C_int(0), C_int(abi::obj_field_box)]);
decr_refcnt_maybe_free(cx, box_cell, v0, t)
}
case (ty::ty_res(?did, ?inner, ?tps)) {
trans_res_drop(cx, v0, did, inner, tps)
}
case (ty::ty_fn(_, _, _, _, _)) {
auto box_cell =
cx.build.GEP(v0, ~[C_int(0), C_int(abi::fn_field_box)]);
decr_refcnt_maybe_free(cx, box_cell, v0, t)
}
case (_) {
if (ty::type_has_pointers(ccx.tcx, t) &&
ty::type_is_structural(ccx.tcx, t)) {
iter_structural_ty(cx, v0, t, bind drop_ty(_, _, _))
} else { rslt(cx, C_nil()) }
}
};
rs.bcx.build.RetVoid();
}
fn trans_res_drop(@block_ctxt cx, ValueRef rs, &ast::def_id did,
ty::t inner_t, &ty::t[] tps) -> result {
auto ccx = cx.fcx.lcx.ccx;
auto inner_t_s = ty::substitute_type_params(ccx.tcx, tps, inner_t);
auto tup_ty = ty::mk_imm_tup(ccx.tcx, ~[ty::mk_int(ccx.tcx), inner_t_s]);
auto drop_cx = new_sub_block_ctxt(cx, "drop res");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto drop_flag = GEP_tup_like(cx, tup_ty, rs, ~[0, 0]);
cx = drop_flag.bcx;
auto null_test = cx.build.IsNull(cx.build.Load(drop_flag.val));
cx.build.CondBr(null_test, next_cx.llbb, drop_cx.llbb);
cx = drop_cx;
auto val = GEP_tup_like(cx, tup_ty, rs, ~[0, 1]);
cx = val.bcx;
// Find and call the actual destructor.
auto dtor_pair = if (did._0 == ast::local_crate) {
alt (ccx.fn_pairs.find(did._1)) {
case (some(?x)) { x }
case (_) { ccx.tcx.sess.bug("internal error in trans_res_drop") }
}
} else {
auto params = csearch::get_type_param_count(ccx.sess.get_cstore(),
did);
auto f_t = type_of_fn(ccx, cx.sp, ast::proto_fn,
~[rec(mode=ty::mo_alias(false), ty=inner_t)],
ty::mk_nil(ccx.tcx), params);
get_extern_const(ccx.externs, ccx.llmod,
csearch::get_symbol(ccx.sess.get_cstore(), did),
T_fn_pair(*ccx, f_t))
};
auto dtor_addr = cx.build.Load
(cx.build.GEP(dtor_pair, ~[C_int(0), C_int(abi::fn_field_code)]));
auto dtor_env = cx.build.Load
(cx.build.GEP(dtor_pair, ~[C_int(0), C_int(abi::fn_field_box)]));
auto args = ~[cx.fcx.llretptr, cx.fcx.lltaskptr, dtor_env];
for (ty::t tp in tps) {
let option::t[@tydesc_info] ti = none;
auto td = get_tydesc(cx, tp, false, ti);
args += ~[td.val];
cx = td.bcx;
}
// Kludge to work around the fact that we know the precise type of the
// value here, but the dtor expects a type that still has opaque pointers
// for type variables.
auto val_llty = lib::llvm::fn_ty_param_tys
(llvm::LLVMGetElementType(llvm::LLVMTypeOf(dtor_addr)))
.(std::ivec::len(args));
auto val_cast = cx.build.BitCast(val.val, val_llty);
cx.build.FastCall(dtor_addr, args + ~[val_cast]);
cx = drop_slot(cx, val.val, inner_t_s).bcx;
cx.build.Store(C_int(0), drop_flag.val);
cx.build.Br(next_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn decr_refcnt_maybe_free(&@block_ctxt cx, ValueRef box_ptr_alias,
ValueRef full_alias, &ty::t t) -> result {
auto ccx = cx.fcx.lcx.ccx;
auto load_rc_cx = new_sub_block_ctxt(cx, "load rc");
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--");
auto free_cx = new_sub_block_ctxt(cx, "free");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto box_ptr = cx.build.Load(box_ptr_alias);
auto llbox_ty = T_opaque_obj_ptr(*ccx);
box_ptr = cx.build.PointerCast(box_ptr, llbox_ty);
auto null_test = cx.build.IsNull(box_ptr);
cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb);
auto rc_ptr =
load_rc_cx.build.GEP(box_ptr,
~[C_int(0), C_int(abi::box_rc_field_refcnt)]);
auto rc = load_rc_cx.build.Load(rc_ptr);
auto const_test =
load_rc_cx.build.ICmp(lib::llvm::LLVMIntEQ,
C_int(abi::const_refcount as int), rc);
load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
rc = rc_adj_cx.build.Sub(rc, C_int(1));
rc_adj_cx.build.Store(rc, rc_ptr);
auto zero_test = rc_adj_cx.build.ICmp(lib::llvm::LLVMIntEQ, C_int(0), rc);
rc_adj_cx.build.CondBr(zero_test, free_cx.llbb, next_cx.llbb);
auto free_res =
free_ty(free_cx, load_if_immediate(free_cx, full_alias, t), t);
free_res.bcx.build.Br(next_cx.llbb);
auto t_else = T_nil();
auto v_else = C_nil();
auto phi =
next_cx.build.Phi(t_else, ~[v_else, v_else, v_else, free_res.val],
~[cx.llbb, load_rc_cx.llbb, rc_adj_cx.llbb,
free_res.bcx.llbb]);
ret rslt(next_cx, phi);
}
// Structural comparison: a rather involved form of glue.
fn maybe_name_value(&@crate_ctxt cx, ValueRef v, &str s) {
if (cx.sess.get_opts().save_temps) {
llvm::LLVMSetValueName(v, str::buf(s));
}
}
fn make_cmp_glue(&@block_ctxt cx, ValueRef lhs0, ValueRef rhs0, &ty::t t,
ValueRef llop) {
auto lhs = load_if_immediate(cx, lhs0, t);
auto rhs = load_if_immediate(cx, rhs0, t);
if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t)) {
make_scalar_cmp_glue(cx, lhs, rhs, t, llop);
} else if (ty::type_is_box(cx.fcx.lcx.ccx.tcx, t)) {
lhs = cx.build.GEP(lhs, ~[C_int(0), C_int(abi::box_rc_field_body)]);
rhs = cx.build.GEP(rhs, ~[C_int(0), C_int(abi::box_rc_field_body)]);
auto t_inner =
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_box(?ti)) { ti.ty }
};
auto rslt = compare(cx, lhs, rhs, t_inner, llop);
rslt.bcx.build.Store(rslt.val, cx.fcx.llretptr);
rslt.bcx.build.RetVoid();
} else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) {
auto scx = new_sub_block_ctxt(cx, "structural compare start");
auto next = new_sub_block_ctxt(cx, "structural compare end");
cx.build.Br(scx.llbb);
/*
* We're doing lexicographic comparison here. We start with the
* assumption that the two input elements are equal. Depending on
* operator, this means that the result is either true or false;
* equality produces 'true' for ==, <= and >=. It produces 'false' for
* !=, < and >.
*
* We then move one element at a time through the structure checking
* for pairwise element equality: If we have equality, our assumption
* about overall sequence equality is not modified, so we have to move
* to the next element.
*
* If we do not have pairwise element equality, we have reached an
* element that 'decides' the lexicographic comparison. So we exit the
* loop with a flag that indicates the true/false sense of that
* decision, by testing the element again with the operator we're
* interested in.
*
* When we're lucky, LLVM should be able to fold some of these two
* tests together (as they're applied to the same operands and in some
* cases are sometimes redundant). But we don't bother trying to
* optimize combinations like that, at this level.
*/
auto flag = alloca(scx, T_i1());
maybe_name_value(cx.fcx.lcx.ccx, flag, "flag");
auto r;
if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) {
// If we hit == all the way through the minimum-shared-length
// section, default to judging the relative sequence lengths.
auto lhs_fill;
auto rhs_fill;
auto bcx;
if (ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, t)) {
auto st = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t);
auto lad =
ivec::get_len_and_data(scx, lhs, st);
bcx = lad._2;
lhs_fill = lad._0;
lad =
ivec::get_len_and_data(bcx, rhs, st);
bcx = lad._2;
rhs_fill = lad._0;
} else {
lhs_fill = vec_fill(scx, lhs);
rhs_fill = vec_fill(scx, rhs);
bcx = scx;
}
r = compare_scalar_values(bcx, lhs_fill, rhs_fill,
unsigned_int, llop);
r.bcx.build.Store(r.val, flag);
} else {
// == and <= default to true if they find == all the way. <
// defaults to false if it finds == all the way.
auto result_if_equal =
scx.build.ICmp(lib::llvm::LLVMIntNE, llop,
C_u8(abi::cmp_glue_op_lt));
scx.build.Store(result_if_equal, flag);
r = rslt(scx, C_nil());
}
fn inner(@block_ctxt last_cx, bool load_inner, ValueRef flag,
ValueRef llop, &@block_ctxt cx, ValueRef av0, ValueRef bv0,
ty::t t) -> result {
auto cnt_cx = new_sub_block_ctxt(cx, "continue_comparison");
auto stop_cx = new_sub_block_ctxt(cx, "stop_comparison");
auto av = av0;
auto bv = bv0;
if (load_inner) {
// If `load_inner` is true, then the pointer type will always
// be i8, because the data part of a vector always has type
// i8[]. So we need to cast it to the proper type.
if (!ty::type_has_dynamic_size(last_cx.fcx.lcx.ccx.tcx, t)) {
auto llelemty =
T_ptr(type_of(last_cx.fcx.lcx.ccx, last_cx.sp, t));
av = cx.build.PointerCast(av, llelemty);
bv = cx.build.PointerCast(bv, llelemty);
}
av = load_if_immediate(cx, av, t);
bv = load_if_immediate(cx, bv, t);
}
// First 'eq' comparison: if so, continue to next elts.
auto eq_r = compare(cx, av, bv, t, C_u8(abi::cmp_glue_op_eq));
eq_r.bcx.build.CondBr(eq_r.val, cnt_cx.llbb, stop_cx.llbb);
// Second 'op' comparison: find out how this elt-pair decides.
auto stop_r = compare(stop_cx, av, bv, t, llop);
stop_r.bcx.build.Store(stop_r.val, flag);
stop_r.bcx.build.Br(last_cx.llbb);
ret rslt(cnt_cx, C_nil());
}
if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) {
r =
iter_structural_ty_full(r.bcx, lhs, rhs, t,
bind inner(next, false, flag, llop, _,
_, _, _));
} else {
auto lhs_p0 = vec_p0(r.bcx, lhs);
auto rhs_p0 = vec_p0(r.bcx, rhs);
auto min_len =
umin(r.bcx, vec_fill(r.bcx, lhs), vec_fill(r.bcx, rhs));
auto rhs_lim = r.bcx.build.GEP(rhs_p0, ~[min_len]);
auto elt_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t);
r = size_of(r.bcx, elt_ty);
r =
iter_sequence_raw(r.bcx, lhs_p0, rhs_p0, rhs_lim, r.val,
bind inner(next, true, flag, llop, _, _, _,
elt_ty));
}
r.bcx.build.Br(next.llbb);
auto v = next.build.Load(flag);
next.build.Store(v, cx.fcx.llretptr);
next.build.RetVoid();
} else {
// FIXME: compare obj, fn by pointer?
trans_fail(cx, none[span],
"attempt to compare values of type " +
ty_to_str(cx.fcx.lcx.ccx.tcx, t));
}
}
// Used only for creating scalar comparsion glue.
tag scalar_type { nil_type; signed_int; unsigned_int; floating_point; }
fn compare_scalar_types(@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t,
ValueRef llop) -> result {
// FIXME: this could be a lot shorter if we could combine multiple cases
// of alt expressions (issue #449).
auto f = bind compare_scalar_values(cx, lhs, rhs, _, llop);
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_nil) { ret f(nil_type); }
case (ty::ty_bool) { ret f(unsigned_int); }
case (ty::ty_int) { ret f(signed_int); }
case (ty::ty_float) { ret f(floating_point); }
case (ty::ty_uint) { ret f(unsigned_int); }
case (ty::ty_machine(_)) {
if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) {
// Floating point machine types
ret f(floating_point);
} else if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, t)) {
// Signed, integral machine types
ret f(signed_int);
} else {
// Unsigned, integral machine types
ret f(unsigned_int);
}
}
case (ty::ty_char) { ret f(unsigned_int); }
case (ty::ty_type) {
trans_fail(cx, none[span],
"attempt to compare values of type type");
// This is a bit lame, because we return a dummy block to the
// caller that's actually unreachable, but I don't think it
// matters.
ret rslt(new_sub_block_ctxt(cx, "after_fail_dummy"),
C_bool(false));
}
case (ty::ty_native(_)) {
trans_fail(cx, none[span],
"attempt to compare values of type native");
ret rslt(new_sub_block_ctxt(cx, "after_fail_dummy"),
C_bool(false));
}
case (ty::ty_ptr(_)) {
ret f(unsigned_int);
}
case (_) {
// Should never get here, because t is scalar.
cx.fcx.lcx.ccx.sess.bug("non-scalar type passed to " +
"compare_scalar_types");
}
}
}
// A helper function to create scalar comparison glue.
fn make_scalar_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t,
ValueRef llop) {
assert ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t);
// In most cases, we need to know whether to do signed, unsigned, or float
// comparison.
auto rslt = compare_scalar_types(cx, lhs, rhs, t, llop);
auto bcx = rslt.bcx;
auto compare_result = rslt.val;
bcx.build.Store(compare_result, cx.fcx.llretptr);
bcx.build.RetVoid();
}
// A helper function to do the actual comparison of scalar values.
fn compare_scalar_values(&@block_ctxt cx, ValueRef lhs, ValueRef rhs,
scalar_type nt, ValueRef llop) -> result {
auto eq_cmp;
auto lt_cmp;
auto le_cmp;
alt (nt) {
case (nil_type) {
// We don't need to do actual comparisons for nil.
// () == () holds but () < () does not.
eq_cmp = 1u;
lt_cmp = 0u;
le_cmp = 1u;
}
case (floating_point) {
eq_cmp = lib::llvm::LLVMRealUEQ;
lt_cmp = lib::llvm::LLVMRealULT;
le_cmp = lib::llvm::LLVMRealULE;
}
case (signed_int) {
eq_cmp = lib::llvm::LLVMIntEQ;
lt_cmp = lib::llvm::LLVMIntSLT;
le_cmp = lib::llvm::LLVMIntSLE;
}
case (unsigned_int) {
eq_cmp = lib::llvm::LLVMIntEQ;
lt_cmp = lib::llvm::LLVMIntULT;
le_cmp = lib::llvm::LLVMIntULE;
}
}
// FIXME: This wouldn't be necessary if we could bind methods off of
// objects and therefore abstract over FCmp and ICmp (issue #435). Then
// we could just write, e.g., "cmp_fn = bind cx.build.FCmp(_, _, _);" in
// the above, and "auto eq_result = cmp_fn(eq_cmp, lhs, rhs);" in the
// below.
fn generic_cmp(&@block_ctxt cx, scalar_type nt, uint op, ValueRef lhs,
ValueRef rhs) -> ValueRef {
let ValueRef r;
if (nt == nil_type) {
r = C_bool(op != 0u);
} else if (nt == floating_point) {
r = cx.build.FCmp(op, lhs, rhs);
} else { r = cx.build.ICmp(op, lhs, rhs); }
ret r;
}
auto last_cx = new_sub_block_ctxt(cx, "last");
auto eq_cx = new_sub_block_ctxt(cx, "eq");
auto eq_result = generic_cmp(eq_cx, nt, eq_cmp, lhs, rhs);
eq_cx.build.Br(last_cx.llbb);
auto lt_cx = new_sub_block_ctxt(cx, "lt");
auto lt_result = generic_cmp(lt_cx, nt, lt_cmp, lhs, rhs);
lt_cx.build.Br(last_cx.llbb);
auto le_cx = new_sub_block_ctxt(cx, "le");
auto le_result = generic_cmp(le_cx, nt, le_cmp, lhs, rhs);
le_cx.build.Br(last_cx.llbb);
auto unreach_cx = new_sub_block_ctxt(cx, "unreach");
unreach_cx.build.Unreachable();
auto llswitch = cx.build.Switch(llop, unreach_cx.llbb, 3u);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_eq), eq_cx.llbb);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_lt), lt_cx.llbb);
llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_le), le_cx.llbb);
auto last_result =
last_cx.build.Phi(T_i1(), ~[eq_result, lt_result, le_result],
~[eq_cx.llbb, lt_cx.llbb, le_cx.llbb]);
ret rslt(last_cx, last_result);
}
type val_pair_fn = fn(&@block_ctxt, ValueRef, ValueRef) -> result ;
type val_and_ty_fn = fn(&@block_ctxt, ValueRef, ty::t) -> result ;
type val_pair_and_ty_fn =
fn(&@block_ctxt, ValueRef, ValueRef, ty::t) -> result ;
// Iterates through the elements of a structural type.
fn iter_structural_ty(&@block_ctxt cx, ValueRef v, &ty::t t, val_and_ty_fn f)
-> result {
fn adaptor_fn(val_and_ty_fn f, &@block_ctxt cx, ValueRef av, ValueRef bv,
ty::t t) -> result {
ret f(cx, av, t);
}
ret iter_structural_ty_full(cx, v, v, t, bind adaptor_fn(f, _, _, _, _));
}
fn load_inbounds(&@block_ctxt cx, ValueRef p, &ValueRef[] idxs) -> ValueRef {
ret cx.build.Load(cx.build.InBoundsGEP(p, idxs));
}
fn store_inbounds(&@block_ctxt cx, ValueRef v, ValueRef p, &ValueRef[] idxs) {
cx.build.Store(v, cx.build.InBoundsGEP(p, idxs));
}
// This uses store and inboundsGEP, but it only doing so superficially; it's
// really storing an incremented pointer to another pointer.
fn incr_ptr(&@block_ctxt cx, ValueRef p, ValueRef incr, ValueRef pp) {
cx.build.Store(cx.build.InBoundsGEP(p, ~[incr]), pp);
}
fn iter_structural_ty_full(&@block_ctxt cx, ValueRef av, ValueRef bv,
&ty::t t, &val_pair_and_ty_fn f) -> result {
fn iter_boxpp(@block_ctxt cx, ValueRef box_a_cell, ValueRef box_b_cell,
&val_pair_and_ty_fn f) -> result {
auto box_a_ptr = cx.build.Load(box_a_cell);
auto box_b_ptr = cx.build.Load(box_b_cell);
auto tnil = ty::mk_nil(cx.fcx.lcx.ccx.tcx);
auto tbox = ty::mk_imm_box(cx.fcx.lcx.ccx.tcx, tnil);
auto inner_cx = new_sub_block_ctxt(cx, "iter box");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto null_test = cx.build.IsNull(box_a_ptr);
cx.build.CondBr(null_test, next_cx.llbb, inner_cx.llbb);
auto r = f(inner_cx, box_a_ptr, box_b_ptr, tbox);
r.bcx.build.Br(next_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn iter_ivec(@block_ctxt bcx, ValueRef av, ValueRef bv, ty::t unit_ty,
&val_pair_and_ty_fn f) -> result {
// FIXME: "unimplemented rebinding existing function" workaround
fn adapter(&@block_ctxt bcx, ValueRef av, ValueRef bv, ty::t unit_ty,
val_pair_and_ty_fn f) -> result {
ret f(bcx, av, bv, unit_ty);
}
auto llunitty = type_of_or_i8(bcx, unit_ty);
auto rs = size_of(bcx, unit_ty);
auto unit_sz = rs.val;
bcx = rs.bcx;
auto a_len_and_data = ivec::get_len_and_data(bcx, av, unit_ty);
auto a_len = a_len_and_data._0;
auto a_elem = a_len_and_data._1;
bcx = a_len_and_data._2;
auto b_len_and_data = ivec::get_len_and_data(bcx, bv, unit_ty);
auto b_len = b_len_and_data._0;
auto b_elem = b_len_and_data._1;
bcx = b_len_and_data._2;
// Calculate the last pointer address we want to handle.
// TODO: Optimize this when the size of the unit type is statically
// known to not use pointer casts, which tend to confuse LLVM.
auto len = umin(bcx, a_len, b_len);
auto b_elem_i8 = bcx.build.PointerCast(b_elem, T_ptr(T_i8()));
auto b_end_i8 = bcx.build.GEP(b_elem_i8, ~[len]);
auto b_end = bcx.build.PointerCast(b_end_i8, T_ptr(llunitty));
auto dest_elem_ptr = alloca(bcx, T_ptr(llunitty));
auto src_elem_ptr = alloca(bcx, T_ptr(llunitty));
bcx.build.Store(a_elem, dest_elem_ptr);
bcx.build.Store(b_elem, src_elem_ptr);
// Now perform the iteration.
auto loop_header_cx = new_sub_block_ctxt(bcx,
"iter_ivec_loop_header");
bcx.build.Br(loop_header_cx.llbb);
auto dest_elem = loop_header_cx.build.Load(dest_elem_ptr);
auto src_elem = loop_header_cx.build.Load(src_elem_ptr);
auto not_yet_at_end = loop_header_cx.build.ICmp(lib::llvm::LLVMIntULT,
dest_elem, b_end);
auto loop_body_cx = new_sub_block_ctxt(bcx, "iter_ivec_loop_body");
auto next_cx = new_sub_block_ctxt(bcx, "iter_ivec_next");
loop_header_cx.build.CondBr(not_yet_at_end, loop_body_cx.llbb,
next_cx.llbb);
rs = f(loop_body_cx,
load_if_immediate(loop_body_cx, dest_elem, unit_ty),
load_if_immediate(loop_body_cx, src_elem, unit_ty), unit_ty);
loop_body_cx = rs.bcx;
auto increment;
if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, unit_ty)) {
increment = unit_sz;
} else {
increment = C_int(1);
}
incr_ptr(loop_body_cx, dest_elem, increment, dest_elem_ptr);
incr_ptr(loop_body_cx, src_elem, increment, src_elem_ptr);
loop_body_cx.build.Br(loop_header_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn iter_variant(@block_ctxt cx, ValueRef a_tup, ValueRef b_tup,
&ty::variant_info variant, &ty::t[] tps,
&ast::def_id tid, &val_pair_and_ty_fn f) -> result {
if (std::ivec::len[ty::t](variant.args) == 0u) {
ret rslt(cx, C_nil());
}
auto fn_ty = variant.ctor_ty;
auto ccx = cx.fcx.lcx.ccx;
alt (ty::struct(ccx.tcx, fn_ty)) {
case (ty::ty_fn(_, ?args, _, _, _)) {
auto j = 0;
for (ty::arg a in args) {
auto rslt = GEP_tag(cx, a_tup, tid, variant.id, tps, j);
auto llfldp_a = rslt.val;
cx = rslt.bcx;
rslt = GEP_tag(cx, b_tup, tid, variant.id, tps, j);
auto llfldp_b = rslt.val;
cx = rslt.bcx;
auto ty_subst =
ty::substitute_type_params(ccx.tcx, tps, a.ty);
auto llfld_a =
load_if_immediate(cx, llfldp_a, ty_subst);
auto llfld_b =
load_if_immediate(cx, llfldp_b, ty_subst);
rslt = f(cx, llfld_a, llfld_b, ty_subst);
cx = rslt.bcx;
j += 1;
}
}
}
ret rslt(cx, C_nil());
}
let result r = rslt(cx, C_nil());
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_tup(?args)) {
let int i = 0;
for (ty::mt arg in args) {
r = GEP_tup_like(r.bcx, t, av, ~[0, i]);
auto elt_a = r.val;
r = GEP_tup_like(r.bcx, t, bv, ~[0, i]);
auto elt_b = r.val;
r = f(r.bcx, load_if_immediate(r.bcx, elt_a, arg.ty),
load_if_immediate(r.bcx, elt_b, arg.ty), arg.ty);
i += 1;
}
}
case (ty::ty_rec(?fields)) {
let int i = 0;
for (ty::field fld in fields) {
r = GEP_tup_like(r.bcx, t, av, ~[0, i]);
auto llfld_a = r.val;
r = GEP_tup_like(r.bcx, t, bv, ~[0, i]);
auto llfld_b = r.val;
r = f(r.bcx, load_if_immediate(r.bcx, llfld_a, fld.mt.ty),
load_if_immediate(r.bcx, llfld_b, fld.mt.ty),
fld.mt.ty);
i += 1;
}
}
case (ty::ty_res(_, ?inner, ?tps)) {
auto inner1 = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, tps,
inner);
r = GEP_tup_like(r.bcx, t, av, ~[0, 1]);
auto llfld_a = r.val;
r = GEP_tup_like(r.bcx, t, bv, ~[0, 1]);
auto llfld_b = r.val;
f(r.bcx, load_if_immediate(r.bcx, llfld_a, inner1),
load_if_immediate(r.bcx, llfld_b, inner1), inner1);
}
case (ty::ty_tag(?tid, ?tps)) {
auto variants = ty::tag_variants(cx.fcx.lcx.ccx.tcx, tid);
auto n_variants = std::ivec::len(variants);
// Cast the tags to types we can GEP into.
if (n_variants == 1u) {
ret iter_variant(cx, av, bv, variants.(0), tps, tid, f);
}
auto lltagty = T_opaque_tag_ptr(cx.fcx.lcx.ccx.tn);
auto av_tag = cx.build.PointerCast(av, lltagty);
auto bv_tag = cx.build.PointerCast(bv, lltagty);
auto lldiscrim_a_ptr = cx.build.GEP(av_tag,
~[C_int(0), C_int(0)]);
auto llunion_a_ptr = cx.build.GEP(av_tag, ~[C_int(0), C_int(1)]);
auto lldiscrim_a = cx.build.Load(lldiscrim_a_ptr);
auto lldiscrim_b_ptr = cx.build.GEP(bv_tag,
~[C_int(0), C_int(0)]);
auto llunion_b_ptr = cx.build.GEP(bv_tag, ~[C_int(0), C_int(1)]);
auto lldiscrim_b = cx.build.Load(lldiscrim_b_ptr);
// NB: we must hit the discriminant first so that structural
// comparison know not to proceed when the discriminants differ.
auto bcx = cx;
bcx =
f(bcx, lldiscrim_a, lldiscrim_b,
ty::mk_int(cx.fcx.lcx.ccx.tcx)).bcx;
auto unr_cx = new_sub_block_ctxt(bcx, "tag-iter-unr");
unr_cx.build.Unreachable();
auto llswitch =
bcx.build.Switch(lldiscrim_a, unr_cx.llbb, n_variants);
auto next_cx = new_sub_block_ctxt(bcx, "tag-iter-next");
auto i = 0u;
for (ty::variant_info variant in variants) {
auto variant_cx =
new_sub_block_ctxt(bcx,
"tag-iter-variant-" +
uint::to_str(i, 10u));
llvm::LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb);
variant_cx = iter_variant
(variant_cx, llunion_a_ptr, llunion_b_ptr, variant,
tps, tid, f).bcx;
variant_cx.build.Br(next_cx.llbb);
i += 1u;
}
ret rslt(next_cx, C_nil());
}
case (ty::ty_fn(_, _, _, _, _)) {
auto box_cell_a =
cx.build.GEP(av, ~[C_int(0), C_int(abi::fn_field_box)]);
auto box_cell_b =
cx.build.GEP(bv, ~[C_int(0), C_int(abi::fn_field_box)]);
ret iter_boxpp(cx, box_cell_a, box_cell_b, f);
}
case (ty::ty_obj(_)) {
auto box_cell_a =
cx.build.GEP(av, ~[C_int(0), C_int(abi::obj_field_box)]);
auto box_cell_b =
cx.build.GEP(bv, ~[C_int(0), C_int(abi::obj_field_box)]);
ret iter_boxpp(cx, box_cell_a, box_cell_b, f);
}
case (ty::ty_ivec(?unit_tm)) {
ret iter_ivec(cx, av, bv, unit_tm.ty, f);
}
case (ty::ty_istr) {
auto unit_ty = ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8);
ret iter_ivec(cx, av, bv, unit_ty, f);
}
case (_) {
cx.fcx.lcx.ccx.sess.unimpl("type in iter_structural_ty_full");
}
}
ret r;
}
// Iterates through a pointer range, until the src* hits the src_lim*.
fn iter_sequence_raw(@block_ctxt cx, ValueRef dst,
// elt*
ValueRef src,
// elt*
ValueRef src_lim,
// elt*
ValueRef elt_sz, &val_pair_fn f) -> result {
auto bcx = cx;
let ValueRef dst_int = vp2i(bcx, dst);
let ValueRef src_int = vp2i(bcx, src);
let ValueRef src_lim_int = vp2i(bcx, src_lim);
auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond");
auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body");
auto next_cx = new_sub_block_ctxt(cx, "next");
bcx.build.Br(cond_cx.llbb);
let ValueRef dst_curr = cond_cx.build.Phi(T_int(), ~[dst_int],
~[bcx.llbb]);
let ValueRef src_curr = cond_cx.build.Phi(T_int(), ~[src_int],
~[bcx.llbb]);
auto end_test =
cond_cx.build.ICmp(lib::llvm::LLVMIntULT, src_curr, src_lim_int);
cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb);
auto dst_curr_ptr = vi2p(body_cx, dst_curr, T_ptr(T_i8()));
auto src_curr_ptr = vi2p(body_cx, src_curr, T_ptr(T_i8()));
auto body_res = f(body_cx, dst_curr_ptr, src_curr_ptr);
body_cx = body_res.bcx;
auto dst_next = body_cx.build.Add(dst_curr, elt_sz);
auto src_next = body_cx.build.Add(src_curr, elt_sz);
body_cx.build.Br(cond_cx.llbb);
cond_cx.build.AddIncomingToPhi(dst_curr, ~[dst_next], ~[body_cx.llbb]);
cond_cx.build.AddIncomingToPhi(src_curr, ~[src_next], ~[body_cx.llbb]);
ret rslt(next_cx, C_nil());
}
fn iter_sequence_inner(&@block_ctxt cx, ValueRef src,
// elt*
ValueRef src_lim,
& // elt*
ty::t elt_ty, &val_and_ty_fn f) -> result {
fn adaptor_fn(val_and_ty_fn f, ty::t elt_ty, &@block_ctxt cx,
ValueRef dst, ValueRef src) -> result {
auto llptrty;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elt_ty)) {
auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, elt_ty);
llptrty = T_ptr(llty);
} else { llptrty = T_ptr(T_ptr(T_i8())); }
auto p = cx.build.PointerCast(src, llptrty);
ret f(cx, load_if_immediate(cx, p, elt_ty), elt_ty);
}
auto elt_sz = size_of(cx, elt_ty);
ret iter_sequence_raw(elt_sz.bcx, src, src, src_lim, elt_sz.val,
bind adaptor_fn(f, elt_ty, _, _, _));
}
// Iterates through the elements of a vec or str.
fn iter_sequence(@block_ctxt cx, ValueRef v, &ty::t t, &val_and_ty_fn f) ->
result {
fn iter_sequence_body(@block_ctxt cx, ValueRef v, &ty::t elt_ty,
&val_and_ty_fn f, bool trailing_null, bool interior)
-> result {
auto p0;
auto len;
auto bcx;
if (!interior) {
p0 = cx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_data)]);
auto lp = cx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_fill)]);
len = cx.build.Load(lp);
bcx = cx;
} else {
auto len_and_data_rslt = ivec::get_len_and_data(cx, v, elt_ty);
len = len_and_data_rslt._0;
p0 = len_and_data_rslt._1;
bcx = len_and_data_rslt._2;
}
auto llunit_ty = type_of_or_i8(cx, elt_ty);
if (trailing_null) {
auto unit_sz = size_of(bcx, elt_ty);
bcx = unit_sz.bcx;
len = bcx.build.Sub(len, unit_sz.val);
}
auto p1 =
vi2p(bcx, bcx.build.Add(vp2i(bcx, p0), len), T_ptr(llunit_ty));
ret iter_sequence_inner(bcx, p0, p1, elt_ty, f);
}
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_vec(?elt)) {
ret iter_sequence_body(cx, v, elt.ty, f, false, false);
}
case (ty::ty_str) {
auto et = ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8);
ret iter_sequence_body(cx, v, et, f, true, false);
}
case (ty::ty_ivec(?elt)) {
ret iter_sequence_body(cx, v, elt.ty, f, false, true);
}
case (ty::ty_istr) {
auto et = ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8);
ret iter_sequence_body(cx, v, et, f, true, true);
}
case (_) {
cx.fcx.lcx.ccx.sess.bug("unexpected type in " +
"trans::iter_sequence: " +
ty_to_str(cx.fcx.lcx.ccx.tcx, t));
}
}
}
fn lazily_emit_all_tydesc_glue(&@block_ctxt cx,
&option::t[@tydesc_info] static_ti) {
lazily_emit_tydesc_glue(cx, abi::tydesc_field_copy_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, static_ti);
}
fn lazily_emit_all_generic_info_tydesc_glues(&@block_ctxt cx,
&generic_info gi) {
for (option::t[@tydesc_info] ti in gi.static_tis) {
lazily_emit_all_tydesc_glue(cx, ti);
}
}
fn lazily_emit_tydesc_glue(&@block_ctxt cx, int field,
&option::t[@tydesc_info] static_ti) {
alt (static_ti) {
case (none) { }
case (some(?ti)) {
if (field == abi::tydesc_field_copy_glue) {
alt ({ ti.copy_glue }) {
case (some(_)) { }
case (none) {
log #fmt("+++ lazily_emit_tydesc_glue TAKE %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_glue_fn(*lcx.ccx),
"copy");
ti.copy_glue = some[ValueRef](glue_fn);
auto tg = make_copy_glue;
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_single(tg), ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue TAKE %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
} else if (field == abi::tydesc_field_drop_glue) {
alt ({ ti.drop_glue }) {
case (some(_)) { }
case (none) {
log #fmt("+++ lazily_emit_tydesc_glue DROP %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_glue_fn(*lcx.ccx),
"drop");
ti.drop_glue = some[ValueRef](glue_fn);
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_single(make_drop_glue),
ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue DROP %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
} else if (field == abi::tydesc_field_free_glue) {
alt ({ ti.free_glue }) {
case (some(_)) { }
case (none) {
log #fmt("+++ lazily_emit_tydesc_glue FREE %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_glue_fn(*lcx.ccx),
"free");
ti.free_glue = some[ValueRef](glue_fn);
auto dg = make_free_glue;
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_single(dg), ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue FREE %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
} else if (field == abi::tydesc_field_cmp_glue) {
alt ({ ti.cmp_glue }) {
case (some(_)) { }
case (none) {
log #fmt("+++ lazily_emit_tydesc_glue CMP %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
auto lcx = cx.fcx.lcx;
auto glue_fn =
declare_generic_glue(lcx, ti.ty,
T_cmp_glue_fn(*lcx.ccx),
"cmp");
ti.cmp_glue = some[ValueRef](glue_fn);
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
mgghf_cmp, ti.ty_params);
log #fmt("--- lazily_emit_tydesc_glue CMP %s",
ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty));
}
}
}
}
}
}
fn call_tydesc_glue_full(&@block_ctxt cx, ValueRef v, ValueRef tydesc,
int field, &option::t[@tydesc_info] static_ti) {
lazily_emit_tydesc_glue(cx, field, static_ti);
auto static_glue_fn = none;
alt (static_ti) {
case (none) { /* no-op */ }
case (some(?sti)) {
if (field == abi::tydesc_field_copy_glue) {
static_glue_fn = sti.copy_glue;
} else if (field == abi::tydesc_field_drop_glue) {
static_glue_fn = sti.drop_glue;
} else if (field == abi::tydesc_field_free_glue) {
static_glue_fn = sti.free_glue;
} else if (field == abi::tydesc_field_cmp_glue) {
static_glue_fn = sti.cmp_glue;
}
}
}
auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8()));
auto lltydescs =
cx.build.GEP(tydesc,
~[C_int(0), C_int(abi::tydesc_field_first_param)]);
lltydescs = cx.build.Load(lltydescs);
auto llfn;
alt (static_glue_fn) {
case (none) {
auto llfnptr = cx.build.GEP(tydesc, ~[C_int(0), C_int(field)]);
llfn = cx.build.Load(llfnptr);
}
case (some(?sgf)) { llfn = sgf; }
}
cx.build.Call(llfn,
~[C_null(T_ptr(T_nil())), cx.fcx.lltaskptr,
C_null(T_ptr(T_nil())), lltydescs, llrawptr]);
}
fn call_tydesc_glue(&@block_ctxt cx, ValueRef v, &ty::t t, int field) ->
result {
let option::t[@tydesc_info] ti = none[@tydesc_info];
auto td = get_tydesc(cx, t, false, ti);
call_tydesc_glue_full(td.bcx, spill_if_immediate(td.bcx, v, t), td.val,
field, ti);
ret rslt(td.bcx, C_nil());
}
fn maybe_call_dtor(&@block_ctxt cx, ValueRef v) -> @block_ctxt {
auto vtbl = cx.build.GEP(v, ~[C_int(0), C_int(abi::obj_field_vtbl)]);
vtbl = cx.build.Load(vtbl);
auto vtbl_type = T_ptr(T_array(T_ptr(T_nil()), 1u));
vtbl = cx.build.PointerCast(vtbl, vtbl_type);
auto dtor_ptr = cx.build.GEP(vtbl, ~[C_int(0), C_int(0)]);
dtor_ptr = cx.build.Load(dtor_ptr);
dtor_ptr =
cx.build.BitCast(dtor_ptr,
T_ptr(T_dtor(cx.fcx.lcx.ccx, cx.sp)));
auto dtor_cx = new_sub_block_ctxt(cx, "dtor");
auto after_cx = new_sub_block_ctxt(cx, "after_dtor");
auto test =
cx.build.ICmp(lib::llvm::LLVMIntNE, dtor_ptr,
C_null(val_ty(dtor_ptr)));
cx.build.CondBr(test, dtor_cx.llbb, after_cx.llbb);
auto me = dtor_cx.build.Load(v);
dtor_cx.build.FastCall(dtor_ptr,
~[C_null(T_ptr(T_nil())), cx.fcx.lltaskptr, me]);
dtor_cx.build.Br(after_cx.llbb);
ret after_cx;
}
fn call_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t,
ValueRef llop) -> result {
// We can't use call_tydesc_glue_full() and friends here because compare
// glue has a special signature.
auto lllhs = spill_if_immediate(cx, lhs, t);
auto llrhs = spill_if_immediate(cx, rhs, t);
auto llrawlhsptr = cx.build.BitCast(lllhs, T_ptr(T_i8()));
auto llrawrhsptr = cx.build.BitCast(llrhs, T_ptr(T_i8()));
auto ti = none[@tydesc_info];
auto r = get_tydesc(cx, t, false, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, ti);
auto lltydescs =
r.bcx.build.GEP(r.val,
~[C_int(0), C_int(abi::tydesc_field_first_param)]);
lltydescs = r.bcx.build.Load(lltydescs);
auto llfn;
alt (ti) {
case (none) {
auto llfnptr = r.bcx.build.GEP(r.val, ~[C_int(0),
C_int(abi::tydesc_field_cmp_glue)]);
llfn = r.bcx.build.Load(llfnptr);
}
case (some(?sti)) { llfn = option::get(sti.cmp_glue); }
}
auto llcmpresultptr = alloca(r.bcx, T_i1());
let ValueRef[] llargs =
~[llcmpresultptr, r.bcx.fcx.lltaskptr, C_null(T_ptr(T_nil())),
lltydescs, llrawlhsptr, llrawrhsptr, llop];
r.bcx.build.Call(llfn, llargs);
ret rslt(r.bcx, r.bcx.build.Load(llcmpresultptr));
}
// Compares two values. Performs the simple scalar comparison if the types are
// scalar and calls to comparison glue otherwise.
fn compare(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t,
ValueRef llop) -> result {
if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t)) {
ret compare_scalar_types(cx, lhs, rhs, t, llop);
}
ret call_cmp_glue(cx, lhs, rhs, t, llop);
}
fn copy_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_owns_heap_mem(cx.fcx.lcx.ccx.tcx, t)) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_copy_glue);
}
ret rslt(cx, C_nil());
}
fn drop_slot(&@block_ctxt cx, ValueRef slot, &ty::t t) -> result {
auto llptr = load_if_immediate(cx, slot, t);
auto re = drop_ty(cx, llptr, t);
auto llty = val_ty(slot);
auto llelemty = lib::llvm::llvm::LLVMGetElementType(llty);
re.bcx.build.Store(C_null(llelemty), slot);
ret re;
}
fn drop_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_drop_glue);
}
ret rslt(cx, C_nil());
}
fn free_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result {
if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_free_glue);
}
ret rslt(cx, C_nil());
}
fn call_memmove(&@block_ctxt cx, ValueRef dst, ValueRef src,
ValueRef n_bytes) -> result {
// FIXME: switch to the 64-bit variant when on such a platform.
// TODO: Provide LLVM with better alignment information when the alignment
// is statically known (it must be nothing more than a constant int, or
// LLVM complains -- not even a constant element of a tydesc works).
auto i = cx.fcx.lcx.ccx.intrinsics;
assert (i.contains_key("llvm.memmove.p0i8.p0i8.i32"));
auto memmove = i.get("llvm.memmove.p0i8.p0i8.i32");
auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8()));
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
auto size = cx.build.IntCast(n_bytes, T_i32());
auto align = C_int(0);
auto volatile = C_bool(false);
ret rslt(cx,
cx.build.Call(memmove,
~[dst_ptr, src_ptr, size, align, volatile]));
}
fn call_bzero(&@block_ctxt cx, ValueRef dst, ValueRef n_bytes,
ValueRef align_bytes) -> result {
// FIXME: switch to the 64-bit variant when on such a platform.
auto i = cx.fcx.lcx.ccx.intrinsics;
assert (i.contains_key("llvm.memset.p0i8.i32"));
auto memset = i.get("llvm.memset.p0i8.i32");
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
auto size = cx.build.IntCast(n_bytes, T_i32());
auto align =
if (lib::llvm::llvm::LLVMIsConstant(align_bytes) == True) {
cx.build.IntCast(align_bytes, T_i32())
} else { cx.build.IntCast(C_int(0), T_i32()) };
auto volatile = C_bool(false);
ret rslt(cx,
cx.build.Call(memset,
~[dst_ptr, C_u8(0u), size, align, volatile]));
}
fn memmove_ty(&@block_ctxt cx, ValueRef dst, ValueRef src, &ty::t t) ->
result {
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
auto llsz = size_of(cx, t);
ret call_memmove(llsz.bcx, dst, src, llsz.val);
} else {
ret rslt(cx, cx.build.Store(cx.build.Load(src), dst));
}
}
// Duplicates any heap-owned memory owned by a value of the given type.
fn duplicate_heap_parts_if_necessary(&@block_ctxt cx, ValueRef vptr,
ty::t typ) -> result {
alt (ty::struct(cx.fcx.lcx.ccx.tcx, typ)) {
case (ty::ty_ivec(?tm)) {
ret ivec::duplicate_heap_part(cx, vptr, tm.ty);
}
case (ty::ty_istr) {
ret ivec::duplicate_heap_part(cx, vptr,
ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8));
}
case (_) { ret rslt(cx, C_nil()); }
}
}
tag copy_action { INIT; DROP_EXISTING; }
fn copy_val(&@block_ctxt cx, copy_action action, ValueRef dst, ValueRef src,
&ty::t t) -> result {
auto ccx = cx.fcx.lcx.ccx;
// FIXME this is just a clunky stopgap. we should do proper checking in an
// earlier pass.
if (!ty::type_is_copyable(ccx.tcx, t)) {
ccx.sess.span_fatal(cx.sp, "Copying a non-copyable type.");
}
if (ty::type_is_scalar(ccx.tcx, t) ||
ty::type_is_native(ccx.tcx, t)) {
ret rslt(cx, cx.build.Store(src, dst));
} else if (ty::type_is_nil(ccx.tcx, t) ||
ty::type_is_bot(ccx.tcx, t)) {
ret rslt(cx, C_nil());
} else if (ty::type_is_boxed(ccx.tcx, t)) {
auto bcx;
if (action == DROP_EXISTING) {
bcx = drop_ty(cx, cx.build.Load(dst), t).bcx;
} else {
bcx = cx;
}
bcx = copy_ty(bcx, src, t).bcx;
ret rslt(bcx, bcx.build.Store(src, dst));
} else if (ty::type_is_structural(ccx.tcx, t) ||
ty::type_has_dynamic_size(ccx.tcx, t)) {
// Check for self-assignment.
auto do_copy_cx = new_sub_block_ctxt(cx, "do_copy");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto self_assigning = cx.build.ICmp(lib::llvm::LLVMIntNE,
cx.build.PointerCast(dst, val_ty(src)), src);
cx.build.CondBr(self_assigning, do_copy_cx.llbb, next_cx.llbb);
if (action == DROP_EXISTING) {
do_copy_cx = drop_ty(do_copy_cx, dst, t).bcx;
}
do_copy_cx = memmove_ty(do_copy_cx, dst, src, t).bcx;
do_copy_cx = copy_ty(do_copy_cx, dst, t).bcx;
do_copy_cx.build.Br(next_cx.llbb);
ret rslt(next_cx, C_nil());
}
ccx.sess.bug("unexpected type in trans::copy_val: " +
ty_to_str(ccx.tcx, t));
}
// This works like copy_val, except that it deinitializes the source.
// Since it needs to zero out the source, src also needs to be an lval.
// FIXME: We always zero out the source. Ideally we would detect the
// case where a variable is always deinitialized by block exit and thus
// doesn't need to be dropped.
fn move_val(@block_ctxt cx, copy_action action, ValueRef dst,
&lval_result src, &ty::t t) -> result {
auto src_val = src.res.val;
if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_is_native(cx.fcx.lcx.ccx.tcx, t)) {
if (src.is_mem) { src_val = cx.build.Load(src_val); }
cx.build.Store(src_val, dst);
ret rslt(cx, C_nil());
} else if (ty::type_is_nil(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_is_bot(cx.fcx.lcx.ccx.tcx, t)) {
ret rslt(cx, C_nil());
} else if (ty::type_is_boxed(cx.fcx.lcx.ccx.tcx, t)) {
if (src.is_mem) { src_val = cx.build.Load(src_val); }
if (action == DROP_EXISTING) {
cx = drop_ty(cx, cx.build.Load(dst), t).bcx;
}
cx.build.Store(src_val, dst);
if (src.is_mem) {
ret zero_alloca(cx, src.res.val, t);
} else { // It must be a temporary
revoke_clean(cx, src_val);
ret rslt(cx, C_nil());
}
} else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t) ||
ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
if (action == DROP_EXISTING) { cx = drop_ty(cx, dst, t).bcx; }
cx = memmove_ty(cx, dst, src_val, t).bcx;
if (src.is_mem) {
ret zero_alloca(cx, src_val, t);
} else { // Temporary value
revoke_clean(cx, src_val);
ret rslt(cx, C_nil());
}
}
cx.fcx.lcx.ccx.sess.bug("unexpected type in trans::move_val: " +
ty_to_str(cx.fcx.lcx.ccx.tcx, t));
}
fn move_val_if_temp(@block_ctxt cx, copy_action action, ValueRef dst,
&lval_result src, &ty::t t) -> result {
// Lvals in memory are not temporaries. Copy them.
if (src.is_mem) {
ret copy_val(cx, action, dst,
load_if_immediate(cx, src.res.val, t), t);
} else {
ret move_val(cx, action, dst, src, t);
}
}
fn trans_lit_istr(&@block_ctxt cx, str s) -> result {
auto llstackpart = alloca(cx, T_ivec(T_i8()));
auto len = str::byte_len(s);
auto bcx;
if (len < 3u) { // 3 because of the \0
cx.build.Store(C_uint(len + 1u),
cx.build.InBoundsGEP(llstackpart,
~[C_int(0), C_int(0)]));
cx.build.Store(C_int(4),
cx.build.InBoundsGEP(llstackpart,
~[C_int(0), C_int(1)]));
auto i = 0u;
while (i < len) {
cx.build.Store(C_u8(s.(i) as uint),
cx.build.InBoundsGEP(llstackpart,
~[C_int(0), C_int(2),
C_uint(i)]));
i += 1u;
}
cx.build.Store(C_u8(0u),
cx.build.InBoundsGEP(llstackpart,
~[C_int(0), C_int(2),
C_uint(len)]));
bcx = cx;
} else {
auto r =
trans_shared_malloc(cx, T_ptr(T_ivec_heap_part(T_i8())),
llsize_of(T_struct(~[T_int(),
T_array(T_i8(),
len + 1u)])));
bcx = r.bcx;
auto llheappart = r.val;
bcx.build.Store(C_uint(len + 1u),
bcx.build.InBoundsGEP(llheappart,
~[C_int(0), C_int(0)]));
bcx.build.Store(llvm::LLVMConstString(str::buf(s), len, False),
bcx.build.InBoundsGEP(llheappart,
~[C_int(0), C_int(1)]));
auto llspilledstackpart = bcx.build.PointerCast(llstackpart,
T_ptr(T_ivec_heap(T_i8())));
bcx.build.Store(C_int(0),
bcx.build.InBoundsGEP(llspilledstackpart,
~[C_int(0), C_int(0)]));
bcx.build.Store(C_uint(len + 1u),
bcx.build.InBoundsGEP(llspilledstackpart,
~[C_int(0), C_int(1)]));
bcx.build.Store(llheappart,
bcx.build.InBoundsGEP(llspilledstackpart,
~[C_int(0), C_int(2)]));
}
ret rslt(bcx, llstackpart);
}
fn trans_crate_lit(&@crate_ctxt cx, &ast::lit lit) -> ValueRef {
alt (lit.node) {
case (ast::lit_int(?i)) { ret C_int(i); }
case (ast::lit_uint(?u)) { ret C_int(u as int); }
case (ast::lit_mach_int(?tm, ?i)) {
// FIXME: the entire handling of mach types falls apart
// if target int width is larger than host, at the moment;
// re-do the mach-int types using 'big' when that works.
auto t = T_int();
auto s = True;
alt (tm) {
case (ast::ty_u8) { t = T_i8(); s = False; }
case (ast::ty_u16) { t = T_i16(); s = False; }
case (ast::ty_u32) { t = T_i32(); s = False; }
case (ast::ty_u64) { t = T_i64(); s = False; }
case (ast::ty_i8) { t = T_i8(); }
case (ast::ty_i16) { t = T_i16(); }
case (ast::ty_i32) { t = T_i32(); }
case (ast::ty_i64) { t = T_i64(); }
}
ret C_integral(t, i as uint, s);
}
case (ast::lit_float(?fs)) { ret C_float(fs); }
case (ast::lit_mach_float(?tm, ?s)) {
auto t = T_float();
alt (tm) {
case (ast::ty_f32) { t = T_f32(); }
case (ast::ty_f64) { t = T_f64(); }
}
ret C_floating(s, t);
}
case (ast::lit_char(?c)) {
ret C_integral(T_char(), c as uint, False);
}
case (ast::lit_bool(?b)) { ret C_bool(b); }
case (ast::lit_nil) { ret C_nil(); }
case (ast::lit_str(?s, ast::sk_rc)) { ret C_str(cx, s); }
case (ast::lit_str(?s, ast::sk_unique)) {
cx.sess.span_unimpl(lit.span, "unique string in this context");
}
}
}
fn trans_lit(&@block_ctxt cx, &ast::lit lit) -> result {
alt (lit.node) {
ast::lit_str(?s, ast::sk_unique) { ret trans_lit_istr(cx, s); }
_ { ret rslt(cx, trans_crate_lit(cx.fcx.lcx.ccx, lit)); }
}
}
// Converts an annotation to a type
fn node_id_type(&@crate_ctxt cx, ast::node_id id) -> ty::t {
ret ty::node_id_to_monotype(cx.tcx, id);
}
fn node_type(&@crate_ctxt cx, &span sp, ast::node_id id) -> TypeRef {
ret type_of(cx, sp, node_id_type(cx, id));
}
fn trans_unary(&@block_ctxt cx, ast::unop op, &@ast::expr e,
ast::node_id id) -> result {
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
alt (op) {
case (ast::not) {
auto sub = trans_expr(cx, e);
auto dr = autoderef(sub.bcx, sub.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e));
ret rslt(dr.bcx, dr.bcx.build.Not(dr.val));
}
case (ast::neg) {
auto sub = trans_expr(cx, e);
auto dr = autoderef(sub.bcx, sub.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e));
if (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty) == ty::ty_float) {
ret rslt(dr.bcx, dr.bcx.build.FNeg(dr.val));
} else { ret rslt(dr.bcx, sub.bcx.build.Neg(dr.val)); }
}
case (ast::box(_)) {
auto lv = trans_lval(cx, e);
auto box_ty = node_id_type(lv.res.bcx.fcx.lcx.ccx, id);
auto sub = trans_malloc_boxed(lv.res.bcx, e_ty);
add_clean_temp(cx, sub.val, box_ty);
auto box = sub.val;
auto rc = sub.bcx.build.GEP
(box, ~[C_int(0), C_int(abi::box_rc_field_refcnt)]);
auto body = sub.bcx.build.GEP
(box, ~[C_int(0), C_int(abi::box_rc_field_body)]);
sub.bcx.build.Store(C_int(1), rc);
// Cast the body type to the type of the value. This is needed to
// make tags work, since tags have a different LLVM type depending
// on whether they're boxed or not.
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, e_ty)) {
auto llety =
T_ptr(type_of(sub.bcx.fcx.lcx.ccx, e.span, e_ty));
body = sub.bcx.build.PointerCast(body, llety);
}
sub = move_val_if_temp(sub.bcx, INIT, body, lv, e_ty);
ret rslt(sub.bcx, box);
}
case (ast::deref) {
cx.fcx.lcx.ccx.sess.bug("deref expressions should have been " +
"translated using trans_lval(), not "
+ "trans_unary()");
}
}
}
fn trans_compare(&@block_ctxt cx0, ast::binop op, &ty::t t0, ValueRef lhs0,
ValueRef rhs0) -> result {
// Autoderef both sides.
auto cx = cx0;
auto lhs_r = autoderef(cx, lhs0, t0);
auto lhs = lhs_r.val;
cx = lhs_r.bcx;
auto rhs_r = autoderef(cx, rhs0, t0);
auto rhs = rhs_r.val;
cx = rhs_r.bcx;
// Determine the operation we need.
// FIXME: Use or-patterns when we have them.
auto llop;
alt (op) {
case (ast::eq) { llop = C_u8(abi::cmp_glue_op_eq); }
case (ast::lt) { llop = C_u8(abi::cmp_glue_op_lt); }
case (ast::le) { llop = C_u8(abi::cmp_glue_op_le); }
case (ast::ne) { llop = C_u8(abi::cmp_glue_op_eq); }
case (ast::ge) { llop = C_u8(abi::cmp_glue_op_lt); }
case (ast::gt) { llop = C_u8(abi::cmp_glue_op_le); }
}
auto rs = compare(cx, lhs, rhs, rhs_r.ty, llop);
// Invert the result if necessary.
// FIXME: Use or-patterns when we have them.
alt (op) {
case (ast::eq) { ret rslt(rs.bcx, rs.val); }
case (ast::lt) { ret rslt(rs.bcx, rs.val); }
case (ast::le) { ret rslt(rs.bcx, rs.val); }
case (ast::ne) { ret rslt(rs.bcx, rs.bcx.build.Not(rs.val)); }
case (ast::ge) { ret rslt(rs.bcx, rs.bcx.build.Not(rs.val)); }
case (ast::gt) { ret rslt(rs.bcx, rs.bcx.build.Not(rs.val)); }
}
}
fn trans_vec_append(&@block_ctxt cx, &ty::t t, ValueRef lhs, ValueRef rhs) ->
result {
auto elt_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t);
auto skip_null = C_bool(false);
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_str) { skip_null = C_bool(true); }
case (_) { }
}
auto bcx = cx;
auto ti = none[@tydesc_info];
auto llvec_tydesc = get_tydesc(bcx, t, false, ti);
bcx = llvec_tydesc.bcx;
ti = none[@tydesc_info];
auto llelt_tydesc = get_tydesc(bcx, elt_ty, false, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_copy_glue, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, ti);
bcx = llelt_tydesc.bcx;
auto dst = bcx.build.PointerCast(lhs, T_ptr(T_opaque_vec_ptr()));
auto src = bcx.build.PointerCast(rhs, T_opaque_vec_ptr());
ret rslt(bcx,
bcx.build.Call(cx.fcx.lcx.ccx.upcalls.vec_append,
~[cx.fcx.lltaskptr, llvec_tydesc.val,
llelt_tydesc.val, dst, src, skip_null]));
}
mod ivec {
// Returns the length of an interior vector and a pointer to its first
// element, in that order.
fn get_len_and_data(&@block_ctxt bcx, ValueRef orig_v, ty::t unit_ty)
-> tup(ValueRef, ValueRef, @block_ctxt) {
// If this interior vector has dynamic size, we can't assume anything
// about the LLVM type of the value passed in, so we cast it to an
// opaque vector type.
auto v;
if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, unit_ty)) {
v = bcx.build.PointerCast(orig_v, T_ptr(T_opaque_ivec()));
} else {
v = orig_v;
}
auto llunitty = type_of_or_i8(bcx, unit_ty);
auto stack_len = load_inbounds(bcx, v, ~[C_int(0),
C_uint(abi::ivec_elt_len)]);
auto stack_elem =
bcx.build.InBoundsGEP(v,
~[C_int(0), C_uint(abi::ivec_elt_elems),
C_int(0)]);
auto on_heap =
bcx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0));
auto on_heap_cx = new_sub_block_ctxt(bcx, "on_heap");
auto next_cx = new_sub_block_ctxt(bcx, "next");
bcx.build.CondBr(on_heap, on_heap_cx.llbb, next_cx.llbb);
auto heap_stub =
on_heap_cx.build.PointerCast(v, T_ptr(T_ivec_heap(llunitty)));
auto heap_ptr = load_inbounds(on_heap_cx, heap_stub,
~[C_int(0),
C_uint(abi::ivec_heap_stub_elt_ptr)]);
// Check whether the heap pointer is null. If it is, the vector length
// is truly zero.
auto llstubty = T_ivec_heap(llunitty);
auto llheapptrty = struct_elt(llstubty, abi::ivec_heap_stub_elt_ptr);
auto heap_ptr_is_null =
on_heap_cx.build.ICmp(lib::llvm::LLVMIntEQ, heap_ptr,
C_null(T_ptr(llheapptrty)));
auto zero_len_cx = new_sub_block_ctxt(bcx, "zero_len");
auto nonzero_len_cx = new_sub_block_ctxt(bcx, "nonzero_len");
on_heap_cx.build.CondBr(heap_ptr_is_null, zero_len_cx.llbb,
nonzero_len_cx.llbb);
// Technically this context is unnecessary, but it makes this function
// clearer.
auto zero_len = C_int(0);
auto zero_elem = C_null(T_ptr(llunitty));
zero_len_cx.build.Br(next_cx.llbb);
// If we're here, then we actually have a heapified vector.
auto heap_len = load_inbounds(nonzero_len_cx, heap_ptr,
~[C_int(0),
C_uint(abi::ivec_heap_elt_len)]);
auto heap_elem =
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems),
C_int(0)];
nonzero_len_cx.build.InBoundsGEP(heap_ptr,v)
};
nonzero_len_cx.build.Br(next_cx.llbb);
// Now we can figure out the length of `v` and get a pointer to its
// first element.
auto len =
next_cx.build.Phi(T_int(), ~[stack_len, zero_len, heap_len],
~[bcx.llbb, zero_len_cx.llbb,
nonzero_len_cx.llbb]);
auto elem =
next_cx.build.Phi(T_ptr(llunitty),
~[stack_elem, zero_elem, heap_elem],
~[bcx.llbb, zero_len_cx.llbb,
nonzero_len_cx.llbb]);
ret tup(len, elem, next_cx);
}
// Returns a tuple consisting of a pointer to the newly-reserved space and
// a block context. Updates the length appropriately.
fn reserve_space(&@block_ctxt cx, TypeRef llunitty, ValueRef v,
ValueRef len_needed) -> result {
auto stack_len_ptr =
cx.build.InBoundsGEP(v, ~[C_int(0), C_uint(abi::ivec_elt_len)]);
auto stack_len = cx.build.Load(stack_len_ptr);
auto alen = load_inbounds(cx, v, ~[C_int(0),
C_uint(abi::ivec_elt_alen)]);
// There are four cases we have to consider:
// (1) On heap, no resize necessary.
// (2) On heap, need to resize.
// (3) On stack, no resize necessary.
// (4) On stack, need to spill to heap.
auto maybe_on_heap =
cx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0));
auto maybe_on_heap_cx = new_sub_block_ctxt(cx, "maybe_on_heap");
auto on_stack_cx = new_sub_block_ctxt(cx, "on_stack");
cx.build.CondBr(maybe_on_heap, maybe_on_heap_cx.llbb,
on_stack_cx.llbb);
auto next_cx = new_sub_block_ctxt(cx, "next");
// We're possibly on the heap, unless the vector is zero-length.
auto stub_p = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)];
auto stub_ptr =
maybe_on_heap_cx.build.PointerCast(v,
T_ptr(T_ivec_heap(llunitty)));
auto heap_ptr = load_inbounds(maybe_on_heap_cx, stub_ptr, stub_p);
auto on_heap =
maybe_on_heap_cx.build.ICmp(lib::llvm::LLVMIntNE, heap_ptr,
C_null(val_ty(heap_ptr)));
auto on_heap_cx = new_sub_block_ctxt(cx, "on_heap");
maybe_on_heap_cx.build.CondBr(on_heap, on_heap_cx.llbb,
on_stack_cx.llbb);
// We're definitely on the heap. Check whether we need to resize.
auto heap_len_ptr =
on_heap_cx.build.InBoundsGEP(heap_ptr,
~[C_int(0),
C_uint(abi::ivec_heap_elt_len)]);
auto heap_len = on_heap_cx.build.Load(heap_len_ptr);
auto new_heap_len = on_heap_cx.build.Add(heap_len, len_needed);
auto heap_len_unscaled =
on_heap_cx.build.UDiv(heap_len, llsize_of(llunitty));
auto heap_no_resize_needed =
on_heap_cx.build.ICmp(lib::llvm::LLVMIntULE, new_heap_len, alen);
auto heap_no_resize_cx = new_sub_block_ctxt(cx, "heap_no_resize");
auto heap_resize_cx = new_sub_block_ctxt(cx, "heap_resize");
on_heap_cx.build.CondBr(heap_no_resize_needed, heap_no_resize_cx.llbb,
heap_resize_cx.llbb);
// Case (1): We're on the heap and don't need to resize.
auto heap_data_no_resize =
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems),
heap_len_unscaled];
heap_no_resize_cx.build.InBoundsGEP(heap_ptr,v)
};
heap_no_resize_cx.build.Store(new_heap_len, heap_len_ptr);
heap_no_resize_cx.build.Br(next_cx.llbb);
// Case (2): We're on the heap and need to resize. This path is rare,
// so we delegate to cold glue.
{
auto p =
heap_resize_cx.build.PointerCast(v, T_ptr(T_opaque_ivec()));
auto upcall = cx.fcx.lcx.ccx.upcalls.ivec_resize_shared;
heap_resize_cx.build.Call(upcall,
~[cx.fcx.lltaskptr, p, new_heap_len]);
}
auto heap_ptr_resize =
load_inbounds(heap_resize_cx, stub_ptr, stub_p);
auto heap_data_resize =
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems),
heap_len_unscaled];
heap_resize_cx.build.InBoundsGEP(heap_ptr_resize, v)
};
heap_resize_cx.build.Br(next_cx.llbb);
// We're on the stack. Check whether we need to spill to the heap.
auto new_stack_len = on_stack_cx.build.Add(stack_len, len_needed);
auto stack_no_spill_needed =
on_stack_cx.build.ICmp(lib::llvm::LLVMIntULE, new_stack_len,
alen);
auto stack_len_unscaled =
on_stack_cx.build.UDiv(stack_len, llsize_of(llunitty));
auto stack_no_spill_cx = new_sub_block_ctxt(cx, "stack_no_spill");
auto stack_spill_cx = new_sub_block_ctxt(cx, "stack_spill");
on_stack_cx.build.CondBr(stack_no_spill_needed,
stack_no_spill_cx.llbb, stack_spill_cx.llbb);
// Case (3): We're on the stack and don't need to spill.
auto stack_data_no_spill =
stack_no_spill_cx.build.InBoundsGEP(v,
~[C_int(0),
C_uint(abi::ivec_elt_elems),
stack_len_unscaled]);
stack_no_spill_cx.build.Store(new_stack_len, stack_len_ptr);
stack_no_spill_cx.build.Br(next_cx.llbb);
// Case (4): We're on the stack and need to spill. Like case (2), this
// path is rare, so we delegate to cold glue.
{
auto p =
stack_spill_cx.build.PointerCast(v, T_ptr(T_opaque_ivec()));
auto upcall = cx.fcx.lcx.ccx.upcalls.ivec_spill_shared;
stack_spill_cx.build.Call(upcall,
~[cx.fcx.lltaskptr, p, new_stack_len]);
}
auto spill_stub =
stack_spill_cx.build.PointerCast(v, T_ptr(T_ivec_heap(llunitty)));
auto heap_ptr_spill =
load_inbounds(stack_spill_cx, spill_stub, stub_p);
auto heap_data_spill =
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems),
stack_len_unscaled];
stack_spill_cx.build.InBoundsGEP(heap_ptr_spill, v)
};
stack_spill_cx.build.Br(next_cx.llbb);
// Phi together the different data pointers to get the result.
auto data_ptr =
next_cx.build.Phi(T_ptr(llunitty),
~[heap_data_no_resize, heap_data_resize,
stack_data_no_spill, heap_data_spill],
~[heap_no_resize_cx.llbb, heap_resize_cx.llbb,
stack_no_spill_cx.llbb, stack_spill_cx.llbb]);
ret rslt(next_cx, data_ptr);
}
fn trans_append(&@block_ctxt cx, &ty::t t, ValueRef orig_lhs,
ValueRef orig_rhs) -> result {
// Cast to opaque interior vector types if necessary.
auto lhs;
auto rhs;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
lhs = cx.build.PointerCast(orig_lhs, T_ptr(T_opaque_ivec()));
rhs = cx.build.PointerCast(orig_rhs, T_ptr(T_opaque_ivec()));
} else {
lhs = orig_lhs;
rhs = orig_rhs;
}
auto unit_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t);
auto llunitty = type_of_or_i8(cx, unit_ty);
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_istr) { }
case (ty::ty_ivec(_)) { }
case (_) {
cx.fcx.lcx.ccx.tcx.sess.bug("non-istr/ivec in trans_append");
}
}
auto rs = size_of(cx, unit_ty);
auto bcx = rs.bcx;
auto unit_sz = rs.val;
// Gather the various type descriptors we'll need.
// FIXME (issue #511): This is needed to prevent a leak.
auto no_tydesc_info = none;
rs = get_tydesc(bcx, t, false, no_tydesc_info);
bcx = rs.bcx;
rs = get_tydesc(bcx, unit_ty, false, no_tydesc_info);
bcx = rs.bcx;
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_copy_glue, none);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, none);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, none);
auto rhs_len_and_data = get_len_and_data(bcx, rhs, unit_ty);
auto rhs_len = rhs_len_and_data._0;
auto rhs_data = rhs_len_and_data._1;
bcx = rhs_len_and_data._2;
rs = reserve_space(bcx, llunitty, lhs, rhs_len);
auto lhs_data = rs.val;
bcx = rs.bcx;
// Work out the end pointer.
auto lhs_unscaled_idx = bcx.build.UDiv(rhs_len, llsize_of(llunitty));
auto lhs_end = bcx.build.InBoundsGEP(lhs_data, ~[lhs_unscaled_idx]);
// Now emit the copy loop.
auto dest_ptr = alloca(bcx, T_ptr(llunitty));
bcx.build.Store(lhs_data, dest_ptr);
auto src_ptr = alloca(bcx, T_ptr(llunitty));
bcx.build.Store(rhs_data, src_ptr);
auto copy_loop_header_cx =
new_sub_block_ctxt(bcx, "copy_loop_header");
bcx.build.Br(copy_loop_header_cx.llbb);
auto copy_dest_ptr = copy_loop_header_cx.build.Load(dest_ptr);
auto not_yet_at_end =
copy_loop_header_cx.build.ICmp(lib::llvm::LLVMIntNE,
copy_dest_ptr, lhs_end);
auto copy_loop_body_cx = new_sub_block_ctxt(bcx, "copy_loop_body");
auto next_cx = new_sub_block_ctxt(bcx, "next");
copy_loop_header_cx.build.CondBr(not_yet_at_end,
copy_loop_body_cx.llbb,
next_cx.llbb);
auto copy_src_ptr = copy_loop_body_cx.build.Load(src_ptr);
auto copy_src = load_if_immediate(copy_loop_body_cx, copy_src_ptr,
unit_ty);
rs = copy_val(copy_loop_body_cx, INIT, copy_dest_ptr, copy_src,
unit_ty);
auto post_copy_cx = rs.bcx;
// Increment both pointers.
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
// We have to increment by the dynamically-computed size.
incr_ptr(post_copy_cx, copy_dest_ptr, unit_sz, dest_ptr);
incr_ptr(post_copy_cx, copy_src_ptr, unit_sz, src_ptr);
} else {
incr_ptr(post_copy_cx, copy_dest_ptr, C_int(1), dest_ptr);
incr_ptr(post_copy_cx, copy_src_ptr, C_int(1), src_ptr);
}
post_copy_cx.build.Br(copy_loop_header_cx.llbb);
ret rslt(next_cx, C_nil());
}
type alloc_result = rec(@block_ctxt bcx,
ValueRef llptr,
ValueRef llunitsz,
ValueRef llalen);
fn alloc(&@block_ctxt cx, ty::t unit_ty) -> alloc_result {
auto dynamic = ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty);
auto bcx;
if (dynamic) {
bcx = llderivedtydescs_block_ctxt(cx.fcx);
} else {
bcx = cx;
}
auto llunitsz;
auto rslt = size_of(bcx, unit_ty);
bcx = rslt.bcx;
llunitsz = rslt.val;
if (dynamic) { cx.fcx.llderivedtydescs = bcx.llbb; }
auto llalen = bcx.build.Mul(llunitsz,
C_uint(abi::ivec_default_length));
auto llptr;
auto llunitty = type_of_or_i8(bcx, unit_ty);
auto bcx_result;
if (dynamic) {
auto llarraysz = bcx.build.Add(llsize_of(T_opaque_ivec()),
llalen);
auto llvecptr = array_alloca(bcx, T_i8(), llarraysz);
bcx_result = cx;
llptr = bcx_result.build.PointerCast(llvecptr,
T_ptr(T_opaque_ivec()));
} else {
llptr = alloca(bcx, T_ivec(llunitty));
bcx_result = bcx;
}
ret rec(bcx=bcx_result,
llptr=llptr,
llunitsz=llunitsz,
llalen=llalen);
}
fn trans_add(&@block_ctxt cx, ty::t vec_ty, ValueRef lhs, ValueRef rhs)
-> result {
auto bcx = cx;
auto unit_ty = ty::sequence_element_type(bcx.fcx.lcx.ccx.tcx, vec_ty);
auto ares = alloc(bcx, unit_ty);
bcx = ares.bcx;
auto llvecptr = ares.llptr;
auto unit_sz = ares.llunitsz;
auto llalen = ares.llalen;
add_clean_temp(bcx, llvecptr, vec_ty);
auto llunitty = type_of_or_i8(bcx, unit_ty);
auto llheappartty = T_ivec_heap_part(llunitty);
auto lhs_len_and_data = get_len_and_data(bcx, lhs, unit_ty);
auto lhs_len = lhs_len_and_data._0;
auto lhs_data = lhs_len_and_data._1;
bcx = lhs_len_and_data._2;
auto rhs_len_and_data = get_len_and_data(bcx, rhs, unit_ty);
auto rhs_len = rhs_len_and_data._0;
auto rhs_data = rhs_len_and_data._1;
bcx = rhs_len_and_data._2;
auto lllen = bcx.build.Add(lhs_len, rhs_len);
// We have three cases to handle here:
// (1) Length is zero ([] + []).
// (2) Copy onto stack.
// (3) Allocate on heap and copy there.
auto len_is_zero =
bcx.build.ICmp(lib::llvm::LLVMIntEQ, lllen, C_int(0));
auto zero_len_cx = new_sub_block_ctxt(bcx, "zero_len");
auto nonzero_len_cx = new_sub_block_ctxt(bcx, "nonzero_len");
bcx.build.CondBr(len_is_zero, zero_len_cx.llbb, nonzero_len_cx.llbb);
// Case (1): Length is zero.
auto stub_z = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_zero)];
auto stub_a = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_alen)];
auto stub_p = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)];
auto vec_l = ~[C_int(0), C_uint(abi::ivec_elt_len)];
auto vec_a = ~[C_int(0), C_uint(abi::ivec_elt_alen)];
auto stub_ptr_zero =
zero_len_cx.build.PointerCast(llvecptr,
T_ptr(T_ivec_heap(llunitty)));
zero_len_cx.build.Store(C_int(0),
zero_len_cx.build.InBoundsGEP(stub_ptr_zero,
stub_z));
zero_len_cx.build.Store(llalen,
zero_len_cx.build.InBoundsGEP(stub_ptr_zero,
stub_a));
zero_len_cx.build.Store(C_null(T_ptr(llheappartty)),
zero_len_cx.build.InBoundsGEP(stub_ptr_zero,
stub_p));
auto next_cx = new_sub_block_ctxt(bcx, "next");
zero_len_cx.build.Br(next_cx.llbb);
// Determine whether we need to spill to the heap.
auto on_stack =
nonzero_len_cx.build.ICmp(lib::llvm::LLVMIntULE, lllen, llalen);
auto stack_cx = new_sub_block_ctxt(bcx, "stack");
auto heap_cx = new_sub_block_ctxt(bcx, "heap");
nonzero_len_cx.build.CondBr(on_stack, stack_cx.llbb, heap_cx.llbb);
// Case (2): Copy onto stack.
stack_cx.build.Store(lllen,
stack_cx.build.InBoundsGEP(llvecptr, vec_l));
stack_cx.build.Store(llalen,
stack_cx.build.InBoundsGEP(llvecptr, vec_a));
auto dest_ptr_stack =
stack_cx.build.InBoundsGEP(llvecptr,
~[C_int(0),
C_uint(abi::ivec_elt_elems),
C_int(0)]);
auto copy_cx = new_sub_block_ctxt(bcx, "copy");
stack_cx.build.Br(copy_cx.llbb);
// Case (3): Allocate on heap and copy there.
auto stub_ptr_heap =
heap_cx.build.PointerCast(llvecptr, T_ptr(T_ivec_heap(llunitty)));
heap_cx.build.Store(C_int(0),
heap_cx.build.InBoundsGEP(stub_ptr_heap,
stub_z));
heap_cx.build.Store(lllen,
heap_cx.build.InBoundsGEP(stub_ptr_heap,
stub_a));
auto heap_sz = heap_cx.build.Add(llsize_of(llheappartty), lllen);
auto rs = trans_shared_malloc(heap_cx, T_ptr(llheappartty), heap_sz);
auto heap_part = rs.val;
heap_cx = rs.bcx;
heap_cx.build.Store(heap_part,
heap_cx.build.InBoundsGEP(stub_ptr_heap,
stub_p));
{
auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_len)];
heap_cx.build.Store(lllen,
heap_cx.build.InBoundsGEP(heap_part,
v));
}
auto dest_ptr_heap =
heap_cx.build.InBoundsGEP(heap_part,
~[C_int(0),
C_uint(abi::ivec_heap_elt_elems),
C_int(0)]);
heap_cx.build.Br(copy_cx.llbb);
// Emit the copy loop.
auto first_dest_ptr =
copy_cx.build.Phi(T_ptr(llunitty),
~[dest_ptr_stack, dest_ptr_heap],
~[stack_cx.llbb, heap_cx.llbb]);
auto lhs_end_ptr; auto rhs_end_ptr;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
lhs_end_ptr = copy_cx.build.InBoundsGEP(lhs_data, ~[lhs_len]);
rhs_end_ptr = copy_cx.build.InBoundsGEP(rhs_data, ~[rhs_len]);
} else {
auto lhs_len_unscaled = copy_cx.build.UDiv(lhs_len, unit_sz);
lhs_end_ptr = copy_cx.build.InBoundsGEP(lhs_data,
~[lhs_len_unscaled]);
auto rhs_len_unscaled = copy_cx.build.UDiv(rhs_len, unit_sz);
rhs_end_ptr = copy_cx.build.InBoundsGEP(rhs_data,
~[rhs_len_unscaled]);
}
auto dest_ptr_ptr = alloca(copy_cx, T_ptr(llunitty));
copy_cx.build.Store(first_dest_ptr, dest_ptr_ptr);
auto lhs_ptr_ptr = alloca(copy_cx, T_ptr(llunitty));
copy_cx.build.Store(lhs_data, lhs_ptr_ptr);
auto rhs_ptr_ptr = alloca(copy_cx, T_ptr(llunitty));
copy_cx.build.Store(rhs_data, rhs_ptr_ptr);
auto lhs_copy_cx = new_sub_block_ctxt(bcx, "lhs_copy");
copy_cx.build.Br(lhs_copy_cx.llbb);
// Copy in elements from the LHS.
auto lhs_ptr = lhs_copy_cx.build.Load(lhs_ptr_ptr);
auto not_at_end_lhs =
lhs_copy_cx.build.ICmp(lib::llvm::LLVMIntNE, lhs_ptr,
lhs_end_ptr);
auto lhs_do_copy_cx = new_sub_block_ctxt(bcx, "lhs_do_copy");
auto rhs_copy_cx = new_sub_block_ctxt(bcx, "rhs_copy");
lhs_copy_cx.build.CondBr(not_at_end_lhs, lhs_do_copy_cx.llbb,
rhs_copy_cx.llbb);
auto dest_ptr_lhs_copy = lhs_do_copy_cx.build.Load(dest_ptr_ptr);
auto lhs_val = load_if_immediate(lhs_do_copy_cx, lhs_ptr, unit_ty);
rs = copy_val(lhs_do_copy_cx, INIT, dest_ptr_lhs_copy, lhs_val,
unit_ty);
lhs_do_copy_cx = rs.bcx;
// Increment both pointers.
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
// We have to increment by the dynamically-computed size.
incr_ptr(lhs_do_copy_cx, dest_ptr_lhs_copy, unit_sz,
dest_ptr_ptr);
incr_ptr(lhs_do_copy_cx, lhs_ptr, unit_sz, lhs_ptr_ptr);
} else {
incr_ptr(lhs_do_copy_cx, dest_ptr_lhs_copy, C_int(1),
dest_ptr_ptr);
incr_ptr(lhs_do_copy_cx, lhs_ptr, C_int(1), lhs_ptr_ptr);
}
lhs_do_copy_cx.build.Br(lhs_copy_cx.llbb);
// Copy in elements from the RHS.
auto rhs_ptr = rhs_copy_cx.build.Load(rhs_ptr_ptr);
auto not_at_end_rhs =
rhs_copy_cx.build.ICmp(lib::llvm::LLVMIntNE, rhs_ptr,
rhs_end_ptr);
auto rhs_do_copy_cx = new_sub_block_ctxt(bcx, "rhs_do_copy");
rhs_copy_cx.build.CondBr(not_at_end_rhs, rhs_do_copy_cx.llbb,
next_cx.llbb);
auto dest_ptr_rhs_copy = rhs_do_copy_cx.build.Load(dest_ptr_ptr);
auto rhs_val = load_if_immediate(rhs_do_copy_cx, rhs_ptr, unit_ty);
rs =
copy_val(rhs_do_copy_cx, INIT, dest_ptr_rhs_copy, rhs_val,
unit_ty);
rhs_do_copy_cx = rs.bcx;
// Increment both pointers.
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
// We have to increment by the dynamically-computed size.
incr_ptr(rhs_do_copy_cx, dest_ptr_rhs_copy, unit_sz,
dest_ptr_ptr);
incr_ptr(rhs_do_copy_cx, rhs_ptr, unit_sz, rhs_ptr_ptr);
} else {
incr_ptr(rhs_do_copy_cx, dest_ptr_rhs_copy, C_int(1),
dest_ptr_ptr);
incr_ptr(rhs_do_copy_cx, rhs_ptr, C_int(1), rhs_ptr_ptr);
}
rhs_do_copy_cx.build.Br(rhs_copy_cx.llbb);
// Finally done!
ret rslt(next_cx, llvecptr);
}
// NB: This does *not* adjust reference counts. The caller must have done
// this via copy_ty() beforehand.
fn duplicate_heap_part(&@block_ctxt cx, ValueRef orig_vptr,
ty::t unit_ty) -> result {
// Cast to an opaque interior vector if we can't trust the pointer
// type.
auto vptr;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
vptr = cx.build.PointerCast(orig_vptr, T_ptr(T_opaque_ivec()));
} else {
vptr = orig_vptr;
}
auto llunitty = type_of_or_i8(cx, unit_ty);
auto llheappartty = T_ivec_heap_part(llunitty);
// Check to see if the vector is heapified.
auto stack_len_ptr = cx.build.InBoundsGEP(vptr, ~[C_int(0),
C_uint(abi::ivec_elt_len)]);
auto stack_len = cx.build.Load(stack_len_ptr);
auto stack_len_is_zero = cx.build.ICmp(lib::llvm::LLVMIntEQ,
stack_len, C_int(0));
auto maybe_on_heap_cx = new_sub_block_ctxt(cx, "maybe_on_heap");
auto next_cx = new_sub_block_ctxt(cx, "next");
cx.build.CondBr(stack_len_is_zero, maybe_on_heap_cx.llbb,
next_cx.llbb);
auto stub_ptr = maybe_on_heap_cx.build.PointerCast(vptr,
T_ptr(T_ivec_heap(llunitty)));
auto heap_ptr_ptr = maybe_on_heap_cx.build.InBoundsGEP(stub_ptr,
~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]);
auto heap_ptr = maybe_on_heap_cx.build.Load(heap_ptr_ptr);
auto heap_ptr_is_nonnull = maybe_on_heap_cx.build.ICmp(
lib::llvm::LLVMIntNE, heap_ptr, C_null(T_ptr(llheappartty)));
auto on_heap_cx = new_sub_block_ctxt(cx, "on_heap");
maybe_on_heap_cx.build.CondBr(heap_ptr_is_nonnull, on_heap_cx.llbb,
next_cx.llbb);
// Ok, the vector is on the heap. Copy the heap part.
auto alen_ptr = on_heap_cx.build.InBoundsGEP(stub_ptr,
~[C_int(0), C_uint(abi::ivec_heap_stub_elt_alen)]);
auto alen = on_heap_cx.build.Load(alen_ptr);
auto heap_part_sz = on_heap_cx.build.Add(alen,
llsize_of(T_opaque_ivec_heap_part()));
auto rs = trans_shared_malloc(on_heap_cx, T_ptr(llheappartty),
heap_part_sz);
on_heap_cx = rs.bcx;
auto new_heap_ptr = rs.val;
rs = call_memmove(on_heap_cx, new_heap_ptr, heap_ptr, heap_part_sz);
on_heap_cx = rs.bcx;
on_heap_cx.build.Store(new_heap_ptr, heap_ptr_ptr);
on_heap_cx.build.Br(next_cx.llbb);
ret rslt(next_cx, C_nil());
}
}
fn trans_vec_add(&@block_ctxt cx, &ty::t t, ValueRef lhs, ValueRef rhs) ->
result {
auto r = alloc_ty(cx, t);
auto tmp = r.val;
r = copy_val(r.bcx, INIT, tmp, lhs, t);
auto bcx = trans_vec_append(r.bcx, t, tmp, rhs).bcx;
tmp = load_if_immediate(bcx, tmp, t);
add_clean_temp(cx, tmp, t);
ret rslt(bcx, tmp);
}
fn trans_eager_binop(&@block_ctxt cx, ast::binop op, &ty::t intype,
ValueRef lhs, ValueRef rhs) -> result {
auto is_float = false;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, intype)) {
case (ty::ty_float) { is_float = true; }
case (_) { is_float = false; }
}
alt (op) {
case (ast::add) {
if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, intype)) {
if (ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, intype)) {
ret ivec::trans_add(cx, intype, lhs, rhs);
}
ret trans_vec_add(cx, intype, lhs, rhs);
}
if (is_float) {
ret rslt(cx, cx.build.FAdd(lhs, rhs));
} else { ret rslt(cx, cx.build.Add(lhs, rhs)); }
}
case (ast::sub) {
if (is_float) {
ret rslt(cx, cx.build.FSub(lhs, rhs));
} else { ret rslt(cx, cx.build.Sub(lhs, rhs)); }
}
case (ast::mul) {
if (is_float) {
ret rslt(cx, cx.build.FMul(lhs, rhs));
} else { ret rslt(cx, cx.build.Mul(lhs, rhs)); }
}
case (ast::div) {
if (is_float) { ret rslt(cx, cx.build.FDiv(lhs, rhs)); }
if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype)) {
ret rslt(cx, cx.build.SDiv(lhs, rhs));
} else { ret rslt(cx, cx.build.UDiv(lhs, rhs)); }
}
case (ast::rem) {
if (is_float) { ret rslt(cx, cx.build.FRem(lhs, rhs)); }
if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype)) {
ret rslt(cx, cx.build.SRem(lhs, rhs));
} else { ret rslt(cx, cx.build.URem(lhs, rhs)); }
}
case (ast::bitor) { ret rslt(cx, cx.build.Or(lhs, rhs)); }
case (ast::bitand) { ret rslt(cx, cx.build.And(lhs, rhs)); }
case (ast::bitxor) { ret rslt(cx, cx.build.Xor(lhs, rhs)); }
case (ast::lsl) { ret rslt(cx, cx.build.Shl(lhs, rhs)); }
case (ast::lsr) { ret rslt(cx, cx.build.LShr(lhs, rhs)); }
case (ast::asr) { ret rslt(cx, cx.build.AShr(lhs, rhs)); }
case (_) { ret trans_compare(cx, op, intype, lhs, rhs); }
}
}
fn autoderef(&@block_ctxt cx, ValueRef v, &ty::t t) -> result_t {
let ValueRef v1 = v;
let ty::t t1 = t;
auto ccx = cx.fcx.lcx.ccx;
while (true) {
alt (ty::struct(ccx.tcx, t1)) {
case (ty::ty_box(?mt)) {
auto body =
cx.build.GEP(v1,
~[C_int(0), C_int(abi::box_rc_field_body)]);
t1 = mt.ty;
// Since we're changing levels of box indirection, we may have
// to cast this pointer, since statically-sized tag types have
// different types depending on whether they're behind a box
// or not.
if (!ty::type_has_dynamic_size(ccx.tcx, mt.ty)) {
auto llty = type_of(ccx, cx.sp, mt.ty);
v1 = cx.build.PointerCast(body, T_ptr(llty));
} else { v1 = body; }
}
case (ty::ty_res(?did, ?inner, ?tps)) {
t1 = ty::substitute_type_params(ccx.tcx, tps, inner);
v1 = cx.build.GEP(v1, ~[C_int(0), C_int(1)]);
}
case (ty::ty_tag(?did, ?tps)) {
auto variants = ty::tag_variants(ccx.tcx, did);
if (std::ivec::len(variants) != 1u ||
std::ivec::len(variants.(0).args) != 1u) {
break;
}
t1 = ty::substitute_type_params
(ccx.tcx, tps, variants.(0).args.(0));
if (!ty::type_has_dynamic_size(ccx.tcx, t1)) {
v1 = cx.build.PointerCast
(v1, T_ptr(type_of(ccx, cx.sp, t1)));
}
}
case (_) { break; }
}
v1 = load_if_immediate(cx, v1, t1);
}
ret rec(bcx=cx, val=v1, ty=t1);
}
fn trans_binary(&@block_ctxt cx, ast::binop op, &@ast::expr a, &@ast::expr b)
-> result {
// First couple cases are lazy:
alt (op) {
case (ast::and) {
// Lazy-eval and
auto lhs_expr = trans_expr(cx, a);
auto lhs_res =
autoderef(lhs_expr.bcx, lhs_expr.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, a));
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
auto rhs_expr = trans_expr(rhs_cx, b);
auto rhs_res =
autoderef(rhs_expr.bcx, rhs_expr.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, b));
auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false");
auto lhs_false_res = rslt(lhs_false_cx, C_bool(false));
// The following line ensures that any cleanups for rhs
// are done within the block for rhs. This is necessary
// because and/or are lazy. So the rhs may never execute,
// and the cleanups can't be pushed into later code.
auto rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx);
lhs_res.bcx.build.CondBr(lhs_res.val, rhs_cx.llbb,
lhs_false_cx.llbb);
ret join_results(cx, T_bool(),
~[lhs_false_res, rec(bcx=rhs_bcx,
val=rhs_res.val)]);
}
case (ast::or) {
// Lazy-eval or
auto lhs_expr = trans_expr(cx, a);
auto lhs_res = autoderef(lhs_expr.bcx, lhs_expr.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, a));
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
auto rhs_expr = trans_expr(rhs_cx, b);
auto rhs_res = autoderef(rhs_expr.bcx, rhs_expr.val,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, b));
auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true");
auto lhs_true_res = rslt(lhs_true_cx, C_bool(true));
// see the and case for an explanation
auto rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx);
lhs_res.bcx.build.CondBr(lhs_res.val, lhs_true_cx.llbb,
rhs_cx.llbb);
ret join_results(cx, T_bool(),
~[lhs_true_res, rec(bcx=rhs_bcx,
val=rhs_res.val)]);
}
case (_) {
// Remaining cases are eager:
auto lhs_expr = trans_expr(cx, a);
auto lhty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, a);
auto lhs = autoderef(lhs_expr.bcx, lhs_expr.val, lhty);
auto rhs_expr = trans_expr(lhs.bcx, b);
auto rhty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, b);
auto rhs = autoderef(rhs_expr.bcx, rhs_expr.val, rhty);
ret trans_eager_binop(rhs.bcx, op, lhs.ty,
lhs.val, rhs.val);
}
}
}
fn join_results(&@block_ctxt parent_cx, TypeRef t, &result[] ins) -> result {
let result[] live = ~[];
let ValueRef[] vals = ~[];
let BasicBlockRef[] bbs = ~[];
for (result r in ins) {
if (!is_terminated(r.bcx)) {
live += ~[r];
vals += ~[r.val];
bbs += ~[r.bcx.llbb];
}
}
alt (std::ivec::len[result](live)) {
case (0u) {
// No incoming edges are live, so we're in dead-code-land.
// Arbitrarily pick the first dead edge, since the caller
// is just going to propagate it outward.
assert (std::ivec::len[result](ins) >= 1u);
ret ins.(0);
}
case (_) {/* fall through */ }
}
// We have >1 incoming edges. Make a join block and br+phi them into it.
auto join_cx = new_sub_block_ctxt(parent_cx, "join");
for (result r in live) { r.bcx.build.Br(join_cx.llbb); }
auto phi = join_cx.build.Phi(t, vals, bbs);
ret rslt(join_cx, phi);
}
fn join_branches(&@block_ctxt parent_cx, &result[] ins) -> @block_ctxt {
auto out = new_sub_block_ctxt(parent_cx, "join");
for (result r in ins) {
if (!is_terminated(r.bcx)) { r.bcx.build.Br(out.llbb); }
}
ret out;
}
tag out_method { return; save_in(ValueRef); }
fn trans_if(&@block_ctxt cx, &@ast::expr cond, &ast::block thn,
&option::t[@ast::expr] els, ast::node_id id, &out_method output)
-> result {
auto cond_res = trans_expr(cx, cond);
auto then_cx = new_scope_block_ctxt(cx, "then");
auto then_res = trans_block(then_cx, thn, output);
auto else_cx = new_scope_block_ctxt(cx, "else");
auto else_res = alt (els) {
case (some(?elexpr)) {
alt (elexpr.node) {
case (ast::expr_if(_, _, _)) {
// Synthesize a block here to act as the else block
// containing an if expression. Needed in order for the
// else scope to behave like a normal block scope. A tad
// ugly.
auto elseif_blk = ast::block_from_expr(elexpr);
trans_block(else_cx, elseif_blk, output)
}
case (ast::expr_block(?blk)) {
// Calling trans_block directly instead of trans_expr
// because trans_expr will create another scope block
// context for the block, but we've already got the
// 'else' context
trans_block(else_cx, blk, output)
}
}
}
case (_) { rslt(else_cx, C_nil()) }
};
cond_res.bcx.build.CondBr(cond_res.val, then_cx.llbb, else_cx.llbb);
ret rslt(join_branches(cx, ~[then_res, else_res]), C_nil());
}
fn trans_for(&@block_ctxt cx, &@ast::local local, &@ast::expr seq,
&ast::block body) -> result {
// FIXME: We bind to an alias here to avoid a segfault... this is
// obviously a bug.
fn inner(&@block_ctxt cx, @ast::local local, ValueRef curr, ty::t t,
&ast::block body, @block_ctxt outer_next_cx) -> result {
auto next_cx = new_sub_block_ctxt(cx, "next");
auto scope_cx =
new_loop_scope_block_ctxt(cx, option::some[@block_ctxt](next_cx),
outer_next_cx, "for loop scope");
cx.build.Br(scope_cx.llbb);
auto local_res = alloc_local(scope_cx, local);
auto bcx = copy_val(local_res.bcx, INIT, local_res.val, curr, t).bcx;
add_clean(scope_cx, local_res.val, t);
bcx = trans_block(bcx, body, return).bcx;
if (!bcx.build.is_terminated()) {
bcx.build.Br(next_cx.llbb);
// otherwise, this code is unreachable
}
ret rslt(next_cx, C_nil());
}
auto next_cx = new_sub_block_ctxt(cx, "next");
auto seq_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, seq);
auto seq_res = trans_expr(cx, seq);
auto it =
iter_sequence(seq_res.bcx, seq_res.val, seq_ty,
bind inner(_, local, _, _, body, next_cx));
it.bcx.build.Br(next_cx.llbb);
ret rslt(next_cx, it.val);
}
// Iterator translation
// Searches through part of the AST for all references to locals or
// upvars in this frame and returns the list of definition IDs thus found.
// Since we want to be able to collect upvars in some arbitrary piece
// of the AST, we take a walker function that we invoke with a visitor
// in order to start the search.
fn collect_upvars(&@block_ctxt cx, &fn (&walk::ast_visitor) walker,
ast::node_id[] initial_decls) -> ast::node_id[] {
type env =
@rec(mutable ast::node_id[] refs,
hashmap[ast::node_id, ()] decls,
resolve::def_map def_map,
session::session sess);
fn walk_fn(env e, &ast::_fn f, &ast::ty_param[] tps, &span sp,
&ast::fn_ident i, ast::node_id nid) {
for (ast::arg a in f.decl.inputs) { e.decls.insert(a.id, ()); }
}
fn walk_expr(env e, &@ast::expr expr) {
alt (expr.node) {
case (ast::expr_path(?path)) {
if (! e.def_map.contains_key(expr.id)) {
e.sess.span_fatal(expr.span,
"internal error in collect_upvars");
}
alt (e.def_map.get(expr.id)) {
case (ast::def_arg(?did)) { e.refs += ~[did._1]; }
case (ast::def_local(?did)) { e.refs += ~[did._1]; }
case (ast::def_binding(?did)) { e.refs += ~[did._1]; }
case (_) { /* no-op */ }
}
}
case (_) { }
}
}
fn walk_local(env e, &@ast::local local) {
e.decls.insert(local.node.id, ());
}
fn walk_pat(env e, &@ast::pat p) {
alt (p.node) {
case (ast::pat_bind(_)) {
e.decls.insert(p.id, ());
}
case (_) {}
}
}
let hashmap[ast::node_id, ()] decls = new_int_hash[()]();
for (ast::node_id decl in initial_decls) { decls.insert(decl, ()); }
let env e =
@rec(mutable refs=~[],
decls=decls,
def_map=cx.fcx.lcx.ccx.tcx.def_map,
sess=cx.fcx.lcx.ccx.tcx.sess);
auto visitor =
@rec(visit_fn_pre=bind walk_fn(e, _, _, _, _, _),
visit_local_pre=bind walk_local(e, _),
visit_expr_pre=bind walk_expr(e, _),
visit_pat_pre=bind walk_pat(e, _)
with walk::default_visitor());
walker(*visitor);
// Calculate (refs - decls). This is the set of captured upvars.
let ast::node_id[] result = ~[];
for (ast::node_id ref_id_ in e.refs) {
auto ref_id = ref_id_;
if (!decls.contains_key(ref_id)) { result += ~[ref_id]; }
}
ret result;
}
// Finds the ValueRef associated with a variable in a function
// context. It checks locals, upvars, and args.
fn find_variable(&@fn_ctxt fcx, ast::node_id nid) -> ValueRef {
ret
alt (fcx.lllocals.find(nid)) {
case (none) {
alt (fcx.llupvars.find(nid)) {
case (none) {
alt (fcx.llargs.find(nid)) {
case (some(?llval)) { llval }
case (_) {
fcx.lcx.ccx.sess.bug("unbound var \
in build_environment " + int::str(nid))
}
}
}
case (some(?llval)) { llval }
}
}
case (some(?llval)) { llval }
}
}
// Given a block context and a list of upvars, construct a closure that
// contains pointers to all of the upvars and all of the tydescs in
// scope. Return the ValueRef and TypeRef corresponding to the closure.
fn build_environment(&@block_ctxt cx, &ast::node_id[] upvars) ->
tup(ValueRef, TypeRef) {
auto upvar_count = std::ivec::len(upvars);
auto has_iterbody = !option::is_none(cx.fcx.lliterbody);
if (has_iterbody) { upvar_count += 1u; }
auto llbindingsptr;
if (upvar_count > 0u) {
// Gather up the upvars.
let ValueRef[] llbindings = ~[];
let TypeRef[] llbindingtys = ~[];
if (has_iterbody) {
llbindings += ~[option::get(cx.fcx.lliterbody)];
llbindingtys += ~[val_ty(llbindings.(0))];
}
for (ast::node_id nid in upvars) {
auto llbinding = find_variable(cx.fcx, nid);
llbindings += ~[llbinding];
llbindingtys += ~[val_ty(llbinding)];
}
// Create an array of bindings and copy in aliases to the upvars.
llbindingsptr = alloca(cx, T_struct(llbindingtys));
auto i = 0u;
while (i < upvar_count) {
auto llbindingptr =
cx.build.GEP(llbindingsptr, ~[C_int(0), C_int(i as int)]);
cx.build.Store(llbindings.(i), llbindingptr);
i += 1u;
}
} else {
// Null bindings.
llbindingsptr = C_null(T_ptr(T_i8()));
}
// Create an environment and populate it with the bindings.
auto tydesc_count = std::ivec::len[ValueRef](cx.fcx.lltydescs);
auto llenvptrty =
T_closure_ptr(*cx.fcx.lcx.ccx, T_ptr(T_nil()),
val_ty(llbindingsptr), tydesc_count);
auto llenvptr = alloca(cx, llvm::LLVMGetElementType(llenvptrty));
auto llbindingsptrptr =
cx.build.GEP(llenvptr,
~[C_int(0), C_int(abi::box_rc_field_body), C_int(2)]);
cx.build.Store(llbindingsptr, llbindingsptrptr);
// Copy in our type descriptors, in case the iterator body needs to refer
// to them.
auto lltydescsptr =
cx.build.GEP(llenvptr,
~[C_int(0), C_int(abi::box_rc_field_body),
C_int(abi::closure_elt_ty_params)]);
auto i = 0u;
while (i < tydesc_count) {
auto lltydescptr =
cx.build.GEP(lltydescsptr, ~[C_int(0), C_int(i as int)]);
cx.build.Store(cx.fcx.lltydescs.(i), lltydescptr);
i += 1u;
}
ret tup(llenvptr, llenvptrty);
}
// Given an enclosing block context, a new function context, a closure type,
// and a list of upvars, generate code to load and populate the environment
// with the upvars and type descriptors.
fn load_environment(&@block_ctxt cx, &@fn_ctxt fcx,
TypeRef llenvptrty, &ast::node_id[] upvars) {
auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
// Populate the upvars from the environment.
auto llremoteenvptr =
copy_args_bcx.build.PointerCast(fcx.llenv, llenvptrty);
auto llremotebindingsptrptr =
copy_args_bcx.build.GEP(llremoteenvptr,
~[C_int(0), C_int(abi::box_rc_field_body),
C_int(abi::closure_elt_bindings)]);
auto llremotebindingsptr =
copy_args_bcx.build.Load(llremotebindingsptrptr);
auto base = 0u;
auto i = 0u;
auto end = std::ivec::len(upvars);
if (!option::is_none(cx.fcx.lliterbody)) {
base += 1u;
auto lliterbodyptr =
copy_args_bcx.build.GEP(llremotebindingsptr,
~[C_int(0), C_int(0)]);
auto lliterbody = copy_args_bcx.build.Load(lliterbodyptr);
fcx.lliterbody = some(lliterbody);
}
while (i < end) {
auto upvar_id = upvars.(i);
auto llupvarptrptr =
copy_args_bcx.build.GEP(llremotebindingsptr,
~[C_int(0), C_int(base+i as int)]);
auto llupvarptr = copy_args_bcx.build.Load(llupvarptrptr);
fcx.llupvars.insert(upvar_id, llupvarptr);
i += 1u;
}
// Populate the type parameters from the environment.
auto llremotetydescsptr =
copy_args_bcx.build.GEP(llremoteenvptr,
~[C_int(0), C_int(abi::box_rc_field_body),
C_int(abi::closure_elt_ty_params)]);
auto tydesc_count = std::ivec::len(cx.fcx.lltydescs);
i = 0u;
while (i < tydesc_count) {
auto llremotetydescptr =
copy_args_bcx.build.GEP(llremotetydescsptr,
~[C_int(0), C_int(i as int)]);
auto llremotetydesc = copy_args_bcx.build.Load(llremotetydescptr);
fcx.lltydescs += ~[llremotetydesc];
i += 1u;
}
}
fn trans_for_each(&@block_ctxt cx, &@ast::local local, &@ast::expr seq,
&ast::block body) -> result {
/*
* The translation is a little .. complex here. Code like:
*
* let ty1 p = ...;
*
* let ty1 q = ...;
*
* foreach (ty v in foo(a,b)) { body(p,q,v) }
*
*
* Turns into a something like so (C/Rust mishmash):
*
* type env = { *ty1 p, *ty2 q, ... };
*
* let env e = { &p, &q, ... };
*
* fn foreach123_body(env* e, ty v) { body(*(e->p),*(e->q),v) }
*
* foo([foreach123_body, env*], a, b);
*
*/
// Step 1: walk body and figure out which references it makes
// escape. This could be determined upstream, and probably ought
// to be so, eventualy.
auto lcx = cx.fcx.lcx;
// FIXME: possibly support alias-mode here?
auto decl_ty = node_id_type(lcx.ccx, local.node.id);
auto decl_id = local.node.id;
auto upvars = collect_upvars(cx, bind walk::walk_block(_, body),
~[decl_id]);
auto environment_data = build_environment(cx, upvars);
auto llenvptr = environment_data._0;
auto llenvptrty = environment_data._1;
// Step 2: Declare foreach body function.
let str s =
mangle_internal_name_by_path_and_seq(lcx.ccx, lcx.path, "foreach");
// The 'env' arg entering the body function is a fake env member (as in
// the env-part of the normal rust calling convention) that actually
// points to a stack allocated env in this frame. We bundle that env
// pointer along with the foreach-body-fn pointer into a 'normal' fn pair
// and pass it in as a first class fn-arg to the iterator.
auto iter_body_llty =
type_of_fn_full(lcx.ccx, cx.sp, ast::proto_fn, false,
~[rec(mode=ty::mo_alias(false), ty=decl_ty)],
ty::mk_nil(lcx.ccx.tcx), 0u);
let ValueRef lliterbody =
decl_internal_fastcall_fn(lcx.ccx.llmod, s, iter_body_llty);
auto fcx = new_fn_ctxt(lcx, cx.sp, lliterbody);
// Generate code to load the environment out of the
// environment pointer.
load_environment(cx, fcx, llenvptrty, upvars);
// Add an upvar for the loop variable alias.
fcx.llupvars.insert(decl_id, llvm::LLVMGetParam(fcx.llfn, 3u));
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto r = trans_block(bcx, body, return);
finish_fn(fcx, lltop);
if (!r.bcx.build.is_terminated()) {
// if terminated is true, no need for the ret-fail
r.bcx.build.RetVoid();
}
// Step 3: Call iter passing [lliterbody, llenv], plus other args.
alt (seq.node) {
case (ast::expr_call(?f, ?args)) {
auto pair = create_real_fn_pair(cx, iter_body_llty,
lliterbody, llenvptr);
r = trans_call(cx, f, some[ValueRef](cx.build.Load(pair)),
args, seq.id);
ret rslt(r.bcx, C_nil());
}
}
}
fn trans_while(&@block_ctxt cx, &@ast::expr cond, &ast::block body) ->
result {
auto cond_cx = new_scope_block_ctxt(cx, "while cond");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto body_cx =
new_loop_scope_block_ctxt(cx, option::none[@block_ctxt], next_cx,
"while loop body");
auto body_res = trans_block(body_cx, body, return);
auto cond_res = trans_expr(cond_cx, cond);
body_res.bcx.build.Br(cond_cx.llbb);
auto cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx);
cond_bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb);
cx.build.Br(cond_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn trans_do_while(&@block_ctxt cx, &ast::block body, &@ast::expr cond) ->
result {
auto next_cx = new_sub_block_ctxt(cx, "next");
auto body_cx =
new_loop_scope_block_ctxt(cx, option::none[@block_ctxt], next_cx,
"do-while loop body");
auto body_res = trans_block(body_cx, body, return);
auto cond_res = trans_expr(body_res.bcx, cond);
cond_res.bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb);
cx.build.Br(body_cx.llbb);
ret rslt(next_cx, body_res.val);
}
type generic_info =
rec(ty::t item_type,
(option::t[@tydesc_info])[] static_tis,
ValueRef[] tydescs);
type lval_result =
rec(result res,
bool is_mem,
option::t[generic_info] generic,
option::t[ValueRef] llobj,
option::t[ty::t] method_ty);
fn lval_mem(&@block_ctxt cx, ValueRef val) -> lval_result {
ret rec(res=rslt(cx, val),
is_mem=true,
generic=none[generic_info],
llobj=none[ValueRef],
method_ty=none[ty::t]);
}
fn lval_val(&@block_ctxt cx, ValueRef val) -> lval_result {
ret rec(res=rslt(cx, val),
is_mem=false,
generic=none[generic_info],
llobj=none[ValueRef],
method_ty=none[ty::t]);
}
fn trans_external_path(&@block_ctxt cx, &ast::def_id did,
&ty::ty_param_count_and_ty tpt) -> lval_result {
auto lcx = cx.fcx.lcx;
auto name = csearch::get_symbol(lcx.ccx.sess.get_cstore(), did);
auto v =
get_extern_const(lcx.ccx.externs, lcx.ccx.llmod, name,
type_of_ty_param_count_and_ty(lcx, cx.sp, tpt));
ret lval_val(cx, v);
}
fn lval_generic_fn(&@block_ctxt cx, &ty::ty_param_count_and_ty tpt,
&ast::def_id fn_id, ast::node_id id) -> lval_result {
auto lv;
if (fn_id._0 == ast::local_crate) {
// Internal reference.
assert (cx.fcx.lcx.ccx.fn_pairs.contains_key(fn_id._1));
lv = lval_val(cx, cx.fcx.lcx.ccx.fn_pairs.get(fn_id._1));
} else {
// External reference.
lv = trans_external_path(cx, fn_id, tpt);
}
auto tys = ty::node_id_to_type_params(cx.fcx.lcx.ccx.tcx, id);
if (std::ivec::len[ty::t](tys) != 0u) {
auto bcx = lv.res.bcx;
let ValueRef[] tydescs = ~[];
let (option::t[@tydesc_info])[] tis = ~[];
for (ty::t t in tys) {
// TODO: Doesn't always escape.
auto ti = none[@tydesc_info];
auto td = get_tydesc(bcx, t, true, ti);
tis += ~[ti];
bcx = td.bcx;
tydescs += ~[td.val];
}
auto gen = rec(item_type=tpt._1, static_tis=tis, tydescs=tydescs);
lv = rec(res=rslt(bcx, lv.res.val), generic=some[generic_info](gen)
with lv);
}
ret lv;
}
fn lookup_discriminant(&@local_ctxt lcx, &ast::def_id tid, &ast::def_id vid)
-> ValueRef {
alt (lcx.ccx.discrims.find(vid._1)) {
case (none) {
// It's an external discriminant that we haven't seen yet.
assert (vid._0 != ast::local_crate);
auto sym = csearch::get_symbol(lcx.ccx.sess.get_cstore(), vid);
auto gvar =
llvm::LLVMAddGlobal(lcx.ccx.llmod, T_int(), str::buf(sym));
llvm::LLVMSetLinkage(gvar,
lib::llvm::LLVMExternalLinkage as
llvm::Linkage);
llvm::LLVMSetGlobalConstant(gvar, True);
lcx.ccx.discrims.insert(vid._1, gvar);
ret gvar;
}
case (some(?llval)) { ret llval; }
}
}
fn trans_path(&@block_ctxt cx, &ast::path p, ast::node_id id) -> lval_result {
auto ccx = cx.fcx.lcx.ccx;
alt (cx.fcx.lcx.ccx.tcx.def_map.find(id)) {
case (some(ast::def_arg(?did))) {
alt (cx.fcx.llargs.find(did._1)) {
case (none) {
assert (cx.fcx.llupvars.contains_key(did._1));
ret lval_mem(cx, cx.fcx.llupvars.get(did._1));
}
case (some(?llval)) { ret lval_mem(cx, llval); }
}
}
case (some(ast::def_local(?did))) {
alt (cx.fcx.lllocals.find(did._1)) {
case (none) {
assert (cx.fcx.llupvars.contains_key(did._1));
ret lval_mem(cx, cx.fcx.llupvars.get(did._1));
}
case (some(?llval)) { ret lval_mem(cx, llval); }
}
}
case (some(ast::def_binding(?did))) {
alt (cx.fcx.lllocals.find(did._1)) {
case (none) {
assert (cx.fcx.llupvars.contains_key(did._1));
ret lval_mem(cx, cx.fcx.llupvars.get(did._1));
}
case (some(?llval)) { ret lval_mem(cx, llval); }
}
}
case (some(ast::def_obj_field(?did))) {
assert (cx.fcx.llobjfields.contains_key(did._1));
ret lval_mem(cx, cx.fcx.llobjfields.get(did._1));
}
case (some(ast::def_fn(?did, _))) {
auto tyt = ty::lookup_item_type(ccx.tcx, did);
ret lval_generic_fn(cx, tyt, did, id);
}
case (some(ast::def_variant(?tid, ?vid))) {
auto v_tyt = ty::lookup_item_type(ccx.tcx, vid);
alt (ty::struct(ccx.tcx, v_tyt._1)) {
case (ty::ty_fn(_, _, _, _, _)) {
// N-ary variant.
ret lval_generic_fn(cx, v_tyt, vid, id);
}
case (_) {
// Nullary variant.
auto tag_ty = node_id_type(ccx, id);
auto alloc_result = alloc_ty(cx, tag_ty);
auto lltagblob = alloc_result.val;
auto lltagty = type_of_tag(ccx, p.span, tid, tag_ty);
auto bcx = alloc_result.bcx;
auto lltagptr = bcx.build.PointerCast
(lltagblob, T_ptr(lltagty));
if (std::ivec::len(ty::tag_variants(ccx.tcx, tid))
!= 1u) {
auto lldiscrim_gv =
lookup_discriminant(bcx.fcx.lcx, tid, vid);
auto lldiscrim = bcx.build.Load(lldiscrim_gv);
auto lldiscrimptr = bcx.build.GEP
(lltagptr, ~[C_int(0), C_int(0)]);
bcx.build.Store(lldiscrim, lldiscrimptr);
}
ret lval_val(bcx, lltagptr);
}
}
}
case (some(ast::def_const(?did))) {
// TODO: externals
assert (ccx.consts.contains_key(did._1));
ret lval_mem(cx, ccx.consts.get(did._1));
}
case (some(ast::def_native_fn(?did))) {
auto tyt = ty::lookup_item_type(ccx.tcx, did);
ret lval_generic_fn(cx, tyt, did, id);
}
case (_) {
ccx.sess.span_unimpl(cx.sp, "def variant in trans");
}
}
}
fn trans_field(&@block_ctxt cx, &span sp, ValueRef v, &ty::t t0,
&ast::ident field, ast::node_id id) -> lval_result {
auto r = autoderef(cx, v, t0);
auto t = r.ty;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_tup(_)) {
let uint ix = ty::field_num(cx.fcx.lcx.ccx.sess, sp, field);
auto v = GEP_tup_like(r.bcx, t, r.val, ~[0, ix as int]);
ret lval_mem(v.bcx, v.val);
}
case (ty::ty_rec(?fields)) {
let uint ix =
ty::field_idx(cx.fcx.lcx.ccx.sess, sp, field, fields);
auto v = GEP_tup_like(r.bcx, t, r.val, ~[0, ix as int]);
ret lval_mem(v.bcx, v.val);
}
case (ty::ty_obj(?methods)) {
let uint ix =
ty::method_idx(cx.fcx.lcx.ccx.sess, sp, field, methods);
auto vtbl =
r.bcx.build.GEP(r.val,
~[C_int(0), C_int(abi::obj_field_vtbl)]);
vtbl = r.bcx.build.Load(vtbl);
auto vtbl_type = T_ptr(T_array(T_ptr(T_nil()), ix + 2u));
vtbl = cx.build.PointerCast(vtbl, vtbl_type);
// +1 because slot #0 contains the destructor
auto v = r.bcx.build.GEP(vtbl,
~[C_int(0), C_int(ix + 1u as int)]);
let ty::t fn_ty =
ty::method_ty_to_fn_ty(cx.fcx.lcx.ccx.tcx, methods.(ix));
auto tcx = cx.fcx.lcx.ccx.tcx;
auto ll_fn_ty = type_of_fn_full(cx.fcx.lcx.ccx, sp,
ty::ty_fn_proto(tcx, fn_ty),
true,
ty::ty_fn_args(tcx, fn_ty),
ty::ty_fn_ret(tcx, fn_ty),
0u);
v = r.bcx.build.PointerCast(v, T_ptr(T_ptr(ll_fn_ty)));
auto lvo = lval_mem(r.bcx, v);
ret rec(llobj=some[ValueRef](r.val), method_ty=some[ty::t](fn_ty)
with lvo);
}
case (_) {
cx.fcx.lcx.ccx.sess.unimpl("field variant in trans_field");
}
}
}
fn trans_index(&@block_ctxt cx, &span sp, &@ast::expr base, &@ast::expr idx,
ast::node_id id) -> lval_result {
// Is this an interior vector?
auto base_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, base);
auto exp = trans_expr(cx, base);
auto lv = autoderef(exp.bcx, exp.val, base_ty);
auto base_ty_no_boxes = lv.ty;
auto is_interior =
ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, base_ty_no_boxes);
auto ix = trans_expr(lv.bcx, idx);
auto v = lv.val;
auto bcx = ix.bcx;
// Cast to an LLVM integer. Rust is less strict than LLVM in this regard.
auto ix_val;
auto ix_size = llsize_of_real(cx.fcx.lcx.ccx, val_ty(ix.val));
auto int_size = llsize_of_real(cx.fcx.lcx.ccx, T_int());
if (ix_size < int_size) {
ix_val = bcx.build.ZExt(ix.val, T_int());
} else if (ix_size > int_size) {
ix_val = bcx.build.Trunc(ix.val, T_int());
} else { ix_val = ix.val; }
auto unit_ty = node_id_type(cx.fcx.lcx.ccx, id);
auto unit_sz = size_of(bcx, unit_ty);
bcx = unit_sz.bcx;
maybe_name_value(cx.fcx.lcx.ccx, unit_sz.val, "unit_sz");
auto scaled_ix = bcx.build.Mul(ix_val, unit_sz.val);
maybe_name_value(cx.fcx.lcx.ccx, scaled_ix, "scaled_ix");
auto interior_len_and_data;
if (is_interior) {
auto rslt = ivec::get_len_and_data(bcx, v, unit_ty);
interior_len_and_data = some(tup(rslt._0, rslt._1));
bcx = rslt._2;
} else { interior_len_and_data = none; }
auto lim;
alt (interior_len_and_data) {
case (some(?lad)) { lim = lad._0; }
case (none) {
lim = bcx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_fill)]);
lim = bcx.build.Load(lim);
}
}
auto bounds_check = bcx.build.ICmp(lib::llvm::LLVMIntULT, scaled_ix, lim);
auto fail_cx = new_sub_block_ctxt(bcx, "fail");
auto next_cx = new_sub_block_ctxt(bcx, "next");
bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb);
// fail: bad bounds check.
trans_fail(fail_cx, some[span](sp), "bounds check");
auto body;
alt (interior_len_and_data) {
case (some(?lad)) { body = lad._1; }
case (none) {
body =
next_cx.build.GEP(v,
~[C_int(0), C_int(abi::vec_elt_data),
C_int(0)]);
}
}
auto elt;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
body = next_cx.build.PointerCast(body, T_ptr(T_i8()));
elt = next_cx.build.GEP(body, ~[scaled_ix]);
} else {
elt = next_cx.build.GEP(body, ~[ix_val]);
// We're crossing a box boundary here, so we may need to pointer cast.
auto llunitty = type_of(next_cx.fcx.lcx.ccx, sp, unit_ty);
elt = next_cx.build.PointerCast(elt, T_ptr(llunitty));
}
ret lval_mem(next_cx, elt);
}
// The additional bool returned indicates whether it's mem (that is
// represented as an alloca or heap, hence needs a 'load' to be used as an
// immediate).
fn trans_lval_gen(&@block_ctxt cx, &@ast::expr e) -> lval_result {
alt (e.node) {
case (ast::expr_path(?p)) { ret trans_path(cx, p, e.id); }
case (ast::expr_field(?base, ?ident)) {
auto r = trans_expr(cx, base);
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, base);
ret trans_field(r.bcx, e.span, r.val, t, ident, e.id);
}
case (ast::expr_index(?base, ?idx)) {
ret trans_index(cx, e.span, base, idx, e.id);
}
case (ast::expr_unary(ast::deref, ?base)) {
auto ccx = cx.fcx.lcx.ccx;
auto sub = trans_expr(cx, base);
auto t = ty::expr_ty(ccx.tcx, base);
auto val = alt (ty::struct(ccx.tcx, t)) {
case (ty::ty_box(_)) {
sub.bcx.build.InBoundsGEP
(sub.val, ~[C_int(0), C_int(abi::box_rc_field_body)])
}
case (ty::ty_res(_, _, _)) {
sub.bcx.build.InBoundsGEP(sub.val, ~[C_int(0), C_int(1)])
}
case (ty::ty_tag(_, _)) {
auto ety = ty::expr_ty(ccx.tcx, e);
auto ellty;
if (ty::type_has_dynamic_size(ccx.tcx, ety)) {
ellty = T_typaram_ptr(ccx.tn);
} else {
ellty = T_ptr(type_of(ccx, e.span, ety));
};
sub.bcx.build.PointerCast(sub.val, ellty)
}
case (ty::ty_ptr(_)) { sub.val }
};
ret lval_mem(sub.bcx, val);
}
case (ast::expr_self_method(?ident)) {
alt ({ cx.fcx.llself }) {
case (some(?pair)) {
auto r = pair.v;
auto t = pair.t;
ret trans_field(cx, e.span, r, t, ident, e.id);
}
case (_) {
// Shouldn't happen.
cx.fcx.lcx.ccx.sess.bug("trans_lval called on " +
"expr_self_method in " +
"a context without llself");
}
}
}
case (_) {
ret rec(res=trans_expr(cx, e),
is_mem=false,
generic=none,
llobj=none,
method_ty=none);
}
}
}
fn trans_lval(&@block_ctxt cx, &@ast::expr e) -> lval_result {
auto lv = trans_lval_gen(cx, e);
alt (lv.generic) {
case (some(?gi)) {
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
auto n_args =
std::ivec::len(ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, t));
auto args = std::ivec::init_elt(none[@ast::expr], n_args);
auto bound = trans_bind_1(lv.res.bcx, e, lv, args, e.id);
ret lval_val(bound.bcx, bound.val);
}
case (none) {
ret lv;
}
}
}
fn int_cast(&@block_ctxt bcx, TypeRef lldsttype, TypeRef llsrctype,
ValueRef llsrc, bool signed) -> ValueRef {
if (llvm::LLVMGetIntTypeWidth(lldsttype) >
llvm::LLVMGetIntTypeWidth(llsrctype)) {
if (signed) {
// Widening signed cast.
ret bcx.build.SExtOrBitCast(llsrc, lldsttype);
}
// Widening unsigned cast.
ret bcx.build.ZExtOrBitCast(llsrc, lldsttype);
}
ret bcx.build.TruncOrBitCast(llsrc, lldsttype);
}
fn trans_cast(&@block_ctxt cx, &@ast::expr e, ast::node_id id) -> result {
auto e_res = trans_expr(cx, e);
auto llsrctype = val_ty(e_res.val);
auto t = node_id_type(cx.fcx.lcx.ccx, id);
auto lldsttype = type_of(cx.fcx.lcx.ccx, e.span, t);
if (!ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) {
// TODO: native-to-native casts
if (ty::type_is_native(cx.fcx.lcx.ccx.tcx,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) {
e_res =
rslt(e_res.bcx,
e_res.bcx.build.PtrToInt(e_res.val, lldsttype));
} else if (ty::type_is_native(cx.fcx.lcx.ccx.tcx, t)) {
e_res =
rslt(e_res.bcx,
e_res.bcx.build.IntToPtr(e_res.val, lldsttype));
} else {
e_res =
rslt(e_res.bcx,
int_cast(e_res.bcx, lldsttype, llsrctype, e_res.val,
ty::type_is_signed(cx.fcx.lcx.ccx.tcx, t)));
}
}
else {
if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) {
if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx,
ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) {
e_res = rslt(e_res.bcx,
e_res.bcx.build.SIToFP(e_res.val, lldsttype));
}
else {
e_res = rslt(e_res.bcx,
e_res.bcx.build.UIToFP(e_res.val, lldsttype));
}
}
else { cx.fcx.lcx.ccx.sess.unimpl("fp cast"); }
}
ret e_res;
}
fn trans_bind_thunk(&@local_ctxt cx, &span sp, &ty::t incoming_fty,
&ty::t outgoing_fty, &(option::t[@ast::expr])[] args,
&ty::t closure_ty, &ty::t[] bound_tys,
uint ty_param_count) -> ValueRef {
// Here we're not necessarily constructing a thunk in the sense of
// "function with no arguments". The result of compiling 'bind f(foo,
// bar, baz)' would be a thunk that, when called, applies f to those
// arguments and returns the result. But we're stretching the meaning of
// the word "thunk" here to also mean the result of compiling, say, 'bind
// f(foo, _, baz)', or any other bind expression that binds f and leaves
// some (or all) of the arguments unbound.
// Here, 'incoming_fty' is the type of the entire bind expression, while
// 'outgoing_fty' is the type of the function that is having some of its
// arguments bound. If f is a function that takes three arguments of type
// int and returns int, and we're translating, say, 'bind f(3, _, 5)',
// then outgoing_fty is the type of f, which is (int, int, int) -> int,
// and incoming_fty is the type of 'bind f(3, _, 5)', which is int -> int.
// Once translated, the entire bind expression will be the call f(foo,
// bar, baz) wrapped in a (so-called) thunk that takes 'bar' as its
// argument and that has bindings of 'foo' to 3 and 'baz' to 5 and a
// pointer to 'f' all saved in its environment. So, our job is to
// construct and return that thunk.
// Give the thunk a name, type, and value.
let str s =
mangle_internal_name_by_path_and_seq(cx.ccx, cx.path, "thunk");
let TypeRef llthunk_ty =
get_pair_fn_ty(type_of(cx.ccx, sp, incoming_fty));
let ValueRef llthunk =
decl_internal_fastcall_fn(cx.ccx.llmod, s, llthunk_ty);
// Create a new function context and block context for the thunk, and hold
// onto a pointer to the first block in the function for later use.
auto fcx = new_fn_ctxt(cx, sp, llthunk);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
// Since we might need to construct derived tydescs that depend on
// our bound tydescs, we need to load tydescs out of the environment
// before derived tydescs are constructed. To do this, we load them
// in the copy_args block.
auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
// The 'llenv' that will arrive in the thunk we're creating is an
// environment that will contain the values of its arguments and a pointer
// to the original function. So, let's create one of those:
// The llenv pointer needs to be the correct size. That size is
// 'closure_ty', which was determined by trans_bind.
auto llclosure_ptr_ty =
type_of(cx.ccx, sp, ty::mk_imm_box(cx.ccx.tcx, closure_ty));
auto llclosure = copy_args_bcx.build.PointerCast(fcx.llenv,
llclosure_ptr_ty);
// "target", in this context, means the function that's having some of its
// arguments bound and that will be called inside the thunk we're
// creating. (In our running example, target is the function f.) Pick
// out the pointer to the target function from the environment.
auto lltarget =
GEP_tup_like(bcx, closure_ty, llclosure,
~[0, abi::box_rc_field_body, abi::closure_elt_target]);
bcx = lltarget.bcx;
// And then, pick out the target function's own environment. That's what
// we'll use as the environment the thunk gets.
auto lltargetclosure =
bcx.build.GEP(lltarget.val, ~[C_int(0), C_int(abi::fn_field_box)]);
lltargetclosure = bcx.build.Load(lltargetclosure);
// Get f's return type, which will also be the return type of the entire
// bind expression.
auto outgoing_ret_ty = ty::ty_fn_ret(cx.ccx.tcx, outgoing_fty);
// Get the types of the arguments to f.
auto outgoing_args = ty::ty_fn_args(cx.ccx.tcx, outgoing_fty);
// The 'llretptr' that will arrive in the thunk we're creating also needs
// to be the correct size. Cast it to the size of f's return type, if
// necessary.
auto llretptr = fcx.llretptr;
if (ty::type_has_dynamic_size(cx.ccx.tcx, outgoing_ret_ty)) {
llretptr = bcx.build.PointerCast(llretptr, T_typaram_ptr(cx.ccx.tn));
}
// Set up the three implicit arguments to the thunk.
let ValueRef[] llargs = ~[llretptr, fcx.lltaskptr, lltargetclosure];
// Copy in the type parameters.
let uint i = 0u;
while (i < ty_param_count) {
auto lltyparam_ptr =
GEP_tup_like(copy_args_bcx, closure_ty, llclosure,
~[0, abi::box_rc_field_body,
abi::closure_elt_ty_params, i as int]);
copy_args_bcx = lltyparam_ptr.bcx;
auto td = copy_args_bcx.build.Load(lltyparam_ptr.val);
llargs += ~[td];
fcx.lltydescs += ~[td];
i += 1u;
}
let uint a = 3u; // retptr, task ptr, env come first
let int b = 0;
let uint outgoing_arg_index = 0u;
let TypeRef[] llout_arg_tys =
type_of_explicit_args(cx.ccx, sp, outgoing_args);
for (option::t[@ast::expr] arg in args) {
auto out_arg = outgoing_args.(outgoing_arg_index);
auto llout_arg_ty = llout_arg_tys.(outgoing_arg_index);
alt (arg) {
// Arg provided at binding time; thunk copies it from
// closure.
case (some(?e)) {
auto e_ty = ty::expr_ty(cx.ccx.tcx, e);
auto bound_arg =
GEP_tup_like(bcx, closure_ty, llclosure,
~[0, abi::box_rc_field_body,
abi::closure_elt_bindings, b]);
bcx = bound_arg.bcx;
auto val = bound_arg.val;
if (out_arg.mode == ty::mo_val) {
if (type_is_immediate(cx.ccx, e_ty)) {
val = bcx.build.Load(val);
bcx = copy_ty(bcx, val, e_ty).bcx;
} else {
bcx = copy_ty(bcx, val, e_ty).bcx;
val = bcx.build.Load(val);
}
}
// If the type is parameterized, then we need to cast the
// type we actually have to the parameterized out type.
if (ty::type_contains_params(cx.ccx.tcx, out_arg.ty)) {
// FIXME: (#642) This works for boxes and alias params
// but does not work for bare functions.
val = bcx.build.PointerCast(val, llout_arg_ty);
}
llargs += ~[val];
b += 1;
}
case (
// Arg will be provided when the thunk is invoked.
none) {
let ValueRef passed_arg = llvm::LLVMGetParam(llthunk, a);
if (ty::type_contains_params(cx.ccx.tcx, out_arg.ty)) {
assert (out_arg.mode != ty::mo_val);
passed_arg =
bcx.build.PointerCast(passed_arg, llout_arg_ty);
}
llargs += ~[passed_arg];
a += 1u;
}
}
outgoing_arg_index += 1u;
}
// FIXME: turn this call + ret into a tail call.
auto lltargetfn =
bcx.build.GEP(lltarget.val, ~[C_int(0), C_int(abi::fn_field_code)]);
// Cast the outgoing function to the appropriate type (see the comments in
// trans_bind below for why this is necessary).
auto lltargetty =
type_of_fn(bcx.fcx.lcx.ccx, sp,
ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
outgoing_args, outgoing_ret_ty, ty_param_count);
lltargetfn = bcx.build.PointerCast(lltargetfn, T_ptr(T_ptr(lltargetty)));
lltargetfn = bcx.build.Load(lltargetfn);
bcx.build.FastCall(lltargetfn, llargs);
bcx.build.RetVoid();
finish_fn(fcx, lltop);
ret llthunk;
}
fn trans_bind(&@block_ctxt cx, &@ast::expr f,
&(option::t[@ast::expr])[] args, ast::node_id id) -> result {
auto f_res = trans_lval_gen(cx, f);
ret trans_bind_1(cx, f, f_res, args, id);
}
fn trans_bind_1(&@block_ctxt cx, &@ast::expr f, &lval_result f_res,
&(option::t[@ast::expr])[] args, ast::node_id id) -> result {
if (f_res.is_mem) {
cx.fcx.lcx.ccx.sess.unimpl("re-binding existing function");
} else {
let (@ast::expr)[] bound = ~[];
for (option::t[@ast::expr] argopt in args) {
alt (argopt) {
case (none) { }
case (some(?e)) { bound += ~[e]; }
}
}
// Figure out which tydescs we need to pass, if any.
let ty::t outgoing_fty;
let ValueRef[] lltydescs;
alt (f_res.generic) {
case (none) {
outgoing_fty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, f);
lltydescs = ~[];
}
case (some(?ginfo)) {
lazily_emit_all_generic_info_tydesc_glues(cx, ginfo);
outgoing_fty = ginfo.item_type;
lltydescs = ginfo.tydescs;
}
}
auto ty_param_count = std::ivec::len[ValueRef](lltydescs);
if (std::ivec::len[@ast::expr](bound) == 0u && ty_param_count == 0u) {
// Trivial 'binding': just return the static pair-ptr.
ret f_res.res;
} else {
auto bcx = f_res.res.bcx;
auto pair_t = node_type(cx.fcx.lcx.ccx, cx.sp, id);
auto pair_v = alloca(bcx, pair_t);
// Translate the bound expressions.
let ty::t[] bound_tys = ~[];
let lval_result[] bound_vals = ~[];
for (@ast::expr e in bound) {
auto lv = trans_lval(bcx, e);
bcx = lv.res.bcx;
bound_vals += ~[lv];
bound_tys += ~[ty::expr_ty(cx.fcx.lcx.ccx.tcx, e)];
}
// Synthesize a closure type.
// First, synthesize a tuple type containing the types of all the
// bound expressions.
// bindings_ty = ~[bound_ty1, bound_ty2, ...]
let ty::t bindings_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
bound_tys);
// NB: keep this in sync with T_closure_ptr; we're making
// a ty::t structure that has the same "shape" as the LLVM type
// it constructs.
// Make a vector that contains ty_param_count copies of tydesc_ty.
// (We'll need room for that many tydescs in the closure.)
let ty::t tydesc_ty = ty::mk_type(cx.fcx.lcx.ccx.tcx);
let ty::t[] captured_tys =
std::ivec::init_elt[ty::t](tydesc_ty, ty_param_count);
// Get all the types we've got (some of which we synthesized
// ourselves) into a vector. The whole things ends up looking
// like:
// closure_tys = [tydesc_ty, outgoing_fty, [bound_ty1, bound_ty2,
// ...], [tydesc_ty, tydesc_ty, ...]]
let ty::t[] closure_tys =
~[tydesc_ty, outgoing_fty, bindings_ty,
ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, captured_tys)];
// Finally, synthesize a type for that whole vector.
let ty::t closure_ty =
ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, closure_tys);
// Allocate a box that can hold something closure-sized, including
// space for a refcount.
auto r = trans_malloc_boxed(bcx, closure_ty);
auto box = r.val;
bcx = r.bcx;
// Grab onto the refcount and body parts of the box we allocated.
auto rc =
bcx.build.GEP(box,
~[C_int(0), C_int(abi::box_rc_field_refcnt)]);
auto closure =
bcx.build.GEP(box, ~[C_int(0),
C_int(abi::box_rc_field_body)]);
bcx.build.Store(C_int(1), rc);
// Store bindings tydesc.
auto bound_tydesc =
bcx.build.GEP(closure,
~[C_int(0), C_int(abi::closure_elt_tydesc)]);
auto ti = none[@tydesc_info];
auto bindings_tydesc = get_tydesc(bcx, bindings_ty, true, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti);
bcx = bindings_tydesc.bcx;
bcx.build.Store(bindings_tydesc.val, bound_tydesc);
// Determine the LLVM type for the outgoing function type. This
// may be different from the type returned by trans_malloc_boxed()
// since we have more information than that function does;
// specifically, we know how many type descriptors the outgoing
// function has, which type_of() doesn't, as only we know which
// item the function refers to.
auto llfnty =
type_of_fn(bcx.fcx.lcx.ccx, cx.sp,
ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
ty::ty_fn_args(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
ty::ty_fn_ret(bcx.fcx.lcx.ccx.tcx, outgoing_fty),
ty_param_count);
auto llclosurety = T_ptr(T_fn_pair(*bcx.fcx.lcx.ccx, llfnty));
// Store thunk-target.
auto bound_target =
bcx.build.GEP(closure,
~[C_int(0), C_int(abi::closure_elt_target)]);
auto src = bcx.build.Load(f_res.res.val);
bound_target = bcx.build.PointerCast(bound_target, llclosurety);
bcx.build.Store(src, bound_target);
// Copy expr values into boxed bindings.
auto i = 0u;
auto bindings =
bcx.build.GEP(closure,
~[C_int(0), C_int(abi::closure_elt_bindings)]);
for (lval_result lv in bound_vals) {
auto bound =
bcx.build.GEP(bindings, ~[C_int(0), C_int(i as int)]);
bcx = move_val_if_temp(bcx, INIT, bound, lv,
bound_tys.(i)).bcx;
i += 1u;
}
// If necessary, copy tydescs describing type parameters into the
// appropriate slot in the closure.
alt (f_res.generic) {
case (none) {/* nothing to do */ }
case (some(?ginfo)) {
lazily_emit_all_generic_info_tydesc_glues(cx, ginfo);
auto ty_params_slot =
bcx.build.GEP(closure,
~[C_int(0),
C_int(abi::closure_elt_ty_params)]);
auto i = 0;
for (ValueRef td in ginfo.tydescs) {
auto ty_param_slot =
bcx.build.GEP(ty_params_slot,
~[C_int(0), C_int(i)]);
bcx.build.Store(td, ty_param_slot);
i += 1;
}
outgoing_fty = ginfo.item_type;
}
}
// Make thunk and store thunk-ptr in outer pair's code slot.
auto pair_code =
bcx.build.GEP(pair_v, ~[C_int(0), C_int(abi::fn_field_code)]);
// The type of the entire bind expression.
let ty::t pair_ty = node_id_type(cx.fcx.lcx.ccx, id);
let ValueRef llthunk =
trans_bind_thunk(cx.fcx.lcx, cx.sp, pair_ty, outgoing_fty,
args, closure_ty, bound_tys, ty_param_count);
bcx.build.Store(llthunk, pair_code);
// Store box ptr in outer pair's box slot.
auto ccx = *bcx.fcx.lcx.ccx;
auto pair_box =
bcx.build.GEP(pair_v, ~[C_int(0), C_int(abi::fn_field_box)]);
bcx.build.Store(bcx.build.PointerCast(box,
T_opaque_closure_ptr(ccx)),
pair_box);
add_clean_temp(cx, pair_v, pair_ty);
ret rslt(bcx, pair_v);
}
}
}
fn trans_arg_expr(&@block_ctxt cx, &ty::arg arg, TypeRef lldestty0,
&@ast::expr e) -> result {
auto ccx = cx.fcx.lcx.ccx;
auto e_ty = ty::expr_ty(ccx.tcx, e);
auto is_bot = ty::type_is_bot(ccx.tcx, e_ty);
auto lv = trans_lval(cx, e);
auto bcx = lv.res.bcx;
auto val = lv.res.val;
if (is_bot) {
// For values of type _|_, we generate an
// "undef" value, as such a value should never
// be inspected. It's important for the value
// to have type lldestty0 (the callee's expected type).
val = llvm::LLVMGetUndef(lldestty0);
} else if (arg.mode == ty::mo_val) {
if (ty::type_owns_heap_mem(ccx.tcx, e_ty)) {
auto dst = alloc_ty(bcx, e_ty);
val = dst.val;
bcx = move_val_if_temp(dst.bcx, INIT, val, lv, e_ty).bcx;
} else if (lv.is_mem) {
val = load_if_immediate(bcx, val, e_ty);
bcx = copy_ty(bcx, val, e_ty).bcx;
} else {
// Eliding take/drop for appending of external vectors currently
// corrupts memory. I can't figure out why, and external vectors
// are on the way out anyway, so this simply turns off the
// optimization for that case.
auto is_ext_vec_plus = alt (e.node) {
case (ast::expr_binary(_, _, _)) {
ty::type_is_sequence(ccx.tcx, e_ty) &&
!ty::sequence_is_interior(ccx.tcx, e_ty)
}
case (_) { false }
};
if (is_ext_vec_plus) { bcx = copy_ty(bcx, val, e_ty).bcx; }
else { revoke_clean(bcx, val); }
}
} else if (type_is_immediate(ccx, e_ty) && !lv.is_mem) {
val = do_spill(bcx, val);
}
if (!is_bot && ty::type_contains_params(ccx.tcx, arg.ty)) {
auto lldestty = lldestty0;
if (arg.mode == ty::mo_val
&& ty::type_is_structural(ccx.tcx, e_ty)) {
lldestty = T_ptr(lldestty);
}
val = bcx.build.PointerCast(val, lldestty);
}
if (arg.mode == ty::mo_val
&& ty::type_is_structural(ccx.tcx, e_ty)) {
// Until here we've been treating structures by pointer;
// we are now passing it as an arg, so need to load it.
val = bcx.build.Load(val);
}
ret rslt(bcx, val);
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn trans_args(&@block_ctxt cx, ValueRef llenv, &option::t[ValueRef] llobj,
&option::t[generic_info] gen, &option::t[ValueRef] lliterbody,
&(@ast::expr)[] es, &ty::t fn_ty)
-> tup(@block_ctxt, ValueRef[], ValueRef) {
let ty::arg[] args = ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, fn_ty);
let ValueRef[] llargs = ~[];
let ValueRef[] lltydescs = ~[];
let @block_ctxt bcx = cx;
// Arg 0: Output pointer.
// FIXME: test case looks like
// f(1, fail, @42);
if (bcx.build.is_terminated()) {
// This means an earlier arg was divergent.
// So this arg can't be evaluated.
ret tup(bcx, ~[], C_nil());
}
auto retty = ty::ty_fn_ret(cx.fcx.lcx.ccx.tcx, fn_ty);
auto llretslot_res = alloc_ty(bcx, retty);
bcx = llretslot_res.bcx;
auto llretslot = llretslot_res.val;
alt (gen) {
case (some(?g)) {
lazily_emit_all_generic_info_tydesc_glues(cx, g);
lltydescs = g.tydescs;
args = ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, g.item_type);
retty = ty::ty_fn_ret(cx.fcx.lcx.ccx.tcx, g.item_type);
}
case (_) { }
}
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, retty)) {
llargs +=
~[bcx.build.PointerCast(llretslot,
T_typaram_ptr(cx.fcx.lcx.ccx.tn))];
} else if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, retty)) {
// It's possible that the callee has some generic-ness somewhere in
// its return value -- say a method signature within an obj or a fn
// type deep in a structure -- which the caller has a concrete view
// of. If so, cast the caller's view of the restlot to the callee's
// view, for the sake of making a type-compatible call.
llargs +=
~[cx.build.PointerCast(llretslot,
T_ptr(type_of(bcx.fcx.lcx.ccx, bcx.sp,
retty)))];
} else { llargs += ~[llretslot]; }
// Arg 1: task pointer.
llargs += ~[bcx.fcx.lltaskptr];
// Arg 2: Env (closure-bindings / self-obj)
alt (llobj) {
case (some(?ob)) {
// Every object is always found in memory,
// and not-yet-loaded (as part of an lval x.y
// doted method-call).
llargs += ~[bcx.build.Load(ob)];
}
case (_) { llargs += ~[llenv]; }
}
// Args >3: ty_params ...
llargs += lltydescs;
// ... then possibly an lliterbody argument.
alt (lliterbody) {
case (none) { }
case (some(?lli)) { llargs += ~[lli]; }
}
// ... then explicit args.
// First we figure out the caller's view of the types of the arguments.
// This will be needed if this is a generic call, because the callee has
// to cast her view of the arguments to the caller's view.
auto arg_tys = type_of_explicit_args(cx.fcx.lcx.ccx, cx.sp, args);
auto i = 0u;
for (@ast::expr e in es) {
if (bcx.build.is_terminated()) {
// This means an earlier arg was divergent.
// So this arg can't be evaluated.
break;
}
auto r = trans_arg_expr(bcx, args.(i), arg_tys.(i), e);
bcx = r.bcx;
llargs += ~[r.val];
i += 1u;
}
ret tup(bcx, llargs, llretslot);
}
fn trans_call(&@block_ctxt cx, &@ast::expr f, &option::t[ValueRef] lliterbody,
&(@ast::expr)[] args, ast::node_id id) -> result {
// NB: 'f' isn't necessarily a function; it might be an entire self-call
// expression because of the hack that allows us to process self-calls
// with trans_call.
auto f_res = trans_lval_gen(cx, f);
let ty::t fn_ty;
alt (f_res.method_ty) {
case (some(?meth)) {
// self-call
fn_ty = meth;
}
case (_) {
fn_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, f);
}
}
auto bcx = f_res.res.bcx;
auto faddr = f_res.res.val;
auto llenv = C_null(T_opaque_closure_ptr(*cx.fcx.lcx.ccx));
alt (f_res.llobj) {
case (some(_)) {
// It's a vtbl entry.
faddr = bcx.build.Load(faddr);
}
case (none) {
// It's a closure. We have to autoderef.
if (f_res.is_mem) { faddr = load_if_immediate(bcx, faddr, fn_ty);}
auto res = autoderef(bcx, faddr, fn_ty);
bcx = res.bcx;
fn_ty = res.ty;
auto pair = res.val;
faddr =
bcx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_code)]);
faddr = bcx.build.Load(faddr);
auto llclosure =
bcx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_box)]);
llenv = bcx.build.Load(llclosure);
}
}
auto ret_ty = ty::node_id_to_type(cx.fcx.lcx.ccx.tcx, id);
auto args_res =
trans_args(bcx, llenv, f_res.llobj, f_res.generic,
lliterbody, args, fn_ty);
bcx = args_res._0;
auto llargs = args_res._1;
auto llretslot = args_res._2;
/*
log "calling: " + val_str(cx.fcx.lcx.ccx.tn, faddr);
for (ValueRef arg in llargs) {
log "arg: " + val_str(cx.fcx.lcx.ccx.tn, arg);
}
*/
/* If the block is terminated,
then one or more of the args has
type _|_. Since that means it diverges, the code
for the call itself is unreachable. */
auto retval = C_nil();
if (!bcx.build.is_terminated()) {
bcx.build.FastCall(faddr, llargs);
alt (lliterbody) {
case (none) {
if (!ty::type_is_nil(cx.fcx.lcx.ccx.tcx, ret_ty)) {
retval = load_if_immediate(bcx, llretslot, ret_ty);
// Retval doesn't correspond to anything really tangible
// in the frame, but it's a ref all the same, so we put a
// note here to drop it when we're done in this scope.
add_clean_temp(cx, retval, ret_ty);
}
}
case (some(_)) {
// If there was an lliterbody, it means we were calling an
// iter, and we are *not* the party using its 'output' value,
// we should ignore llretslot.
}
}
}
ret rslt(bcx, retval);
}
fn trans_tup(&@block_ctxt cx, &ast::elt[] elts, ast::node_id id) -> result {
auto bcx = cx;
auto t = node_id_type(bcx.fcx.lcx.ccx, id);
auto tup_res = alloc_ty(bcx, t);
auto tup_val = tup_res.val;
bcx = tup_res.bcx;
add_clean_temp(cx, tup_val, t);
let int i = 0;
for (ast::elt e in elts) {
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e.expr);
auto src = trans_lval(bcx, e.expr);
bcx = src.res.bcx;
auto dst_res = GEP_tup_like(bcx, t, tup_val, ~[0, i]);
bcx = move_val_if_temp(dst_res.bcx, INIT, dst_res.val, src, e_ty).bcx;
i += 1;
}
ret rslt(bcx, tup_val);
}
fn trans_vec(&@block_ctxt cx, &(@ast::expr)[] args, ast::node_id id) ->
result {
auto t = node_id_type(cx.fcx.lcx.ccx, id);
auto unit_ty = t;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_vec(?mt)) { unit_ty = mt.ty; }
case (_) { cx.fcx.lcx.ccx.sess.bug("non-vec type in trans_vec"); }
}
auto bcx = cx;
auto unit_sz = size_of(bcx, unit_ty);
bcx = unit_sz.bcx;
auto data_sz =
bcx.build.Mul(C_uint(std::ivec::len[@ast::expr](args)), unit_sz.val);
// FIXME: pass tydesc properly.
auto vec_val =
bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.new_vec,
~[bcx.fcx.lltaskptr, data_sz,
C_null(T_ptr(bcx.fcx.lcx.ccx.tydesc_type))]);
auto llty = type_of(bcx.fcx.lcx.ccx, bcx.sp, t);
vec_val = bcx.build.PointerCast(vec_val, llty);
add_clean_temp(bcx, vec_val, t);
auto body = bcx.build.GEP(vec_val, ~[C_int(0), C_int(abi::vec_elt_data)]);
auto pseudo_tup_ty =
ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx,
std::ivec::init_elt[ty::t](unit_ty,
std::ivec::len(args)));
let int i = 0;
for (@ast::expr e in args) {
auto src = trans_lval(bcx, e);
bcx = src.res.bcx;
auto dst_res = GEP_tup_like(bcx, pseudo_tup_ty, body, ~[0, i]);
bcx = dst_res.bcx;
// Cast the destination type to the source type. This is needed to
// make tags work, for a subtle combination of reasons:
//
// (1) "dst_res" above is derived from "body", which is in turn
// derived from "vec_val".
// (2) "vec_val" has the LLVM type "llty".
// (3) "llty" is the result of calling type_of() on a vector type.
// (4) For tags, type_of() returns a different type depending on
// on whether the tag is behind a box or not. Vector types are
// considered boxes.
// (5) "src_res" is derived from "unit_ty", which is not behind a box.
auto dst_val;
if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) {
auto llunit_ty = type_of(cx.fcx.lcx.ccx, bcx.sp, unit_ty);
dst_val = bcx.build.PointerCast(dst_res.val, T_ptr(llunit_ty));
} else { dst_val = dst_res.val; }
bcx = move_val_if_temp(bcx, INIT, dst_val, src, unit_ty).bcx;
i += 1;
}
auto fill = bcx.build.GEP(vec_val, ~[C_int(0), C_int(abi::vec_elt_fill)]);
bcx.build.Store(data_sz, fill);
ret rslt(bcx, vec_val);
}
// TODO: Move me to ivec::
fn trans_ivec(@block_ctxt bcx, &(@ast::expr)[] args, ast::node_id id) ->
result {
auto typ = node_id_type(bcx.fcx.lcx.ccx, id);
auto unit_ty;
alt (ty::struct(bcx.fcx.lcx.ccx.tcx, typ)) {
case (ty::ty_ivec(?mt)) { unit_ty = mt.ty; }
case (_) { bcx.fcx.lcx.ccx.sess.bug("non-ivec type in trans_ivec"); }
}
auto llunitty = type_of_or_i8(bcx, unit_ty);
auto ares = ivec::alloc(bcx, unit_ty);
bcx = ares.bcx;
auto llvecptr = ares.llptr;
auto unit_sz = ares.llunitsz;
auto llalen = ares.llalen;
add_clean_temp(bcx, llvecptr, typ);
auto lllen = bcx.build.Mul(C_uint(std::ivec::len(args)), unit_sz);
// Allocate the vector pieces and store length and allocated length.
auto llfirsteltptr;
if (std::ivec::len(args) > 0u &&
std::ivec::len(args) <= abi::ivec_default_length) {
// Interior case.
bcx.build.Store(lllen,
bcx.build.InBoundsGEP(llvecptr,
~[C_int(0),
C_uint(abi::ivec_elt_len)]));
bcx.build.Store(llalen,
bcx.build.InBoundsGEP(llvecptr,
~[C_int(0),
C_uint(abi::ivec_elt_alen)]));
llfirsteltptr =
bcx.build.InBoundsGEP(llvecptr,
~[C_int(0), C_uint(abi::ivec_elt_elems),
C_int(0)]);
} else {
// Heap case.
auto stub_z = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_zero)];
auto stub_a = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_alen)];
auto stub_p = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)];
auto llstubty = T_ivec_heap(llunitty);
auto llstubptr = bcx.build.PointerCast(llvecptr, T_ptr(llstubty));
bcx.build.Store(C_int(0), bcx.build.InBoundsGEP(llstubptr, stub_z));
auto llheapty = T_ivec_heap_part(llunitty);
if (std::ivec::len(args) == 0u) {
// Null heap pointer indicates a zero-length vector.
bcx.build.Store(llalen, bcx.build.InBoundsGEP(llstubptr, stub_a));
bcx.build.Store(C_null(T_ptr(llheapty)),
bcx.build.InBoundsGEP(llstubptr, stub_p));
llfirsteltptr = C_null(T_ptr(llunitty));
} else {
bcx.build.Store(lllen, bcx.build.InBoundsGEP(llstubptr, stub_a));
auto llheapsz = bcx.build.Add(llsize_of(llheapty), lllen);
auto rslt = trans_shared_malloc(bcx, T_ptr(llheapty), llheapsz);
bcx = rslt.bcx;
auto llheapptr = rslt.val;
bcx.build.Store(llheapptr,
bcx.build.InBoundsGEP(llstubptr, stub_p));
auto heap_l = ~[C_int(0), C_uint(abi::ivec_heap_elt_len)];
bcx.build.Store(lllen, bcx.build.InBoundsGEP(llheapptr, heap_l));
llfirsteltptr =
bcx.build.InBoundsGEP(llheapptr,
~[C_int(0),
C_uint(abi::ivec_heap_elt_elems),
C_int(0)]);
}
}
// Store the individual elements.
auto i = 0u;
for (@ast::expr e in args) {
auto lv = trans_lval(bcx, e);
bcx = lv.res.bcx;
auto lleltptr;
if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, unit_ty)) {
lleltptr =
bcx.build.InBoundsGEP(llfirsteltptr,
~[bcx.build.Mul(C_uint(i), unit_sz)]);
} else {
lleltptr = bcx.build.InBoundsGEP(llfirsteltptr, ~[C_uint(i)]);
}
bcx = move_val_if_temp(bcx, INIT, lleltptr, lv, unit_ty).bcx;
i += 1u;
}
ret rslt(bcx, llvecptr);
}
fn trans_rec(&@block_ctxt cx, &ast::field[] fields,
&option::t[@ast::expr] base, ast::node_id id) -> result {
auto bcx = cx;
auto t = node_id_type(bcx.fcx.lcx.ccx, id);
auto rec_res = alloc_ty(bcx, t);
auto rec_val = rec_res.val;
bcx = rec_res.bcx;
add_clean_temp(cx, rec_val, t);
let int i = 0;
auto base_val = C_nil();
alt (base) {
case (none) { }
case (some(?bexp)) {
auto base_res = trans_expr(bcx, bexp);
bcx = base_res.bcx;
base_val = base_res.val;
}
}
let ty::field[] ty_fields = ~[];
alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) {
case (ty::ty_rec(?flds)) { ty_fields = flds; }
}
for (ty::field tf in ty_fields) {
auto e_ty = tf.mt.ty;
auto dst_res = GEP_tup_like(bcx, t, rec_val, ~[0, i]);
bcx = dst_res.bcx;
auto expr_provided = false;
for (ast::field f in fields) {
if (str::eq(f.node.ident, tf.ident)) {
expr_provided = true;
auto lv = trans_lval(bcx, f.node.expr);
bcx = move_val_if_temp(lv.res.bcx, INIT, dst_res.val, lv,
e_ty).bcx;
break;
}
}
if (!expr_provided) {
auto src_res = GEP_tup_like(bcx, t, base_val, ~[0, i]);
src_res =
rslt(src_res.bcx, load_if_immediate(bcx, src_res.val, e_ty));
bcx = copy_val(src_res.bcx, INIT, dst_res.val, src_res.val,
e_ty).bcx;
}
i += 1;
}
ret rslt(bcx, rec_val);
}
fn trans_expr(&@block_ctxt cx, &@ast::expr e) -> result {
ret trans_expr_out(cx, e, return);
}
fn trans_expr_out(&@block_ctxt cx, &@ast::expr e, out_method output) ->
result {
// FIXME Fill in cx.sp
alt (e.node) {
case (ast::expr_lit(?lit)) { ret trans_lit(cx, *lit); }
case (ast::expr_unary(?op, ?x)) {
if (op != ast::deref) { ret trans_unary(cx, op, x, e.id); }
}
case (ast::expr_binary(?op, ?x, ?y)) {
ret trans_binary(cx, op, x, y);
}
case (ast::expr_if(?cond, ?thn, ?els)) {
ret with_out_method(bind trans_if(cx, cond, thn, els, e.id, _),
cx, e.id, output);
}
case (ast::expr_if_check(?cond, ?thn, ?els)) {
ret with_out_method(bind trans_if(cx, cond, thn, els, e.id, _),
cx, e.id, output);
}
case (ast::expr_ternary(_, _, _)) {
ret trans_expr_out(cx, ast::ternary_to_if(e), output);
}
case (ast::expr_for(?decl, ?seq, ?body)) {
ret trans_for(cx, decl, seq, body);
}
case (ast::expr_for_each(?decl, ?seq, ?body)) {
ret trans_for_each(cx, decl, seq, body);
}
case (ast::expr_while(?cond, ?body)) {
ret trans_while(cx, cond, body);
}
case (ast::expr_do_while(?body, ?cond)) {
ret trans_do_while(cx, body, cond);
}
case (ast::expr_alt(?expr, ?arms)) {
ret with_out_method(bind trans_alt::trans_alt(cx, expr,
arms, e.id, _),
cx, e.id, output);
}
case (ast::expr_fn(?f)) {
auto ccx = cx.fcx.lcx.ccx;
let TypeRef llfnty =
alt (ty::struct(ccx.tcx, node_id_type(ccx, e.id))) {
case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) {
type_of_fn_full(ccx, e.span, proto, false, inputs,
output, 0u)
}
};
auto sub_cx = extend_path(cx.fcx.lcx, ccx.names.next("anon"));
auto s = mangle_internal_name_by_path(ccx, sub_cx.path);
auto llfn = decl_internal_fastcall_fn(ccx.llmod, s, llfnty);
trans_fn(sub_cx, e.span, f, llfn, none, ~[], e.id);
ret rslt(cx, create_fn_pair(ccx, s, llfnty, llfn, false));
}
case (ast::expr_block(?blk)) {
auto sub_cx = new_scope_block_ctxt(cx, "block-expr body");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto sub =
with_out_method(bind trans_block(sub_cx, blk, _), cx, e.id,
output);
cx.build.Br(sub_cx.llbb);
sub.bcx.build.Br(next_cx.llbb);
ret rslt(next_cx, sub.val);
}
case (ast::expr_move(?dst, ?src)) {
auto lhs_res = trans_lval(cx, dst);
assert (lhs_res.is_mem);
// FIXME Fill in lhs_res.res.bcx.sp
auto rhs_res = trans_lval(lhs_res.res.bcx, src);
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src);
// FIXME: calculate copy init-ness in typestate.
auto move_res =
move_val(rhs_res.res.bcx, DROP_EXISTING, lhs_res.res.val,
rhs_res, t);
ret rslt(move_res.bcx, C_nil());
}
case (ast::expr_assign(?dst, ?src)) {
auto lhs_res = trans_lval(cx, dst);
assert (lhs_res.is_mem);
// FIXME Fill in lhs_res.res.bcx.sp
auto rhs = trans_lval(lhs_res.res.bcx, src);
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src);
// FIXME: calculate copy init-ness in typestate.
auto copy_res = move_val_if_temp
(rhs.res.bcx, DROP_EXISTING, lhs_res.res.val, rhs, t);
ret rslt(copy_res.bcx, C_nil());
}
case (ast::expr_swap(?dst, ?src)) {
auto lhs_res = trans_lval(cx, dst);
assert (lhs_res.is_mem);
// FIXME Fill in lhs_res.res.bcx.sp
auto rhs_res = trans_lval(lhs_res.res.bcx, src);
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src);
auto tmp_res = alloc_ty(rhs_res.res.bcx, t);
// Swap through a temporary.
auto move1_res =
memmove_ty(tmp_res.bcx, tmp_res.val, lhs_res.res.val, t);
auto move2_res =
memmove_ty(move1_res.bcx, lhs_res.res.val, rhs_res.res.val,
t);
auto move3_res =
memmove_ty(move2_res.bcx, rhs_res.res.val, tmp_res.val, t);
ret rslt(move3_res.bcx, C_nil());
}
case (ast::expr_assign_op(?op, ?dst, ?src)) {
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src);
auto lhs_res = trans_lval(cx, dst);
assert (lhs_res.is_mem);
// FIXME Fill in lhs_res.res.bcx.sp
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) {
alt (op) {
case (ast::add) {
if (ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, t)) {
ret ivec::trans_append(rhs_res.bcx, t,
lhs_res.res.val,
rhs_res.val);
}
ret trans_vec_append(rhs_res.bcx, t, lhs_res.res.val,
rhs_res.val);
}
case (_) { }
}
}
auto lhs_val = load_if_immediate(rhs_res.bcx, lhs_res.res.val, t);
auto v =
trans_eager_binop(rhs_res.bcx, op, t, lhs_val, rhs_res.val);
// FIXME: calculate copy init-ness in typestate.
// This is always a temporary, so can always be safely moved
auto move_res = move_val(v.bcx, DROP_EXISTING, lhs_res.res.val,
lval_val(v.bcx, v.val), t);
ret rslt(move_res.bcx, C_nil());
}
case (ast::expr_bind(?f, ?args)) {
ret trans_bind(cx, f, args, e.id);
}
case (ast::expr_call(?f, ?args)) {
ret trans_call(cx, f, none[ValueRef], args, e.id);
}
case (ast::expr_cast(?val, _)) { ret trans_cast(cx, val, e.id); }
case (ast::expr_vec(?args, _, ast::sk_rc)) {
ret trans_vec(cx, args, e.id);
}
case (ast::expr_vec(?args, _, ast::sk_unique)) {
ret trans_ivec(cx, args, e.id);
}
case (ast::expr_tup(?args)) { ret trans_tup(cx, args, e.id); }
case (ast::expr_rec(?args, ?base)) {
ret trans_rec(cx, args, base, e.id);
}
case (ast::expr_mac(_)) {
ret cx.fcx.lcx.ccx.sess.bug("unexpanded macro");
}
case (ast::expr_fail(?expr)) {
ret trans_fail_expr(cx, some(e.span), expr);
}
case (ast::expr_log(?lvl, ?a)) { ret trans_log(lvl, cx, a); }
case (ast::expr_assert(?a)) {
ret trans_check_expr(cx, a, "Assertion");
}
case (ast::expr_check(ast::checked, ?a)) {
ret trans_check_expr(cx, a, "Predicate");
}
case (ast::expr_check(ast::unchecked, ?a)) {
/* Claims are turned on and off by a global variable
that the RTS sets. This case generates code to
check the value of that variable, doing nothing
if it's set to false and acting like a check
otherwise. */
auto c = get_extern_const(cx.fcx.lcx.ccx.externs,
cx.fcx.lcx.ccx.llmod,
"check_claims", T_bool());
auto cond = cx.build.Load(c);
auto then_cx = new_scope_block_ctxt(cx, "claim_then");
auto check_res = trans_check_expr(then_cx, a, "Claim");
auto else_cx = new_scope_block_ctxt(cx, "else");
auto els = rslt(else_cx, C_nil());
cx.build.CondBr(cond, then_cx.llbb, else_cx.llbb);
ret rslt(join_branches(cx, ~[check_res, els]), C_nil());
}
case (ast::expr_break) { ret trans_break(e.span, cx); }
case (ast::expr_cont) { ret trans_cont(e.span, cx); }
case (ast::expr_ret(?ex)) { ret trans_ret(cx, ex); }
case (ast::expr_put(?ex)) { ret trans_put(cx, ex); }
case (ast::expr_be(?ex)) { ret trans_be(cx, ex); }
case (ast::expr_port(_)) { ret trans_port(cx, e.id); }
case (ast::expr_chan(?ex)) { ret trans_chan(cx, ex, e.id); }
case (ast::expr_send(?lhs, ?rhs)) {
ret trans_send(cx, lhs, rhs, e.id);
}
case (ast::expr_recv(?lhs, ?rhs)) {
ret trans_recv(cx, lhs, rhs, e.id);
}
case (ast::expr_spawn(?dom, ?name, ?func, ?args)) {
ret trans_spawn(cx, dom, name, func, args, e.id);
}
case (ast::expr_anon_obj(?anon_obj, ?tps)) {
ret trans_anon_obj(cx, e.span, anon_obj, tps, e.id);
}
case (_) {
// The expression is an lvalue. Fall through.
assert (ty::is_lval(e)); // make sure it really is and that we
// didn't forget to add a case for a new expr!
}
}
// lval cases fall through to trans_lval and then
// possibly load the result (if it's non-structural).
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
auto sub = trans_lval(cx, e);
auto v = sub.res.val;
if (sub.is_mem) { v = load_if_immediate(sub.res.bcx, v, t); }
ret rslt(sub.res.bcx, v);
}
fn with_out_method(fn(&out_method) -> result work, @block_ctxt cx,
ast::node_id id, &out_method outer_output) -> result {
auto ccx = cx.fcx.lcx.ccx;
if (outer_output != return) {
ret work(outer_output);
} else {
auto tp = node_id_type(ccx, id);
if (ty::type_is_nil(ccx.tcx, tp)) { ret work(return); }
auto res_alloca = alloc_ty(cx, tp);
cx = zero_alloca(res_alloca.bcx, res_alloca.val, tp).bcx;
fn drop_hoisted_ty(&@block_ctxt cx, ValueRef target, ty::t t) ->
result {
auto reg_val = load_if_immediate(cx, target, t);
ret drop_ty(cx, reg_val, t);
}
auto done = work(save_in(res_alloca.val));
auto loaded = load_if_immediate(done.bcx, res_alloca.val, tp);
add_clean_temp(cx, loaded, tp);
ret rslt(done.bcx, loaded);;
}
}
// We pass structural values around the compiler "by pointer" and
// non-structural values (scalars, boxes, pointers) "by value". We call the
// latter group "immediates" and, in some circumstances when we know we have a
// pointer (or need one), perform load/store operations based on the
// immediate-ness of the type.
fn type_is_immediate(&@crate_ctxt ccx, &ty::t t) -> bool {
ret ty::type_is_scalar(ccx.tcx, t) || ty::type_is_boxed(ccx.tcx, t) ||
ty::type_is_native(ccx.tcx, t);
}
fn do_spill(&@block_ctxt cx, ValueRef v) -> ValueRef {
// We have a value but we have to spill it to pass by alias.
auto llptr = alloca(cx, val_ty(v));
cx.build.Store(v, llptr);
ret llptr;
}
fn spill_if_immediate(&@block_ctxt cx, ValueRef v, &ty::t t) -> ValueRef {
if (type_is_immediate(cx.fcx.lcx.ccx, t)) { ret do_spill(cx, v); }
ret v;
}
fn load_if_immediate(&@block_ctxt cx, ValueRef v, &ty::t t) -> ValueRef {
if (type_is_immediate(cx.fcx.lcx.ccx, t)) { ret cx.build.Load(v); }
ret v;
}
fn trans_log(int lvl, &@block_ctxt cx, &@ast::expr e) -> result {
auto lcx = cx.fcx.lcx;
auto modname = str::connect_ivec(lcx.module_path, "::");
auto global;
if (lcx.ccx.module_data.contains_key(modname)) {
global = lcx.ccx.module_data.get(modname);
} else {
auto s =
link::mangle_internal_name_by_path_and_seq(lcx.ccx,
lcx.module_path,
"loglevel");
global = llvm::LLVMAddGlobal(lcx.ccx.llmod, T_int(), str::buf(s));
llvm::LLVMSetGlobalConstant(global, False);
llvm::LLVMSetInitializer(global, C_null(T_int()));
llvm::LLVMSetLinkage(global,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
lcx.ccx.module_data.insert(modname, global);
}
auto log_cx = new_scope_block_ctxt(cx, "log");
auto after_cx = new_sub_block_ctxt(cx, "after");
auto load = cx.build.Load(global);
auto test = cx.build.ICmp(lib::llvm::LLVMIntSGE, load, C_int(lvl));
cx.build.CondBr(test, log_cx.llbb, after_cx.llbb);
auto sub = trans_expr(log_cx, e);
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e);
auto log_bcx = sub.bcx;
if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, e_ty)) {
let TypeRef tr;
let bool is32bit = false;
alt (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty)) {
case (ty::ty_machine(ast::ty_f32)) {
tr = T_f32();
is32bit = true;
}
case (ty::ty_machine(ast::ty_f64)) { tr = T_f64(); }
case (_) { tr = T_float(); }
}
if (is32bit) {
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_float,
~[log_bcx.fcx.lltaskptr, C_int(lvl), sub.val]);
} else {
// FIXME: Eliminate this level of indirection.
auto tmp = alloca(log_bcx, tr);
sub.bcx.build.Store(sub.val, tmp);
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_double,
~[log_bcx.fcx.lltaskptr, C_int(lvl), tmp]);
}
} else if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, e_ty) ||
ty::type_is_bool(cx.fcx.lcx.ccx.tcx, e_ty)) {
// FIXME: Handle signedness properly.
auto llintval =
int_cast(log_bcx, T_int(), val_ty(sub.val), sub.val, false);
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_int,
~[log_bcx.fcx.lltaskptr, C_int(lvl), llintval]);
} else {
alt (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty)) {
case (ty::ty_str) {
log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_str,
~[log_bcx.fcx.lltaskptr, C_int(lvl),
sub.val]);
}
case (_) {
// FIXME: Support these types.
cx.fcx.lcx.ccx.sess.span_fatal(e.span,
"log called on unsupported type "
+
ty_to_str(cx.fcx.lcx.ccx.tcx,
e_ty));
}
}
}
log_bcx = trans_block_cleanups(log_bcx, log_cx);
log_bcx.build.Br(after_cx.llbb);
ret rslt(after_cx, C_nil());
}
fn trans_check_expr(&@block_ctxt cx, &@ast::expr e, &str s) -> result {
auto cond_res = trans_expr(cx, e);
auto expr_str = s + " " + expr_to_str(e) + " failed";
auto fail_cx = new_sub_block_ctxt(cx, "fail");
trans_fail(fail_cx, some[span](e.span), expr_str);
auto next_cx = new_sub_block_ctxt(cx, "next");
cond_res.bcx.build.CondBr(cond_res.val, next_cx.llbb, fail_cx.llbb);
ret rslt(next_cx, C_nil());
}
fn trans_fail_expr(&@block_ctxt cx, &option::t[span] sp_opt,
&option::t[@ast::expr] fail_expr)
-> result {
auto bcx = cx;
alt (fail_expr) {
case (some(?expr)) {
auto tcx = bcx.fcx.lcx.ccx.tcx;
auto expr_res = trans_expr(bcx, expr);
auto e_ty = ty::expr_ty(tcx, expr);
bcx = expr_res.bcx;
if (ty::type_is_str(tcx, e_ty)) {
auto elt = bcx.build.GEP(expr_res.val,
~[C_int(0),
C_int(abi::vec_elt_data)]);
ret trans_fail_value(bcx, sp_opt, elt);
} else {
cx.fcx.lcx.ccx.sess.span_bug(expr.span,
"fail called with unsupported \
type " + ty_to_str(tcx, e_ty));
}
}
case (_) {
ret trans_fail(bcx, sp_opt, "explicit failure");
}
}
}
fn trans_fail(&@block_ctxt cx, &option::t[span] sp_opt, &str fail_str)
-> result {
auto V_fail_str = C_cstr(cx.fcx.lcx.ccx, fail_str);
ret trans_fail_value(cx, sp_opt, V_fail_str);
}
fn trans_fail_value(&@block_ctxt cx, &option::t[span] sp_opt,
&ValueRef V_fail_str)
-> result {
auto V_filename;
auto V_line;
alt (sp_opt) {
case (some(?sp)) {
auto loc = cx.fcx.lcx.ccx.sess.lookup_pos(sp.lo);
V_filename = C_cstr(cx.fcx.lcx.ccx, loc.filename);
V_line = loc.line as int;
}
case (none) {
V_filename = C_cstr(cx.fcx.lcx.ccx, "<runtime>");
V_line = 0;
}
}
auto V_str = cx.build.PointerCast(V_fail_str, T_ptr(T_i8()));
V_filename = cx.build.PointerCast(V_filename, T_ptr(T_i8()));
auto args = ~[cx.fcx.lltaskptr, V_str, V_filename, C_int(V_line)];
cx.build.Call(cx.fcx.lcx.ccx.upcalls._fail, args);
cx.build.Unreachable();
ret rslt(cx, C_nil());
}
fn trans_put(&@block_ctxt cx, &option::t[@ast::expr] e) -> result {
auto llcallee = C_nil();
auto llenv = C_nil();
alt ({ cx.fcx.lliterbody }) {
case (some(?lli)) {
auto slot = alloca(cx, val_ty(lli));
cx.build.Store(lli, slot);
llcallee =
cx.build.GEP(slot, ~[C_int(0), C_int(abi::fn_field_code)]);
llcallee = cx.build.Load(llcallee);
llenv = cx.build.GEP(slot, ~[C_int(0), C_int(abi::fn_field_box)]);
llenv = cx.build.Load(llenv);
}
}
auto bcx = cx;
auto dummy_retslot = alloca(bcx, T_nil());
let ValueRef[] llargs = ~[dummy_retslot, cx.fcx.lltaskptr, llenv];
alt (e) {
case (none) { }
case (some(?x)) {
auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, x);
auto arg = rec(mode=ty::mo_alias(false), ty=e_ty);
auto arg_tys =
type_of_explicit_args(cx.fcx.lcx.ccx, x.span, ~[arg]);
auto r = trans_arg_expr(bcx, arg, arg_tys.(0), x);
bcx = r.bcx;
llargs += ~[r.val];
}
}
ret rslt(bcx, bcx.build.FastCall(llcallee, llargs));
}
fn trans_break_cont(&span sp, &@block_ctxt cx, bool to_end) -> result {
auto bcx = cx;
// Locate closest loop block, outputting cleanup as we go.
auto cleanup_cx = cx;
while (true) {
bcx = trans_block_cleanups(bcx, cleanup_cx);
alt ({ cleanup_cx.kind }) {
case (LOOP_SCOPE_BLOCK(?_cont, ?_break)) {
if (to_end) {
bcx.build.Br(_break.llbb);
} else {
alt (_cont) {
case (option::some(?_cont)) {
bcx.build.Br(_cont.llbb);
}
case (_) { bcx.build.Br(cleanup_cx.llbb); }
}
}
ret rslt(new_sub_block_ctxt(bcx, "break_cont.unreachable"),
C_nil());
}
case (_) {
alt ({ cleanup_cx.parent }) {
case (parent_some(?cx)) { cleanup_cx = cx; }
case (parent_none) {
cx.fcx.lcx.ccx.sess.span_fatal(sp,
if (to_end) {
"Break"
} else { "Cont" } +
" outside a loop");
}
}
}
}
}
// If we get here without returning, it's a bug
cx.fcx.lcx.ccx.sess.bug("in trans::trans_break_cont()");
}
fn trans_break(&span sp, &@block_ctxt cx) -> result {
ret trans_break_cont(sp, cx, true);
}
fn trans_cont(&span sp, &@block_ctxt cx) -> result {
ret trans_break_cont(sp, cx, false);
}
fn trans_ret(&@block_ctxt cx, &option::t[@ast::expr] e) -> result {
auto bcx = cx;
alt (e) {
case (some(?x)) {
auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, x);
auto lv = trans_lval(cx, x);
bcx = lv.res.bcx;
bcx = move_val_if_temp(bcx, INIT, cx.fcx.llretptr, lv, t).bcx;
}
case (_) {
auto t = llvm::LLVMGetElementType(val_ty(cx.fcx.llretptr));
bcx.build.Store(C_null(t), cx.fcx.llretptr);
}
}
// run all cleanups and back out.
let bool more_cleanups = true;
auto cleanup_cx = cx;
while (more_cleanups) {
bcx = trans_block_cleanups(bcx, cleanup_cx);
alt ({ cleanup_cx.parent }) {
case (parent_some(?b)) { cleanup_cx = b; }
case (parent_none) { more_cleanups = false; }
}
}
bcx.build.RetVoid();
ret rslt(new_sub_block_ctxt(bcx, "ret.unreachable"), C_nil());
}
fn trans_be(&@block_ctxt cx, &@ast::expr e) -> result {
// FIXME: This should be a typestate precondition
assert (ast::is_call_expr(e));
// FIXME: Turn this into a real tail call once
// calling convention issues are settled
ret trans_ret(cx, some(e));
}
/*
Suppose we create an anonymous object my_b from a regular object a:
obj a() {
fn foo() -> int {
ret 2;
}
fn bar() -> int {
ret self.foo();
}
}
auto my_a = a();
auto my_b = obj { fn baz() -> int { ret self.foo() } with my_a };
Here we're extending the my_a object with an additional method baz, creating
an object my_b. Since it's an object, my_b is a pair of a vtable pointer and
a body pointer:
my_b: [vtbl* | body*]
my_b's vtable has entries for foo, bar, and baz, whereas my_a's vtable has
only foo and bar. my_b's 3-entry vtable consists of two forwarding functions
and one real method.
my_b's body just contains the pair a: [ a_vtable | a_body ], wrapped up with
any additional fields that my_b added. None were added, so my_b is just the
wrapped inner object.
*/
// trans_anon_obj: create and return a pointer to an object. This code
// differs from trans_obj in that, rather than creating an object constructor
// function and putting it in the generated code as an object item, we are
// instead "inlining" the construction of the object and returning the object
// itself.
fn trans_anon_obj(@block_ctxt bcx, &span sp, &ast::anon_obj anon_obj,
&ast::ty_param[] ty_params, ast::node_id id) -> result {
// Right now, we're assuming that anon objs don't take ty params, even
// though the AST supports it. It's nonsensical to write an expression
// like "obj[T](){ ... with ... }", since T is never instantiated;
// nevertheless, such an expression will parse. Idea for the future:
// support typarams.
assert (std::ivec::len(ty_params) == 0u);
auto ccx = bcx.fcx.lcx.ccx;
// Fields.
// FIXME (part of issue #538): Where do we fill in the field *values* from
// the outer object?
let ast::anon_obj_field[] additional_fields = ~[];
let result[] additional_field_vals = ~[];
let ty::t[] additional_field_tys = ~[];
alt (anon_obj.fields) {
case (none) { }
case (some(?fields)) {
additional_fields = fields;
for (ast::anon_obj_field f in fields) {
additional_field_tys += ~[node_id_type(ccx, f.id)];
additional_field_vals += ~[trans_expr(bcx, f.expr)];
}
}
}
// Get the type of the eventual entire anonymous object, possibly with
// extensions. NB: This type includes both inner and outer methods.
auto outer_obj_ty = ty::node_id_to_type(ccx.tcx, id);
// Create a vtable for the anonymous object.
// create_vtbl() wants an ast::_obj and all we have is an ast::anon_obj,
// so we need to roll our own.
fn anon_obj_field_to_obj_field(&ast::anon_obj_field f)
-> ast::obj_field {
ret rec(mut=f.mut, ty=f.ty, ident=f.ident, id=f.id);
}
let ast::_obj wrapper_obj = rec(
fields = std::ivec::map(anon_obj_field_to_obj_field,
additional_fields),
methods = anon_obj.methods,
dtor = none[@ast::method]);
let ty::t with_obj_ty;
auto vtbl;
alt (anon_obj.with_obj) {
case (none) {
// If there's no with_obj -- that is, if we're just adding new
// fields rather than extending an existing object -- then we just
// pass the outer object to create_vtbl(). Our vtable won't need
// to have any forwarding slots.
// We need a dummy with_obj_ty for setting up the object body
// later.
with_obj_ty = ty::mk_type(ccx.tcx);
// This seems a little strange, because it'll come into
// create_vtbl() with no "additional methods". What's happening
// is that, since *all* of the methods are "additional", we can
// get away with acting like none of them are.
vtbl = create_vtbl(bcx.fcx.lcx, sp, outer_obj_ty,
wrapper_obj, ty_params, none,
additional_field_tys);
}
case (some(?e)) {
// TODO: What makes more sense to get the type of an expr --
// calling ty::expr_ty(ccx.tcx, e) on it or calling
// ty::node_id_to_type(ccx.tcx, id) on its id?
with_obj_ty = ty::expr_ty(ccx.tcx, e);
//with_obj_ty = ty::node_id_to_type(ccx.tcx, e.id);
// If there's a with_obj, we pass its type along to create_vtbl().
// Part of what create_vtbl() will do is take the set difference
// of methods defined on the original and methods being added.
// For every method defined on the original that does *not* have
// one with a matching name and type being added, we'll need to
// create a forwarding slot. And, of course, we need to create a
// normal vtable entry for every method being added.
vtbl = create_vtbl(bcx.fcx.lcx, sp, outer_obj_ty,
wrapper_obj, ty_params,
some(with_obj_ty),
additional_field_tys);
}
}
// Allocate the object that we're going to return.
auto pair = alloca(bcx, ccx.rust_object_type);
// Take care of cleanups.
auto t = node_id_type(ccx, id);
add_clean_temp(bcx, pair, t);
// Grab onto the first and second elements of the pair.
// abi::obj_field_vtbl and abi::obj_field_box simply specify words 0 and 1
// of 'pair'.
auto pair_vtbl =
bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_vtbl)]);
auto pair_box =
bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_box)]);
vtbl = bcx.build.PointerCast(vtbl, T_ptr(T_empty_struct()));
bcx.build.Store(vtbl, pair_vtbl);
// Next we have to take care of the other half of the pair we're
// returning: a boxed (reference-counted) tuple containing a tydesc,
// typarams, fields, and a pointer to our with_obj.
let TypeRef llbox_ty = T_ptr(T_empty_struct());
if (std::ivec::len[ast::ty_param](ty_params) == 0u &&
std::ivec::len[ast::anon_obj_field](additional_fields) == 0u &&
anon_obj.with_obj == none) {
// If the object we're translating has no fields or type parameters
// and no with_obj, there's not much to do.
bcx.build.Store(C_null(llbox_ty), pair_box);
} else {
// Synthesize a tuple type for fields: [field, ...]
let ty::t fields_ty = ty::mk_imm_tup(ccx.tcx, additional_field_tys);
// Tydescs are run-time instantiations of typarams. We're not
// actually supporting typarams for anon objs yet, but let's
// create space for them in case we ever want them.
let ty::t tydesc_ty = ty::mk_type(ccx.tcx);
let ty::t[] tps = ~[];
for (ast::ty_param tp in ty_params) {
tps += ~[tydesc_ty];
}
// Synthesize a tuple type for typarams: [typaram, ...]
let ty::t typarams_ty = ty::mk_imm_tup(ccx.tcx, tps);
// Tuple type for body:
// [tydesc_ty, [typaram, ...], [field, ...], with_obj]
let ty::t body_ty =
ty::mk_imm_tup(ccx.tcx, ~[tydesc_ty, typarams_ty,
fields_ty, with_obj_ty]);
// Hand this type we've synthesized off to trans_malloc_boxed, which
// allocates a box, including space for a refcount.
auto box = trans_malloc_boxed(bcx, body_ty);
bcx = box.bcx;
// mk_imm_box throws a refcount into the type we're synthesizing,
// so that it looks like:
// [rc, [tydesc_ty, [typaram, ...], [field, ...], with_obj]]
let ty::t boxed_body_ty = ty::mk_imm_box(ccx.tcx, body_ty);
// Grab onto the refcount and body parts of the box we allocated.
auto rc =
GEP_tup_like(bcx, boxed_body_ty, box.val,
~[0, abi::box_rc_field_refcnt]);
bcx = rc.bcx;
auto body =
GEP_tup_like(bcx, boxed_body_ty, box.val,
~[0, abi::box_rc_field_body]);
bcx = body.bcx;
bcx.build.Store(C_int(1), rc.val);
// Put together a tydesc for the body, so that the object can later be
// freed by calling through its tydesc.
// Every object (not just those with type parameters) needs to have a
// tydesc to describe its body, since all objects have unknown type to
// the user of the object. So the tydesc is needed to keep track of
// the types of the object's fields, so that the fields can be freed
// later.
auto body_tydesc =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_tydesc]);
bcx = body_tydesc.bcx;
auto ti = none[@tydesc_info];
auto body_td = get_tydesc(bcx, body_ty, true, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti);
bcx = body_td.bcx;
bcx.build.Store(body_td.val, body_tydesc.val);
// Copy the object's type parameters and fields into the space we
// allocated for the object body. (This is something like saving the
// lexical environment of a function in its closure: the "captured
// typarams" are any type parameters that are passed to the object
// constructor and are then available to the object's methods.
// Likewise for the object's fields.)
// Copy typarams into captured typarams.
auto body_typarams =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_typarams]);
bcx = body_typarams.bcx;
let int i = 0;
for (ast::ty_param tp in ty_params) {
auto typaram = bcx.fcx.lltydescs.(i);
auto capture =
GEP_tup_like(bcx, typarams_ty, body_typarams.val, ~[0, i]);
bcx = capture.bcx;
bcx = copy_val(bcx, INIT, capture.val, typaram,
tydesc_ty).bcx;
i += 1;
}
// Copy additional fields into the object's body.
auto body_fields =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_fields]);
bcx = body_fields.bcx;
i = 0;
for (ast::anon_obj_field f in additional_fields) {
// FIXME (part of issue #538): make this work eventually, when we
// have additional field exprs in the AST.
load_if_immediate(
bcx,
additional_field_vals.(i).val,
additional_field_tys.(i));
auto field =
GEP_tup_like(bcx, fields_ty, body_fields.val, ~[0, i]);
bcx = field.bcx;
bcx = copy_val(bcx, INIT, field.val,
additional_field_vals.(i).val,
additional_field_tys.(i)).bcx;
i += 1;
}
// If there's a with_obj, copy a pointer to it into the object's body.
alt (anon_obj.with_obj) {
case (none) { }
case (some(?e)) {
// If with_obj (the object being extended) exists, translate
// it. Translating with_obj returns a ValueRef (pointer to a
// 2-word value) wrapped in a result.
let result with_obj_val = trans_expr(bcx, e);
auto body_with_obj =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_with_obj]);
bcx = body_with_obj.bcx;
bcx = copy_val(bcx, INIT, body_with_obj.val,
with_obj_val.val, with_obj_ty).bcx;
}
}
// Store box ptr in outer pair.
auto p = bcx.build.PointerCast(box.val, llbox_ty);
bcx.build.Store(p, pair_box);
}
// Cast the final object to how we want its type to appear.
pair = bcx.build.PointerCast(pair, T_ptr(ccx.rust_object_type));
// return the object we built.
ret rslt(bcx, pair);
}
fn init_local(&@block_ctxt cx, &@ast::local local) -> result {
// Make a note to drop this slot on the way out.
assert (cx.fcx.lllocals.contains_key(local.node.id));
auto llptr = cx.fcx.lllocals.get(local.node.id);
auto ty = node_id_type(cx.fcx.lcx.ccx, local.node.id);
auto bcx = cx;
add_clean(cx, llptr, ty);
alt (local.node.init) {
case (some(?init)) {
alt (init.op) {
case (ast::init_assign) {
// Use the type of the RHS because if it's _|_, the LHS
// type might be something else, but we don't want to copy
// the value.
ty =
node_id_type(cx.fcx.lcx.ccx, init.expr.id);
auto sub = trans_lval(bcx, init.expr);
bcx = move_val_if_temp(sub.res.bcx, INIT, llptr,
sub, ty).bcx;
}
case (ast::init_move) {
auto sub = trans_lval(bcx, init.expr);
bcx = move_val(sub.res.bcx, INIT, llptr, sub, ty).bcx;
}
}
}
case (_) { bcx = zero_alloca(bcx, llptr, ty).bcx; }
}
ret rslt(bcx, llptr);
}
fn zero_alloca(&@block_ctxt cx, ValueRef llptr, ty::t t) -> result {
auto bcx = cx;
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
auto llsz = size_of(bcx, t);
auto llalign = align_of(llsz.bcx, t);
bcx = call_bzero(llalign.bcx, llptr, llsz.val, llalign.val).bcx;
} else {
auto llty = type_of(bcx.fcx.lcx.ccx, cx.sp, t);
bcx.build.Store(C_null(llty), llptr);
}
ret rslt(bcx, llptr);
}
fn trans_stmt(&@block_ctxt cx, &ast::stmt s) -> result {
// FIXME Fill in cx.sp
auto bcx = cx;
alt (s.node) {
case (ast::stmt_expr(?e, _)) { bcx = trans_expr(cx, e).bcx; }
case (ast::stmt_decl(?d, _)) {
alt (d.node) {
case (ast::decl_local(?local)) {
bcx = init_local(bcx, local).bcx;
}
case (ast::decl_item(?i)) { trans_item(cx.fcx.lcx, *i); }
}
}
case (_) { cx.fcx.lcx.ccx.sess.unimpl("stmt variant"); }
}
ret rslt(bcx, C_nil());
}
fn new_builder(BasicBlockRef llbb) -> builder {
let BuilderRef llbuild = llvm::LLVMCreateBuilder();
llvm::LLVMPositionBuilderAtEnd(llbuild, llbb);
ret builder(llbuild, @mutable false);
}
// You probably don't want to use this one. See the
// next three functions instead.
fn new_block_ctxt(&@fn_ctxt cx, &block_parent parent, block_kind kind,
&str name) -> @block_ctxt {
let cleanup[] cleanups = ~[];
auto s = str::buf("");
if (cx.lcx.ccx.sess.get_opts().save_temps ||
cx.lcx.ccx.sess.get_opts().debuginfo) {
s = str::buf(cx.lcx.ccx.names.next(name));
}
let BasicBlockRef llbb = llvm::LLVMAppendBasicBlock(cx.llfn, s);
ret @rec(llbb=llbb,
build=new_builder(llbb),
parent=parent,
kind=kind,
mutable cleanups=cleanups,
sp=cx.sp,
fcx=cx);
}
// Use this when you're at the top block of a function or the like.
fn new_top_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt {
ret new_block_ctxt(fcx, parent_none, SCOPE_BLOCK, "function top level");
}
// Use this when you're at a curly-brace or similar lexical scope.
fn new_scope_block_ctxt(&@block_ctxt bcx, &str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), SCOPE_BLOCK, n);
}
fn new_loop_scope_block_ctxt(&@block_ctxt bcx, &option::t[@block_ctxt] _cont,
&@block_ctxt _break, &str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx),
LOOP_SCOPE_BLOCK(_cont, _break), n);
}
// Use this when you're making a general CFG BB within a scope.
fn new_sub_block_ctxt(&@block_ctxt bcx, &str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), NON_SCOPE_BLOCK, n);
}
fn new_raw_block_ctxt(&@fn_ctxt fcx, BasicBlockRef llbb) -> @block_ctxt {
let cleanup[] cleanups = ~[];
ret @rec(llbb=llbb,
build=new_builder(llbb),
parent=parent_none,
kind=NON_SCOPE_BLOCK,
mutable cleanups=cleanups,
sp=fcx.sp,
fcx=fcx);
}
// trans_block_cleanups: Go through all the cleanups attached to this
// block_ctxt and execute them.
//
// When translating a block that introdces new variables during its scope, we
// need to make sure those variables go out of scope when the block ends. We
// do that by running a 'cleanup' function for each variable.
// trans_block_cleanups runs all the cleanup functions for the block.
fn trans_block_cleanups(&@block_ctxt cx, &@block_ctxt cleanup_cx)
-> @block_ctxt {
auto bcx = cx;
if (cleanup_cx.kind == NON_SCOPE_BLOCK) {
assert (std::ivec::len[cleanup](cleanup_cx.cleanups) == 0u);
}
auto i = std::ivec::len[cleanup](cleanup_cx.cleanups);
while (i > 0u) {
i -= 1u;
auto c = cleanup_cx.cleanups.(i);
alt (c) {
case (clean(?cfn)) { bcx = cfn(bcx).bcx; }
case (clean_temp(_, ?cfn)) { bcx = cfn(bcx).bcx; }
}
}
ret bcx;
}
iter block_locals(&ast::block b) -> @ast::local {
// FIXME: putting from inside an iter block doesn't work, so we can't
// use the index here.
for (@ast::stmt s in b.node.stmts) {
alt (s.node) {
case (ast::stmt_decl(?d, _)) {
alt (d.node) {
case (ast::decl_local(?local)) { put local; }
case (_) {/* fall through */ }
}
}
case (_) {/* fall through */ }
}
}
}
fn llstaticallocas_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt {
let cleanup[] cleanups = ~[];
ret @rec(llbb=fcx.llstaticallocas,
build=new_builder(fcx.llstaticallocas),
parent=parent_none,
kind=SCOPE_BLOCK,
mutable cleanups=cleanups,
sp=fcx.sp,
fcx=fcx);
}
fn llderivedtydescs_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt {
let cleanup[] cleanups = ~[];
ret @rec(llbb=fcx.llderivedtydescs,
build=new_builder(fcx.llderivedtydescs),
parent=parent_none,
kind=SCOPE_BLOCK,
mutable cleanups=cleanups,
sp=fcx.sp,
fcx=fcx);
}
fn lldynamicallocas_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt {
let cleanup[] cleanups = ~[];
ret @rec(llbb=fcx.lldynamicallocas,
build=new_builder(fcx.lldynamicallocas),
parent=parent_none,
kind=SCOPE_BLOCK,
mutable cleanups=cleanups,
sp=fcx.sp,
fcx=fcx);
}
fn alloc_ty(&@block_ctxt cx, &ty::t t) -> result {
auto val = C_int(0);
if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) {
// NB: we have to run this particular 'size_of' in a
// block_ctxt built on the llderivedtydescs block for the fn,
// so that the size dominates the array_alloca that
// comes next.
auto n = size_of(llderivedtydescs_block_ctxt(cx.fcx), t);
cx.fcx.llderivedtydescs = n.bcx.llbb;
val = array_alloca(cx, T_i8(), n.val);
} else { val = alloca(cx, type_of(cx.fcx.lcx.ccx, cx.sp, t)); }
// NB: since we've pushed all size calculations in this
// function up to the alloca block, we actually return the
// block passed into us unmodified; it doesn't really
// have to be passed-and-returned here, but it fits
// past caller conventions and may well make sense again,
// so we leave it as-is.
ret rslt(cx, val);
}
fn alloc_local(&@block_ctxt cx, &@ast::local local) -> result {
auto t = node_id_type(cx.fcx.lcx.ccx, local.node.id);
auto r = alloc_ty(cx, t);
r.bcx.fcx.lllocals.insert(local.node.id, r.val);
ret r;
}
fn trans_block(&@block_ctxt cx, &ast::block b, &out_method output) -> result {
auto bcx = cx;
for each (@ast::local local in block_locals(b)) {
// FIXME Update bcx.sp
bcx = alloc_local(bcx, local).bcx;
}
auto r = rslt(bcx, C_nil());
for (@ast::stmt s in b.node.stmts) {
r = trans_stmt(bcx, *s);
bcx = r.bcx;
// If we hit a terminator, control won't go any further so
// we're in dead-code land. Stop here.
if (is_terminated(bcx)) { ret r; }
}
fn accept_out_method(&@ast::expr expr) -> bool {
ret alt (expr.node) {
case (ast::expr_if(_, _, _)) { true }
case (ast::expr_alt(_, _)) { true }
case (ast::expr_block(_)) { true }
case (_) { false }
};
}
alt (b.node.expr) {
case (some(?e)) {
auto ccx = cx.fcx.lcx.ccx;
auto r_ty = ty::expr_ty(ccx.tcx, e);
auto pass = output != return && accept_out_method(e);
if (pass) {
r = trans_expr_out(bcx, e, output);
bcx = r.bcx;
if (is_terminated(bcx) || ty::type_is_bot(ccx.tcx, r_ty)) {
ret r;
}
} else {
auto lv = trans_lval(bcx, e);
r = lv.res;
bcx = r.bcx;
if (is_terminated(bcx) || ty::type_is_bot(ccx.tcx, r_ty)) {
ret r;
}
alt (output) {
case (save_in(?target)) {
// The output method is to save the value at target,
// and we didn't pass it to the recursive trans_expr
// call.
bcx = move_val_if_temp(bcx, INIT, target,
lv, r_ty).bcx;
r = rslt(bcx, C_nil());
}
case (return) { }
}
}
}
case (none) { r = rslt(bcx, C_nil()); }
}
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
ret rslt(bcx, r.val);
}
fn new_local_ctxt(&@crate_ctxt ccx) -> @local_ctxt {
let str[] pth = ~[];
ret @rec(path=pth,
module_path=~[ccx.link_meta.name],
obj_typarams=~[],
obj_fields=~[],
ccx=ccx);
}
// Creates the standard quartet of basic blocks: static allocas, copy args,
// derived tydescs, and dynamic allocas.
fn mk_standard_basic_blocks(ValueRef llfn) ->
tup(BasicBlockRef, BasicBlockRef, BasicBlockRef, BasicBlockRef) {
ret tup(llvm::LLVMAppendBasicBlock(llfn, str::buf("static_allocas")),
llvm::LLVMAppendBasicBlock(llfn, str::buf("copy_args")),
llvm::LLVMAppendBasicBlock(llfn, str::buf("derived_tydescs")),
llvm::LLVMAppendBasicBlock(llfn, str::buf("dynamic_allocas")));
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn new_fn_ctxt(@local_ctxt cx, &span sp, ValueRef llfndecl) -> @fn_ctxt {
let ValueRef llretptr = llvm::LLVMGetParam(llfndecl, 0u);
let ValueRef lltaskptr = llvm::LLVMGetParam(llfndecl, 1u);
let ValueRef llenv = llvm::LLVMGetParam(llfndecl, 2u);
let hashmap[ast::node_id, ValueRef] llargs = new_int_hash[ValueRef]();
let hashmap[ast::node_id, ValueRef] llobjfields =
new_int_hash[ValueRef]();
let hashmap[ast::node_id, ValueRef] lllocals = new_int_hash[ValueRef]();
let hashmap[ast::node_id, ValueRef] llupvars = new_int_hash[ValueRef]();
auto derived_tydescs =
map::mk_hashmap[ty::t, derived_tydesc_info](ty::hash_ty, ty::eq_ty);
auto llbbs = mk_standard_basic_blocks(llfndecl);
ret @rec(llfn=llfndecl,
lltaskptr=lltaskptr,
llenv=llenv,
llretptr=llretptr,
mutable llstaticallocas=llbbs._0,
mutable llcopyargs=llbbs._1,
mutable llderivedtydescs_first=llbbs._2,
mutable llderivedtydescs=llbbs._2,
mutable lldynamicallocas=llbbs._3,
mutable llself=none[val_self_pair],
mutable lliterbody=none[ValueRef],
llargs=llargs,
llobjfields=llobjfields,
lllocals=lllocals,
llupvars=llupvars,
mutable lltydescs=~[],
derived_tydescs=derived_tydescs,
sp=sp,
lcx=cx);
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn_full
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
// create_llargs_for_fn_args: Creates a mapping from incoming arguments to
// allocas created for them.
//
// When we translate a function, we need to map its incoming arguments to the
// spaces that have been created for them (by code in the llallocas field of
// the function's fn_ctxt). create_llargs_for_fn_args populates the llargs
// field of the fn_ctxt with
fn create_llargs_for_fn_args(&@fn_ctxt cx, ast::proto proto,
option::t[ty::t] ty_self, ty::t ret_ty,
&ast::arg[] args,
&ast::ty_param[] ty_params) {
// Skip the implicit arguments 0, 1, and 2. TODO: Pull out 3u and define
// it as a constant, since we're using it in several places in trans this
// way.
auto arg_n = 3u;
alt (ty_self) {
case (some(?tt)) {
cx.llself = some[val_self_pair](rec(v=cx.llenv, t=tt));
}
case (none) {
auto i = 0u;
for (ast::ty_param tp in ty_params) {
auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n);
assert (llarg as int != 0);
cx.lltydescs += ~[llarg];
arg_n += 1u;
i += 1u;
}
}
}
// If the function is actually an iter, populate the lliterbody field of
// the function context with the ValueRef that we get from
// llvm::LLVMGetParam for the iter's body.
if (proto == ast::proto_iter) {
auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n);
assert (llarg as int != 0);
cx.lliterbody = some[ValueRef](llarg);
arg_n += 1u;
}
// Populate the llargs field of the function context with the ValueRefs
// that we get from llvm::LLVMGetParam for each argument.
for (ast::arg arg in args) {
auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n);
assert (llarg as int != 0);
cx.llargs.insert(arg.id, llarg);
arg_n += 1u;
}
}
// Recommended LLVM style, strange though this is, is to copy from args to
// allocas immediately upon entry; this permits us to GEP into structures we
// were passed and whatnot. Apparently mem2reg will mop up.
fn copy_any_self_to_alloca(@fn_ctxt fcx) {
auto bcx = llstaticallocas_block_ctxt(fcx);
alt ({ fcx.llself }) {
case (some(?pair)) {
auto a = alloca(bcx, fcx.lcx.ccx.rust_object_type);
bcx.build.Store(pair.v, a);
fcx.llself = some[val_self_pair](rec(v=a, t=pair.t));
}
case (_) { }
}
}
fn copy_args_to_allocas(@fn_ctxt fcx, &ast::arg[] args, &ty::arg[] arg_tys) {
auto bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs);
let uint arg_n = 0u;
for (ast::arg aarg in args) {
if (aarg.mode == ast::val) {
auto arg_t = type_of_arg(bcx.fcx.lcx, fcx.sp, arg_tys.(arg_n));
auto a = alloca(bcx, arg_t);
auto argval;
alt (bcx.fcx.llargs.find(aarg.id)) {
case (some(?x)) { argval = x; }
case (_) { bcx.fcx.lcx.ccx.sess.span_fatal(aarg.ty.span,
"unbound arg ID in copy_args_to_allocas"); }
}
bcx.build.Store(argval, a);
// Overwrite the llargs entry for this arg with its alloca.
bcx.fcx.llargs.insert(aarg.id, a);
}
arg_n += 1u;
}
}
fn add_cleanups_for_args(&@block_ctxt bcx, &ast::arg[] args,
&ty::arg[] arg_tys) {
let uint arg_n = 0u;
for (ast::arg aarg in args) {
if (aarg.mode == ast::val) {
auto argval;
alt (bcx.fcx.llargs.find(aarg.id)) {
case (some(?x)) { argval = x; }
case (_) { bcx.fcx.lcx.ccx.sess.span_fatal(aarg.ty.span,
"unbound arg ID in copy_args_to_allocas"); }
}
add_clean(bcx, argval, arg_tys.(arg_n).ty);
}
arg_n += 1u;
}
}
fn is_terminated(&@block_ctxt cx) -> bool {
auto inst = llvm::LLVMGetLastInstruction(cx.llbb);
ret llvm::LLVMIsATerminatorInst(inst) as int != 0;
}
fn arg_tys_of_fn(&@crate_ctxt ccx,ast::node_id id) -> ty::arg[] {
alt (ty::struct(ccx.tcx, ty::node_id_to_type(ccx.tcx, id))) {
case (ty::ty_fn(_, ?arg_tys, _, _, _)) { ret arg_tys; }
}
}
fn populate_fn_ctxt_from_llself(@fn_ctxt fcx, val_self_pair llself) {
auto bcx = llstaticallocas_block_ctxt(fcx);
let ty::t[] field_tys = ~[];
for (ast::obj_field f in bcx.fcx.lcx.obj_fields) {
field_tys += ~[node_id_type(bcx.fcx.lcx.ccx, f.id)];
}
// Synthesize a tuple type for the fields so that GEP_tup_like() can work
// its magic.
auto fields_tup_ty = ty::mk_imm_tup(fcx.lcx.ccx.tcx, field_tys);
auto n_typarams = std::ivec::len[ast::ty_param](bcx.fcx.lcx.obj_typarams);
let TypeRef llobj_box_ty = T_obj_ptr(*bcx.fcx.lcx.ccx, n_typarams);
auto box_cell =
bcx.build.GEP(llself.v, ~[C_int(0), C_int(abi::obj_field_box)]);
auto box_ptr = bcx.build.Load(box_cell);
box_ptr = bcx.build.PointerCast(box_ptr, llobj_box_ty);
auto obj_typarams =
bcx.build.GEP(box_ptr,
~[C_int(0), C_int(abi::box_rc_field_body),
C_int(abi::obj_body_elt_typarams)]);
// The object fields immediately follow the type parameters, so we skip
// over them to get the pointer.
auto et = llvm::LLVMGetElementType(val_ty(obj_typarams));
auto obj_fields = bcx.build.Add(vp2i(bcx, obj_typarams), llsize_of(et));
// If we can (i.e. the type is statically sized), then cast the resulting
// fields pointer to the appropriate LLVM type. If not, just leave it as
// i8 *.
if (!ty::type_has_dynamic_size(fcx.lcx.ccx.tcx, fields_tup_ty)) {
auto llfields_ty = type_of(fcx.lcx.ccx, fcx.sp, fields_tup_ty);
obj_fields = vi2p(bcx, obj_fields, T_ptr(llfields_ty));
} else { obj_fields = vi2p(bcx, obj_fields, T_ptr(T_i8())); }
let int i = 0;
for (ast::ty_param p in fcx.lcx.obj_typarams) {
let ValueRef lltyparam =
bcx.build.GEP(obj_typarams, ~[C_int(0), C_int(i)]);
lltyparam = bcx.build.Load(lltyparam);
fcx.lltydescs += ~[lltyparam];
i += 1;
}
i = 0;
for (ast::obj_field f in fcx.lcx.obj_fields) {
auto rslt = GEP_tup_like(bcx, fields_tup_ty, obj_fields, ~[0, i]);
bcx = llstaticallocas_block_ctxt(fcx);
auto llfield = rslt.val;
fcx.llobjfields.insert(f.id, llfield);
i += 1;
}
fcx.llstaticallocas = bcx.llbb;
}
// Ties up the llstaticallocas -> llcopyargs -> llderivedtydescs ->
// lldynamicallocas -> lltop edges.
fn finish_fn(&@fn_ctxt fcx, BasicBlockRef lltop) {
new_builder(fcx.llstaticallocas).Br(fcx.llcopyargs);
new_builder(fcx.llcopyargs).Br(fcx.llderivedtydescs_first);
new_builder(fcx.llderivedtydescs).Br(fcx.lldynamicallocas);
new_builder(fcx.lldynamicallocas).Br(lltop);
}
// trans_fn: creates an LLVM function corresponding to a source language
// function.
fn trans_fn(@local_ctxt cx, &span sp, &ast::_fn f, ValueRef llfndecl,
option::t[ty::t] ty_self, &ast::ty_param[] ty_params,
ast::node_id id) {
set_uwtable(llfndecl);
// Set up arguments to the function.
auto fcx = new_fn_ctxt(cx, sp, llfndecl);
create_llargs_for_fn_args(fcx, f.proto, ty_self,
ty::ret_ty_of_fn(cx.ccx.tcx, id),
f.decl.inputs, ty_params);
copy_any_self_to_alloca(fcx);
alt ({ fcx.llself }) {
case (some(?llself)) { populate_fn_ctxt_from_llself(fcx, llself); }
case (_) { }
}
auto arg_tys = arg_tys_of_fn(fcx.lcx.ccx, id);
copy_args_to_allocas(fcx, f.decl.inputs, arg_tys);
// Create the first basic block in the function and keep a handle on it to
// pass to finish_fn later.
auto bcx = new_top_block_ctxt(fcx);
add_cleanups_for_args(bcx, f.decl.inputs, arg_tys);
auto lltop = bcx.llbb;
auto block_ty = node_id_type(cx.ccx, f.body.node.id);
// This call to trans_block is the place where we bridge between
// translation calls that don't have a return value (trans_crate,
// trans_mod, trans_item, trans_obj, et cetera) and those that do
// (trans_block, trans_expr, et cetera).
auto rslt =
if (!ty::type_is_nil(cx.ccx.tcx, block_ty) &&
!ty::type_is_bot(cx.ccx.tcx, block_ty)) {
trans_block(bcx, f.body, save_in(fcx.llretptr))
} else { trans_block(bcx, f.body, return) };
if (!is_terminated(rslt.bcx)) {
// FIXME: until LLVM has a unit type, we are moving around
// C_nil values rather than their void type.
rslt.bcx.build.RetVoid();
}
// Insert the mandatory first few basic blocks before lltop.
finish_fn(fcx, lltop);
}
// process_fwding_mthd: Create the forwarding function that appears in a
// vtable slot for method calls that "fall through" to an inner object. A
// helper function for create_vtbl.
fn process_fwding_mthd(@local_ctxt cx, &span sp, @ty::method m,
ty::t self_ty,
&ast::ty_param[] ty_params,
ty::t with_obj_ty,
&ty::t[] additional_field_tys) -> ValueRef {
// NB: self_ty (and llself_ty) is the type of the outer object;
// with_obj_ty is the type of the inner object.
// The method m is being called on the outer object, but the outer object
// doesn't have that method; only the inner object does. So what we have
// to do is synthesize that method on the outer object. It has to take
// all the same arguments as the method on the inner object does, then
// call m with those arguments on the inner object, and then return the
// value returned from that call. It's like an eta-expansion around m,
// except we also have to pass the inner object that m should be called
// on. That object won't exist until run-time, but we know its type
// statically.
// Create a local context that's aware of the name of the method we're
// creating.
let @local_ctxt mcx =
@rec(path=cx.path + ~["method", m.ident] with *cx);
// Make up a name for the forwarding function.
let str s = mangle_internal_name_by_path_and_seq(mcx.ccx, mcx.path,
"forwarding_fn");
// Get the forwarding function's type and declare it.
let TypeRef llforwarding_fn_ty =
type_of_fn_full(
cx.ccx, sp, m.proto,
true, m.inputs, m.output,
std::ivec::len[ast::ty_param](ty_params));
let ValueRef llforwarding_fn =
decl_internal_fastcall_fn(cx.ccx.llmod, s, llforwarding_fn_ty);
// Create a new function context and block context for the forwarding
// function, holding onto a pointer to the first block.
auto fcx = new_fn_ctxt(cx, sp, llforwarding_fn);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
// The outer object will arrive in the forwarding function via the llenv
// argument. Put it in an alloca so that we can GEP into it later.
auto llself_obj_ptr = alloca(bcx, fcx.lcx.ccx.rust_object_type);
bcx.build.Store(fcx.llenv, llself_obj_ptr);
// Grab hold of the outer object so we can pass it into the inner object,
// in case that inner object needs to make any self-calls. (Such calls
// will need to dispatch back through the outer object.)
auto llself_obj = bcx.build.Load(llself_obj_ptr);
// The 'llretptr' that will arrive in the forwarding function we're
// creating also needs to be the correct size. Cast it to the size of the
// method's return type, if necessary.
auto llretptr = fcx.llretptr;
if (ty::type_has_dynamic_size(cx.ccx.tcx, m.output)) {
llretptr = bcx.build.PointerCast(llretptr,
T_typaram_ptr(cx.ccx.tn));
}
// Now, we have to get the the with_obj's vtbl out of the self_obj. This
// is a multi-step process:
// First, grab the box out of the self_obj. It contains a refcount and a
// body.
auto llself_obj_box =
bcx.build.GEP(llself_obj_ptr, ~[C_int(0),
C_int(abi::obj_field_box)]);
llself_obj_box = bcx.build.Load(llself_obj_box);
auto ccx = bcx.fcx.lcx.ccx;
auto llbox_ty = T_opaque_obj_ptr(*ccx);
llself_obj_box = bcx.build.PointerCast(llself_obj_box, llbox_ty);
// Now, reach into the box and grab the body.
auto llself_obj_body =
bcx.build.GEP(llself_obj_box, ~[C_int(0),
C_int(abi::box_rc_field_body)]);
// Now, we need to figure out exactly what type the body is supposed to be
// cast to.
// NB: This next part is almost flat-out copypasta from trans_anon_obj.
// It would be great to factor this out.
// Synthesize a tuple type for fields: [field, ...]
let ty::t fields_ty = ty::mk_imm_tup(cx.ccx.tcx, additional_field_tys);
// Tydescs are run-time instantiations of typarams. We're not
// actually supporting typarams for anon objs yet, but let's
// create space for them in case we ever want them.
let ty::t tydesc_ty = ty::mk_type(cx.ccx.tcx);
let ty::t[] tps = ~[];
for (ast::ty_param tp in ty_params) {
tps += ~[tydesc_ty];
}
// Synthesize a tuple type for typarams: [typaram, ...]
let ty::t typarams_ty = ty::mk_imm_tup(cx.ccx.tcx, tps);
// Tuple type for body:
// [tydesc_ty, [typaram, ...], [field, ...], with_obj]
let ty::t body_ty =
ty::mk_imm_tup(cx.ccx.tcx, ~[tydesc_ty, typarams_ty,
fields_ty, with_obj_ty]);
// And cast to that type.
llself_obj_body = bcx.build.PointerCast(llself_obj_body,
T_ptr(type_of(cx.ccx, sp,
body_ty)));
// Now, reach into the body and grab the with_obj.
auto llwith_obj =
GEP_tup_like(bcx,
body_ty,
llself_obj_body,
~[0, abi::obj_body_elt_with_obj]);
bcx = llwith_obj.bcx;
// And, now, somewhere in with_obj is a vtable with an entry for the
// method we want. First, pick out the vtable, and then pluck that
// method's entry out of the vtable so that the forwarding function can
// call it.
auto llwith_obj_vtbl =
bcx.build.GEP(llwith_obj.val, ~[C_int(0),
C_int(abi::obj_field_vtbl)]);
llwith_obj_vtbl = bcx.build.Load(llwith_obj_vtbl);
// Get the index of the method we want.
let uint ix = 0u;
alt (ty::struct(bcx.fcx.lcx.ccx.tcx, with_obj_ty)) {
case (ty::ty_obj(?methods)) {
ix = ty::method_idx(cx.ccx.sess, sp, m.ident, methods);
}
case (_) {
// Shouldn't happen.
cx.ccx.sess.bug("process_fwding_mthd(): non-object type passed "
+ "as with_obj_ty");
}
}
// Pick out the original method from the vtable. The +1 is because slot
// #0 contains the destructor.
auto vtbl_type = T_ptr(T_array(T_ptr(T_nil()), ix + 2u));
llwith_obj_vtbl = bcx.build.PointerCast(llwith_obj_vtbl, vtbl_type);
auto llorig_mthd = bcx.build.GEP(llwith_obj_vtbl,
~[C_int(0), C_int(ix + 1u as int)]);
// Set up the original method to be called.
auto orig_mthd_ty = ty::method_ty_to_fn_ty(cx.ccx.tcx, *m);
auto llorig_mthd_ty =
type_of_fn_full(bcx.fcx.lcx.ccx, sp,
ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, orig_mthd_ty),
true,
m.inputs,
m.output,
std::ivec::len[ast::ty_param](ty_params));
llorig_mthd = bcx.build.PointerCast(llorig_mthd,
T_ptr(T_ptr(llorig_mthd_ty)));
llorig_mthd = bcx.build.Load(llorig_mthd);
// Set up the three implicit arguments to the original method we'll need
// to call.
let ValueRef[] llorig_mthd_args = ~[llretptr, fcx.lltaskptr, llself_obj];
// Copy the explicit arguments that are being passed into the forwarding
// function (they're in fcx.llargs) to llorig_mthd_args.
let uint a = 3u; // retptr, task ptr, env come first
let ValueRef passed_arg = llvm::LLVMGetParam(llforwarding_fn, a);
for (ty::arg arg in m.inputs) {
if (arg.mode == ty::mo_val) {
passed_arg = load_if_immediate(bcx, passed_arg, arg.ty);
}
llorig_mthd_args += ~[passed_arg];
a += 1u;
}
// And, finally, call the original method.
bcx.build.FastCall(llorig_mthd, llorig_mthd_args);
bcx.build.RetVoid();
finish_fn(fcx, lltop);
ret llforwarding_fn;
}
// process_normal_mthd: Create the contents of a normal vtable slot. A helper
// function for create_vtbl.
fn process_normal_mthd(@local_ctxt cx, @ast::method m,
ty::t self_ty, &ast::ty_param[] ty_params)
-> ValueRef {
auto llfnty = T_nil();
alt (ty::struct(cx.ccx.tcx, node_id_type(cx.ccx, m.node.id))){
case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) {
llfnty =
type_of_fn_full(
cx.ccx, m.span, proto,
true, inputs, output,
std::ivec::len[ast::ty_param](ty_params));
}
}
let @local_ctxt mcx =
@rec(path=cx.path + ~["method", m.node.ident] with *cx);
let str s = mangle_internal_name_by_path(mcx.ccx, mcx.path);
let ValueRef llfn =
decl_internal_fastcall_fn(cx.ccx.llmod, s, llfnty);
// Every method on an object gets its node_id inserted into the
// crate-wide item_ids map, together with the ValueRef that points to
// where that method's definition will be in the executable.
cx.ccx.item_ids.insert(m.node.id, llfn);
cx.ccx.item_symbols.insert(m.node.id, s);
trans_fn(mcx, m.span, m.node.meth, llfn,
some(self_ty),
ty_params, m.node.id);
ret llfn;
}
// Create a vtable for an object being translated. Returns a pointer into
// read-only memory.
fn create_vtbl(@local_ctxt cx, &span sp, ty::t self_ty,
&ast::_obj ob, &ast::ty_param[] ty_params,
option::t[ty::t] with_obj_ty,
&ty::t[] additional_field_tys) -> ValueRef {
// Used only inside create_vtbl to distinguish different kinds of slots
// we'll have to create.
tag vtbl_mthd {
// Normal methods are complete AST nodes, but for forwarding methods,
// the only information we'll have about them is their type.
normal_mthd(@ast::method);
fwding_mthd(@ty::method);
}
auto dtor = C_null(T_ptr(T_i8()));
alt (ob.dtor) {
case (some(?d)) {
auto dtor_1 = trans_dtor(cx, self_ty, ty_params, d);
dtor = llvm::LLVMConstBitCast(dtor_1, val_ty(dtor));
}
case (none) { }
}
let ValueRef[] llmethods = ~[dtor];
let vtbl_mthd[] meths = ~[];
alt (with_obj_ty) {
case (none) {
// If there's no with_obj, then we don't need any forwarding
// slots. Just use the object's regular methods.
for (@ast::method m in ob.methods) { meths += ~[normal_mthd(m)]; }
}
case (some(?with_obj_ty)) {
// Handle forwarding slots.
// If this vtable is being created for an extended object, then
// the vtable needs to contain 'forwarding slots' for methods that
// were on the original object and are not being overloaded by the
// extended one. So, to find the set of methods that we need
// forwarding slots for, we need to take the set difference of
// with_obj_methods (methods on the original object) and
// ob.methods (methods on the object being added).
// If we're here, then with_obj_ty and llwith_obj_ty are the type
// of the inner object, and "ob" is the wrapper object. We need
// to take apart with_obj_ty (it had better have an object type
// with methods!) and put those original methods onto the list of
// methods we need forwarding methods for.
// Gather up methods on the original object in 'meths'.
alt (ty::struct(cx.ccx.tcx, with_obj_ty)) {
case (ty::ty_obj(?with_obj_methods)) {
for (ty::method m in with_obj_methods) {
meths += ~[fwding_mthd(@m)];
}
}
case (_) {
// Shouldn't happen.
cx.ccx.sess.bug("create_vtbl(): trying to extend a "
+ "non-object");
}
}
// Now, filter out any methods that we don't need forwarding slots
// for, because they're being replaced.
fn filtering_fn(@local_ctxt cx, &vtbl_mthd m,
(@ast::method)[] addtl_meths)
-> option::t[vtbl_mthd] {
alt (m) {
case (fwding_mthd(?fm)) {
// Since fm is a fwding_mthd, and we're checking to
// see if it's in addtl_meths (which only contains
// normal_mthds), we can't just check if fm is a
// member of addtl_meths. Instead, we have to go
// through addtl_meths and see if there's some method
// in it that has the same name as fm.
// FIXME (part of #543): We're only checking names
// here. If a method is replacing another, it also
// needs to have the same type, but this should
// probably be enforced in typechecking.
for (@ast::method am in addtl_meths) {
if (str::eq(am.node.ident, fm.ident)) {
ret none;
}
}
ret some(fwding_mthd(fm));
}
case (normal_mthd(_)) {
// Should never happen.
cx.ccx.sess.bug("create_vtbl(): shouldn't be any"
+ " normal_mthds in meths here");
}
}
}
auto f = bind filtering_fn(cx, _, ob.methods);
meths = std::ivec::filter_map[vtbl_mthd, vtbl_mthd](f, meths);
// And now add the additional ones (both replacements and entirely
// new ones). These'll just be normal methods.
for (@ast::method m in ob.methods) {
meths += ~[normal_mthd(m)];
}
}
}
// Sort all the methods.
fn vtbl_mthd_lteq(&vtbl_mthd a, &vtbl_mthd b) -> bool {
alt (a) {
case (normal_mthd(?ma)) {
alt (b) {
case (normal_mthd(?mb)) {
ret str::lteq(ma.node.ident, mb.node.ident);
}
case (fwding_mthd(?mb)) {
ret str::lteq(ma.node.ident, mb.ident);
}
}
}
case (fwding_mthd(?ma)) {
alt (b) {
case (normal_mthd(?mb)) {
ret str::lteq(ma.ident, mb.node.ident);
}
case (fwding_mthd(?mb)) {
ret str::lteq(ma.ident, mb.ident);
}
}
}
}
}
meths = std::sort::ivector::merge_sort[vtbl_mthd]
(bind vtbl_mthd_lteq(_, _), meths);
// Now that we have our list of methods, we can process them in order.
for (vtbl_mthd m in meths) {
alt (m) {
case (normal_mthd(?nm)) {
llmethods += ~[process_normal_mthd(cx, nm, self_ty,
ty_params)];
}
// If we have to process a forwarding method, then we need to know
// about the with_obj's type as well as the outer object's type.
case (fwding_mthd(?fm)) {
alt (with_obj_ty) {
case (none) {
// This shouldn't happen; if we're trying to process a
// forwarding method, then we should always have a
// with_obj_ty.
cx.ccx.sess.bug("create_vtbl(): trying to create "
+ "forwarding method without a type "
+ "of object to forward to");
}
case (some(?t)) {
llmethods += ~[process_fwding_mthd(
cx, sp, fm,
self_ty, ty_params,
t,
additional_field_tys)];
}
}
}
}
}
auto vtbl = C_struct(llmethods);
auto vtbl_name = mangle_internal_name_by_path(cx.ccx,
cx.path + ~["vtbl"]);
auto gvar =
llvm::LLVMAddGlobal(cx.ccx.llmod, val_ty(vtbl), str::buf(vtbl_name));
llvm::LLVMSetInitializer(gvar, vtbl);
llvm::LLVMSetGlobalConstant(gvar, True);
llvm::LLVMSetLinkage(gvar,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
ret gvar;
}
fn trans_dtor(@local_ctxt cx, ty::t self_ty,
&ast::ty_param[] ty_params, &@ast::method dtor) -> ValueRef {
auto llfnty = T_dtor(cx.ccx, dtor.span);
let str s = mangle_internal_name_by_path(cx.ccx, cx.path + ~["drop"]);
let ValueRef llfn = decl_internal_fastcall_fn(cx.ccx.llmod, s, llfnty);
cx.ccx.item_ids.insert(dtor.node.id, llfn);
cx.ccx.item_symbols.insert(dtor.node.id, s);
trans_fn(cx, dtor.span, dtor.node.meth, llfn,
some(self_ty), ty_params,
dtor.node.id);
ret llfn;
}
// trans_obj: creates an LLVM function that is the object constructor for the
// object being translated.
fn trans_obj(@local_ctxt cx, &span sp, &ast::_obj ob, ast::node_id ctor_id,
&ast::ty_param[] ty_params) {
// To make a function, we have to create a function context and, inside
// that, a number of block contexts for which code is generated.
auto ccx = cx.ccx;
auto llctor_decl;
alt (ccx.item_ids.find(ctor_id)) {
case (some(?x)) { llctor_decl = x; }
case (_) { cx.ccx.sess.span_fatal(sp,
"unbound llctor_decl in trans_obj"); }
}
// Much like trans_fn, we must create an LLVM function, but since we're
// starting with an ast::_obj rather than an ast::_fn, we have some setup
// work to do.
// The fields of our object will become the arguments to the function
// we're creating.
let ast::arg[] fn_args = ~[];
for (ast::obj_field f in ob.fields) {
fn_args +=
~[rec(mode=ast::alias(false), ty=f.ty, ident=f.ident, id=f.id)];
}
auto fcx = new_fn_ctxt(cx, sp, llctor_decl);
// Both regular arguments and type parameters are handled here.
create_llargs_for_fn_args(fcx, ast::proto_fn, none[ty::t],
ty::ret_ty_of_fn(ccx.tcx, ctor_id),
fn_args, ty_params);
let ty::arg[] arg_tys = arg_tys_of_fn(ccx, ctor_id);
copy_args_to_allocas(fcx, fn_args, arg_tys);
// Create the first block context in the function and keep a handle on it
// to pass to finish_fn later.
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
// Pick up the type of this object by looking at our own output type, that
// is, the output type of the object constructor we're building.
auto self_ty = ty::ret_ty_of_fn(ccx.tcx, ctor_id);
// Set up the two-word pair that we're going to return from the object
// constructor we're building. The two elements of this pair will be a
// vtable pointer and a body pointer. (llretptr already points to the
// place where this two-word pair should go; it was pre-allocated by the
// caller of the function.)
auto pair = bcx.fcx.llretptr;
// Grab onto the first and second elements of the pair.
// abi::obj_field_vtbl and abi::obj_field_box simply specify words 0 and 1
// of 'pair'.
auto pair_vtbl =
bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_vtbl)]);
auto pair_box =
bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_box)]);
// Make a vtable for this object: a static array of pointers to functions.
// It will be located in the read-only memory of the executable we're
// creating and will contain ValueRefs for all of this object's methods.
// create_vtbl returns a pointer to the vtable, which we store.
auto vtbl = create_vtbl(cx, sp, self_ty, ob, ty_params, none,
~[]);
vtbl = bcx.build.PointerCast(vtbl, T_ptr(T_empty_struct()));
bcx.build.Store(vtbl, pair_vtbl);
// Next we have to take care of the other half of the pair we're
// returning: a boxed (reference-counted) tuple containing a tydesc,
// typarams, and fields.
// FIXME: What about with_obj? Do we have to think about it here?
// (Pertains to issues #538/#539/#540/#543.)
let TypeRef llbox_ty = T_ptr(T_empty_struct());
// FIXME: we should probably also allocate a box for empty objs that have
// a dtor, since otherwise they are never dropped, and the dtor never
// runs.
if (std::ivec::len[ast::ty_param](ty_params) == 0u &&
std::ivec::len[ty::arg](arg_tys) == 0u) {
// If the object we're translating has no fields or type parameters,
// there's not much to do.
// Store null into pair, if no args or typarams.
bcx.build.Store(C_null(llbox_ty), pair_box);
} else {
// Otherwise, we have to synthesize a big structural type for the
// object body.
let ty::t[] obj_fields = ~[];
for (ty::arg a in arg_tys) { obj_fields += ~[a.ty]; }
// Tuple type for fields: [field, ...]
let ty::t fields_ty = ty::mk_imm_tup(ccx.tcx, obj_fields);
auto tydesc_ty = ty::mk_type(ccx.tcx);
let ty::t[] tps = ~[];
for (ast::ty_param tp in ty_params) { tps += ~[tydesc_ty]; }
// Tuple type for typarams: [typaram, ...]
let ty::t typarams_ty = ty::mk_imm_tup(ccx.tcx, tps);
// Tuple type for body: [tydesc_ty, [typaram, ...], [field, ...]]
let ty::t body_ty =
ty::mk_imm_tup(ccx.tcx, ~[tydesc_ty, typarams_ty, fields_ty]);
// Hand this type we've synthesized off to trans_malloc_boxed, which
// allocates a box, including space for a refcount.
auto box = trans_malloc_boxed(bcx, body_ty);
bcx = box.bcx;
// mk_imm_box throws a refcount into the type we're synthesizing, so
// that it looks like: [rc, [tydesc_ty, [typaram, ...], [field, ...]]]
let ty::t boxed_body_ty = ty::mk_imm_box(ccx.tcx, body_ty);
// Grab onto the refcount and body parts of the box we allocated.
auto rc =
GEP_tup_like(bcx, boxed_body_ty, box.val,
~[0, abi::box_rc_field_refcnt]);
bcx = rc.bcx;
auto body =
GEP_tup_like(bcx, boxed_body_ty, box.val,
~[0, abi::box_rc_field_body]);
bcx = body.bcx;
bcx.build.Store(C_int(1), rc.val);
// Put together a tydesc for the body, so that the object can later be
// freed by calling through its tydesc.
// Every object (not just those with type parameters) needs to have a
// tydesc to describe its body, since all objects have unknown type to
// the user of the object. So the tydesc is needed to keep track of
// the types of the object's fields, so that the fields can be freed
// later.
auto body_tydesc =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_tydesc]);
bcx = body_tydesc.bcx;
auto ti = none[@tydesc_info];
auto body_td = get_tydesc(bcx, body_ty, true, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti);
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti);
bcx = body_td.bcx;
bcx.build.Store(body_td.val, body_tydesc.val);
// Copy the object's type parameters and fields into the space we
// allocated for the object body. (This is something like saving the
// lexical environment of a function in its closure: the "captured
// typarams" are any type parameters that are passed to the object
// constructor and are then available to the object's methods.
// Likewise for the object's fields.)
// Copy typarams into captured typarams.
auto body_typarams =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_typarams]);
bcx = body_typarams.bcx;
let int i = 0;
for (ast::ty_param tp in ty_params) {
auto typaram = bcx.fcx.lltydescs.(i);
auto capture =
GEP_tup_like(bcx, typarams_ty, body_typarams.val, ~[0, i]);
bcx = capture.bcx;
bcx = copy_val(bcx, INIT, capture.val, typaram, tydesc_ty).bcx;
i += 1;
}
// Copy args into body fields.
auto body_fields =
GEP_tup_like(bcx, body_ty, body.val,
~[0, abi::obj_body_elt_fields]);
bcx = body_fields.bcx;
i = 0;
for (ast::obj_field f in ob.fields) {
alt (bcx.fcx.llargs.find(f.id)) {
case (some(?arg1)) {
auto arg = load_if_immediate(bcx, arg1, arg_tys.(i).ty);
auto field =
GEP_tup_like(bcx, fields_ty, body_fields.val,
~[0, i]);
bcx = field.bcx;
bcx = copy_val(bcx, INIT, field.val, arg,
arg_tys.(i).ty).bcx;
i += 1;
}
case (none) {
bcx.fcx.lcx.ccx.sess.span_fatal(f.ty.span,
"internal error in trans_obj");
}
}
}
// Store box ptr in outer pair.
auto p = bcx.build.PointerCast(box.val, llbox_ty);
bcx.build.Store(p, pair_box);
}
bcx.build.RetVoid();
// Insert the mandatory first few basic blocks before lltop.
finish_fn(fcx, lltop);
}
fn trans_res_ctor(@local_ctxt cx, &span sp, &ast::_fn dtor,
ast::node_id ctor_id, &ast::ty_param[] ty_params) {
// Create a function for the constructor
auto llctor_decl;
alt (cx.ccx.item_ids.find(ctor_id)) {
case (some(?x)) { llctor_decl = x; }
case (_) {
cx.ccx.sess.span_fatal(sp, "unbound ctor_id in trans_res_ctor");
}
}
auto fcx = new_fn_ctxt(cx, sp, llctor_decl);
auto ret_t = ty::ret_ty_of_fn(cx.ccx.tcx, ctor_id);
create_llargs_for_fn_args(fcx, ast::proto_fn, none[ty::t],
ret_t, dtor.decl.inputs, ty_params);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto arg_t = arg_tys_of_fn(cx.ccx, ctor_id).(0).ty;
auto tup_t = ty::mk_imm_tup(cx.ccx.tcx, ~[ty::mk_int(cx.ccx.tcx), arg_t]);
auto arg;
alt (fcx.llargs.find(dtor.decl.inputs.(0).id)) {
case (some(?x)) { arg = load_if_immediate(bcx, x, arg_t); }
case (_) {
cx.ccx.sess.span_fatal(sp, "unbound dtor decl in trans_res_ctor");
}
}
auto llretptr = fcx.llretptr;
if (ty::type_has_dynamic_size(cx.ccx.tcx, ret_t)) {
auto llret_t = T_ptr(T_struct(~[T_i32(), llvm::LLVMTypeOf(arg)]));
llretptr = bcx.build.BitCast(llretptr, llret_t);
}
auto dst = GEP_tup_like(bcx, tup_t, llretptr, ~[0, 1]);
bcx = dst.bcx;
bcx = copy_val(bcx, INIT, dst.val, arg, arg_t).bcx;
auto flag = GEP_tup_like(bcx, tup_t, llretptr, ~[0, 0]);
bcx = flag.bcx;
bcx.build.Store(C_int(1), flag.val);
bcx.build.RetVoid();
finish_fn(fcx, lltop);
}
fn trans_tag_variant(@local_ctxt cx, ast::node_id tag_id,
&ast::variant variant, int index, bool is_degen,
&ast::ty_param[] ty_params) {
if (std::ivec::len[ast::variant_arg](variant.node.args) == 0u) {
ret; // nullary constructors are just constants
}
// Translate variant arguments to function arguments.
let ast::arg[] fn_args = ~[];
auto i = 0u;
for (ast::variant_arg varg in variant.node.args) {
fn_args +=
~[rec(mode=ast::alias(false),
ty=varg.ty,
ident="arg" + uint::to_str(i, 10u),
id=varg.id)];
}
assert (cx.ccx.item_ids.contains_key(variant.node.id));
let ValueRef llfndecl;
alt (cx.ccx.item_ids.find(variant.node.id)) {
case (some(?x)) { llfndecl = x; }
case (_) {
cx.ccx.sess.span_fatal(variant.span,
"unbound variant id in trans_tag_variant");
}
}
auto fcx = new_fn_ctxt(cx, variant.span, llfndecl);
create_llargs_for_fn_args(fcx, ast::proto_fn, none[ty::t],
ty::ret_ty_of_fn(cx.ccx.tcx, variant.node.id),
fn_args, ty_params);
let ty::t[] ty_param_substs = ~[];
i = 0u;
for (ast::ty_param tp in ty_params) {
ty_param_substs += ~[ty::mk_param(cx.ccx.tcx, i)];
i += 1u;
}
auto arg_tys = arg_tys_of_fn(cx.ccx, variant.node.id);
copy_args_to_allocas(fcx, fn_args, arg_tys);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
auto llblobptr = if (is_degen) {
fcx.llretptr
} else {
// Cast the tag to a type we can GEP into.
auto lltagptr = bcx.build.PointerCast
(fcx.llretptr, T_opaque_tag_ptr(fcx.lcx.ccx.tn));
auto lldiscrimptr = bcx.build.GEP(lltagptr, ~[C_int(0), C_int(0)]);
bcx.build.Store(C_int(index), lldiscrimptr);
bcx.build.GEP(lltagptr, ~[C_int(0), C_int(1)])
};
i = 0u;
for (ast::variant_arg va in variant.node.args) {
auto rslt =
GEP_tag(bcx, llblobptr, ast::local_def(tag_id),
ast::local_def(variant.node.id), ty_param_substs,
i as int);
bcx = rslt.bcx;
auto lldestptr = rslt.val;
// If this argument to this function is a tag, it'll have come in to
// this function as an opaque blob due to the way that type_of()
// works. So we have to cast to the destination's view of the type.
auto llargptr;
alt (fcx.llargs.find(va.id)) {
case (some(?x)) {
llargptr = bcx.build.PointerCast(x, val_ty(lldestptr));
}
case (none) {
bcx.fcx.lcx.ccx.sess.bug("unbound argptr in \
trans_tag_variant");
}
}
auto arg_ty = arg_tys.(i).ty;
auto llargval;
if (ty::type_is_structural(cx.ccx.tcx, arg_ty) ||
ty::type_has_dynamic_size(cx.ccx.tcx, arg_ty)) {
llargval = llargptr;
} else { llargval = bcx.build.Load(llargptr); }
rslt = copy_val(bcx, INIT, lldestptr, llargval, arg_ty);
bcx = rslt.bcx;
i += 1u;
}
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
bcx.build.RetVoid();
finish_fn(fcx, lltop);
}
// FIXME: this should do some structural hash-consing to avoid
// duplicate constants. I think. Maybe LLVM has a magical mode
// that does so later on?
fn trans_const_expr(&@crate_ctxt cx, @ast::expr e) -> ValueRef {
alt (e.node) {
case (ast::expr_lit(?lit)) { ret trans_crate_lit(cx, *lit); }
case (_) {
cx.sess.span_unimpl(e.span, "consts that's not a plain literal");
}
}
}
fn trans_const(&@crate_ctxt cx, @ast::expr e, ast::node_id id) {
auto v = trans_const_expr(cx, e);
// The scalars come back as 1st class LLVM vals
// which we have to stick into global constants.
alt (cx.consts.find(id)) {
case (some(?g)) {
llvm::LLVMSetInitializer(g, v);
llvm::LLVMSetGlobalConstant(g, True);
}
case (_) {
cx.sess.span_fatal(e.span, "Unbound const in trans_const");
}
}
}
fn trans_item(@local_ctxt cx, &ast::item item) {
alt (item.node) {
case (ast::item_fn(?f, ?tps)) {
auto sub_cx = extend_path(cx, item.ident);
alt (cx.ccx.item_ids.find(item.id)) {
case (some(?llfndecl)) {
trans_fn(sub_cx, item.span, f, llfndecl,
none, tps, item.id);
}
case (_) {
cx.ccx.sess.span_fatal(item.span,
"unbound function item in trans_item");
}
}
}
case (ast::item_obj(?ob, ?tps, ?ctor_id)) {
auto sub_cx =
@rec(obj_typarams=tps, obj_fields=ob.fields
with *extend_path(cx, item.ident));
trans_obj(sub_cx, item.span, ob, ctor_id, tps);
}
case (ast::item_res(?dtor, ?dtor_id, ?tps, ?ctor_id)) {
trans_res_ctor(cx, item.span, dtor, ctor_id, tps);
// Create a function for the destructor
alt (cx.ccx.item_ids.find(item.id)) {
case (some(?lldtor_decl)) {
trans_fn(cx, item.span, dtor, lldtor_decl, none, tps,
dtor_id);
}
case (_) { cx.ccx.sess.span_fatal(item.span,
"unbound dtor in trans_item"); }
}
}
case (ast::item_mod(?m)) {
auto sub_cx =
@rec(path=cx.path + ~[item.ident],
module_path=cx.module_path + ~[item.ident] with *cx);
trans_mod(sub_cx, m);
}
case (ast::item_tag(?variants, ?tps)) {
auto sub_cx = extend_path(cx, item.ident);
auto degen = std::ivec::len(variants) == 1u;
auto i = 0;
for (ast::variant variant in variants) {
trans_tag_variant(sub_cx, item.id, variant, i, degen, tps);
i += 1;
}
}
case (ast::item_const(_, ?expr)) {
trans_const(cx.ccx, expr, item.id);
}
case (_) {/* fall through */ }
}
}
// Translate a module. Doing this amounts to translating the items in the
// module; there ends up being no artifact (aside from linkage names) of
// separate modules in the compiled program. That's because modules exist
// only as a convenience for humans working with the code, to organize names
// and control visibility.
fn trans_mod(@local_ctxt cx, &ast::_mod m) {
for (@ast::item item in m.items) { trans_item(cx, *item); }
}
fn get_pair_fn_ty(TypeRef llpairty) -> TypeRef {
// Bit of a kludge: pick the fn typeref out of the pair.
ret struct_elt(llpairty, 0u);
}
fn decl_fn_and_pair(&@crate_ctxt ccx, &span sp, &str[] path, str flav,
&ast::ty_param[] ty_params, ast::node_id node_id) {
decl_fn_and_pair_full(ccx, sp, path, flav, ty_params, node_id,
node_id_type(ccx, node_id));
}
fn decl_fn_and_pair_full(&@crate_ctxt ccx, &span sp, &str[] path, str flav,
&ast::ty_param[] ty_params, ast::node_id node_id,
ty::t node_type) {
auto llfty;
alt (ty::struct(ccx.tcx, node_type)) {
case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) {
llfty =
type_of_fn(ccx, sp, proto, inputs, output,
std::ivec::len[ast::ty_param](ty_params));
}
case (_) {
ccx.sess.bug("decl_fn_and_pair(): fn item doesn't have fn type!");
}
}
let bool is_main = is_main_name(path) && !ccx.sess.get_opts().library;
// Declare the function itself.
let str s =
if (is_main) {
"_rust_main"
} else { mangle_internal_name_by_path(ccx, path) };
let ValueRef llfn = decl_internal_fastcall_fn(ccx.llmod, s, llfty);
// Declare the global constant pair that points to it.
let str ps = mangle_exported_name(ccx, path, node_type);
register_fn_pair(ccx, ps, llfty, llfn, node_id);
if (is_main) {
if (ccx.main_fn != none[ValueRef]) {
ccx.sess.span_fatal(sp, "multiple 'main' functions");
}
llvm::LLVMSetLinkage(llfn,
lib::llvm::LLVMExternalLinkage as llvm::Linkage);
ccx.main_fn = some(llfn);
}
}
// Create a closure: a pair containing (1) a ValueRef, pointing to where the
// fn's definition is in the executable we're creating, and (2) a pointer to
// space for the function's environment.
fn create_fn_pair(&@crate_ctxt cx, str ps, TypeRef llfnty, ValueRef llfn,
bool external) -> ValueRef {
auto gvar =
llvm::LLVMAddGlobal(cx.llmod, T_fn_pair(*cx, llfnty), str::buf(ps));
auto pair = C_struct(~[llfn, C_null(T_opaque_closure_ptr(*cx))]);
llvm::LLVMSetInitializer(gvar, pair);
llvm::LLVMSetGlobalConstant(gvar, True);
if (!external) {
llvm::LLVMSetLinkage(gvar,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
}
ret gvar;
}
// Create a /real/ closure: this is like create_fn_pair, but creates a
// a fn value on the stack with a specified environment (which need not be
// on the stack).
fn create_real_fn_pair(&@block_ctxt cx, TypeRef llfnty,
ValueRef llfn, ValueRef llenvptr) -> ValueRef {
auto lcx = cx.fcx.lcx;
auto pair = alloca(cx, T_fn_pair(*lcx.ccx, llfnty));
auto code_cell =
cx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_code)]);
cx.build.Store(llfn, code_cell);
auto env_cell =
cx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_box)]);
auto llenvblobptr =
cx.build.PointerCast(llenvptr,
T_opaque_closure_ptr(*lcx.ccx));
cx.build.Store(llenvblobptr, env_cell);
ret pair;
}
fn register_fn_pair(&@crate_ctxt cx, str ps, TypeRef llfnty, ValueRef llfn,
ast::node_id id) {
// FIXME: We should also hide the unexported pairs in crates.
auto gvar =
create_fn_pair(cx, ps, llfnty, llfn, cx.sess.get_opts().library);
cx.item_ids.insert(id, llfn);
cx.item_symbols.insert(id, ps);
cx.fn_pairs.insert(id, gvar);
}
// Returns the number of type parameters that the given native function has.
fn native_fn_ty_param_count(&@crate_ctxt cx, ast::node_id id) -> uint {
auto count;
auto native_item = alt (cx.ast_map.find(id)) {
case (some(ast_map::node_native_item(?i))) { i }
};
alt (native_item.node) {
case (ast::native_item_ty) {
cx.sess.bug("decl_native_fn_and_pair(): native fn isn't " +
"actually a fn");
}
case (ast::native_item_fn(_, _, ?tps)) {
count = std::ivec::len[ast::ty_param](tps);
}
}
ret count;
}
fn native_fn_wrapper_type(&@crate_ctxt cx, &span sp, uint ty_param_count,
ty::t x) -> TypeRef {
alt (ty::struct(cx.tcx, x)) {
case (ty::ty_native_fn(?abi, ?args, ?out)) {
ret type_of_fn(cx, sp, ast::proto_fn, args, out, ty_param_count);
}
}
}
fn decl_native_fn_and_pair(&@crate_ctxt ccx, &span sp, &str[] path, str name,
ast::node_id id) {
auto num_ty_param = native_fn_ty_param_count(ccx, id);
// Declare the wrapper.
auto t = node_id_type(ccx, id);
auto wrapper_type = native_fn_wrapper_type(ccx, sp, num_ty_param, t);
let str s = mangle_internal_name_by_path(ccx, path);
let ValueRef wrapper_fn =
decl_internal_fastcall_fn(ccx.llmod, s, wrapper_type);
// Declare the global constant pair that points to it.
let str ps = mangle_exported_name(ccx, path, node_id_type(ccx, id));
register_fn_pair(ccx, ps, wrapper_type, wrapper_fn, id);
// Build the wrapper.
auto fcx = new_fn_ctxt(new_local_ctxt(ccx), sp, wrapper_fn);
auto bcx = new_top_block_ctxt(fcx);
auto lltop = bcx.llbb;
// Declare the function itself.
auto fn_type = node_id_type(ccx, id); // NB: has no type params
auto abi = ty::ty_fn_abi(ccx.tcx, fn_type);
// FIXME: If the returned type is not nil, then we assume it's 32 bits
// wide. This is obviously wildly unsafe. We should have a better FFI
// that allows types of different sizes to be returned.
auto rty = ty::ty_fn_ret(ccx.tcx, fn_type);
auto rty_is_nil = ty::type_is_nil(ccx.tcx, rty);
auto pass_task;
auto uses_retptr;
auto cast_to_i32;
alt (abi) {
case (ast::native_abi_rust) {
pass_task = true;
uses_retptr = false;
cast_to_i32 = true;
}
case (ast::native_abi_rust_intrinsic) {
pass_task = true;
uses_retptr = true;
cast_to_i32 = false;
}
case (ast::native_abi_cdecl) {
pass_task = false;
uses_retptr = false;
cast_to_i32 = true;
}
case (ast::native_abi_llvm) {
pass_task = false;
uses_retptr = false;
cast_to_i32 = false;
}
}
auto lltaskptr;
if (cast_to_i32) {
lltaskptr = vp2i(bcx, fcx.lltaskptr);
} else { lltaskptr = fcx.lltaskptr; }
let ValueRef[] call_args = ~[];
if (pass_task) { call_args += ~[lltaskptr]; }
if (uses_retptr) { call_args += ~[bcx.fcx.llretptr]; }
auto arg_n = 3u;
for each (uint i in uint::range(0u, num_ty_param)) {
auto llarg = llvm::LLVMGetParam(fcx.llfn, arg_n);
fcx.lltydescs += ~[llarg];
assert (llarg as int != 0);
if (cast_to_i32) {
call_args += ~[vp2i(bcx, llarg)];
} else { call_args += ~[llarg]; }
arg_n += 1u;
}
fn convert_arg_to_i32(&@block_ctxt cx, ValueRef v, ty::t t, ty::mode mode)
-> ValueRef {
if (mode == ty::mo_val) {
if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, t)) {
auto lldsttype = T_int();
auto llsrctype = type_of(cx.fcx.lcx.ccx, cx.sp, t);
if (llvm::LLVMGetIntTypeWidth(lldsttype) >
llvm::LLVMGetIntTypeWidth(llsrctype)) {
ret cx.build.ZExtOrBitCast(v, T_int());
}
ret cx.build.TruncOrBitCast(v, T_int());
}
if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) {
ret cx.build.FPToSI(v, T_int());
}
}
ret vp2i(cx, v);
}
fn trans_simple_native_abi(&@block_ctxt bcx, str name,
&mutable ValueRef[] call_args,
ty::t fn_type, uint first_arg_n,
bool uses_retptr) ->
tup(ValueRef, ValueRef) {
let TypeRef[] call_arg_tys = ~[];
for (ValueRef arg in call_args) { call_arg_tys += ~[val_ty(arg)]; }
auto llnativefnty;
if (uses_retptr) {
llnativefnty = T_fn(call_arg_tys, T_void());
} else {
llnativefnty =
T_fn(call_arg_tys,
type_of(bcx.fcx.lcx.ccx, bcx.sp,
ty::ty_fn_ret(bcx.fcx.lcx.ccx.tcx, fn_type)));
}
auto llnativefn =
get_extern_fn(bcx.fcx.lcx.ccx.externs, bcx.fcx.lcx.ccx.llmod,
name, lib::llvm::LLVMCCallConv, llnativefnty);
auto r = bcx.build.Call(llnativefn, call_args);
auto rptr = bcx.fcx.llretptr;
ret tup(r, rptr);
}
auto args = ty::ty_fn_args(ccx.tcx, fn_type);
// Build up the list of arguments.
let (tup(ValueRef, ty::t))[] drop_args = ~[];
auto i = arg_n;
for (ty::arg arg in args) {
auto llarg = llvm::LLVMGetParam(fcx.llfn, i);
assert (llarg as int != 0);
if (cast_to_i32) {
auto llarg_i32 = convert_arg_to_i32(bcx, llarg, arg.ty, arg.mode);
call_args += ~[llarg_i32];
} else {
call_args += ~[llarg];
}
if (arg.mode == ty::mo_val) { drop_args += ~[tup(llarg, arg.ty)]; }
i += 1u;
}
auto r;
auto rptr;
alt (abi) {
case (ast::native_abi_llvm) {
auto result =
trans_simple_native_abi(bcx, name, call_args, fn_type, arg_n,
uses_retptr);
r = result._0;
rptr = result._1;
}
case (ast::native_abi_rust_intrinsic) {
auto external_name = "rust_intrinsic_" + name;
auto result =
trans_simple_native_abi(bcx, external_name, call_args,
fn_type, arg_n, uses_retptr);
r = result._0;
rptr = result._1;
}
case (_) {
r =
trans_native_call(bcx.build, ccx.glues, lltaskptr,
ccx.externs, ccx.tn, ccx.llmod, name,
pass_task, call_args);
rptr = bcx.build.BitCast(fcx.llretptr, T_ptr(T_i32()));
}
}
// We don't store the return value if it's nil, to avoid stomping on a nil
// pointer. This is the only concession made to non-i32 return values. See
// the FIXME above.
if (!rty_is_nil && !uses_retptr) { bcx.build.Store(r, rptr); }
for (tup(ValueRef, ty::t) d in drop_args) {
bcx = drop_ty(bcx, d._0, d._1).bcx;
}
bcx.build.RetVoid();
finish_fn(fcx, lltop);
}
fn item_path(&@ast::item item) -> str[] { ret ~[item.ident]; }
fn collect_native_item(@crate_ctxt ccx, &@ast::native_item i, &str[] pt,
&vt[str[]] v) {
alt (i.node) {
case (ast::native_item_fn(_, _, _)) {
if (!ccx.obj_methods.contains_key(i.id)) {
decl_native_fn_and_pair(ccx, i.span, pt, i.ident, i.id);
}
}
case (_) {}
}
}
fn collect_item_1(@crate_ctxt ccx, &@ast::item i, &str[] pt, &vt[str[]] v) {
visit::visit_item(i, pt + item_path(i), v);
alt (i.node) {
case (ast::item_const(_, _)) {
auto typ = node_id_type(ccx, i.id);
auto g =
llvm::LLVMAddGlobal(ccx.llmod, type_of(ccx, i.span, typ),
str::buf(ccx.names.next(i.ident)));
llvm::LLVMSetLinkage(g,
lib::llvm::LLVMInternalLinkage as
llvm::Linkage);
ccx.consts.insert(i.id, g);
}
case (_) { }
}
}
fn collect_item_2(&@crate_ctxt ccx, &@ast::item i, &str[] pt, &vt[str[]] v) {
auto new_pt = pt + item_path(i);
visit::visit_item(i, new_pt, v);
alt (i.node) {
case (ast::item_fn(?f, ?tps)) {
if (!ccx.obj_methods.contains_key(i.id)) {
decl_fn_and_pair(ccx, i.span, new_pt, "fn", tps, i.id);
}
}
case (ast::item_obj(?ob, ?tps, ?ctor_id)) {
decl_fn_and_pair(ccx, i.span, new_pt, "obj_ctor", tps, ctor_id);
for (@ast::method m in ob.methods) {
ccx.obj_methods.insert(m.node.id, ());
}
}
case (ast::item_res(_, ?dtor_id, ?tps, ?ctor_id)) {
decl_fn_and_pair(ccx, i.span, new_pt, "res_ctor", tps, ctor_id);
// Note that the destructor is associated with the item's id, not
// the dtor_id. This is a bit counter-intuitive, but simplifies
// ty_res, which would have to carry around two def_ids otherwise
// -- one to identify the type, and one to find the dtor symbol.
decl_fn_and_pair_full(ccx, i.span, new_pt, "res_dtor", tps, i.id,
node_id_type(ccx, dtor_id));
}
case (_) { }
}
}
fn collect_items(&@crate_ctxt ccx, @ast::crate crate) {
auto visitor0 = visit::default_visitor();
auto visitor1 =
@rec(visit_native_item=bind collect_native_item(ccx, _, _, _),
visit_item=bind collect_item_1(ccx, _, _, _) with *visitor0);
auto visitor2 =
@rec(visit_item=bind collect_item_2(ccx, _, _, _) with *visitor0);
visit::visit_crate(*crate, ~[], visit::mk_vt(visitor1));
visit::visit_crate(*crate, ~[], visit::mk_vt(visitor2));
}
fn collect_tag_ctor(@crate_ctxt ccx, &@ast::item i, &str[] pt, &vt[str[]] v) {
auto new_pt = pt + item_path(i);
visit::visit_item(i, new_pt, v);
alt (i.node) {
case (ast::item_tag(?variants, ?tps)) {
for (ast::variant variant in variants) {
if (std::ivec::len(variant.node.args) != 0u) {
decl_fn_and_pair(ccx, i.span,
new_pt + ~[variant.node.name], "tag",
tps, variant.node.id);
}
}
}
case (_) {/* fall through */ }
}
}
fn collect_tag_ctors(&@crate_ctxt ccx, @ast::crate crate) {
auto visitor =
@rec(visit_item=bind collect_tag_ctor(ccx, _, _, _)
with *visit::default_visitor());
visit::visit_crate(*crate, ~[], visit::mk_vt(visitor));
}
// The constant translation pass.
fn trans_constant(@crate_ctxt ccx, &@ast::item it, &str[] pt, &vt[str[]] v) {
auto new_pt = pt + item_path(it);
visit::visit_item(it, new_pt, v);
alt (it.node) {
case (ast::item_tag(?variants, _)) {
auto i = 0u;
auto n_variants = std::ivec::len[ast::variant](variants);
while (i < n_variants) {
auto variant = variants.(i);
auto p = new_pt + ~[it.ident, variant.node.name, "discrim"];
auto s = mangle_exported_name(ccx, p, ty::mk_int(ccx.tcx));
auto discrim_gvar =
llvm::LLVMAddGlobal(ccx.llmod, T_int(), str::buf(s));
if (n_variants != 1u) {
llvm::LLVMSetInitializer(discrim_gvar, C_int(i as int));
llvm::LLVMSetGlobalConstant(discrim_gvar, True);
}
ccx.discrims.insert(variant.node.id, discrim_gvar);
ccx.discrim_symbols.insert(variant.node.id, s);
i += 1u;
}
}
case (ast::item_const(_, ?expr)) {
// FIXME: The whole expr-translation system needs cloning to deal
// with consts.
auto v = C_int(1);
ccx.item_ids.insert(it.id, v);
auto s = mangle_exported_name(ccx, new_pt + ~[it.ident],
node_id_type(ccx, it.id));
ccx.item_symbols.insert(it.id, s);
}
case (_) { }
}
}
fn trans_constants(&@crate_ctxt ccx, @ast::crate crate) {
auto visitor =
@rec(visit_item=bind trans_constant(ccx, _, _, _)
with *visit::default_visitor());
visit::visit_crate(*crate, ~[], visit::mk_vt(visitor));
}
fn vp2i(&@block_ctxt cx, ValueRef v) -> ValueRef {
ret cx.build.PtrToInt(v, T_int());
}
fn vi2p(&@block_ctxt cx, ValueRef v, TypeRef t) -> ValueRef {
ret cx.build.IntToPtr(v, t);
}
fn p2i(ValueRef v) -> ValueRef { ret llvm::LLVMConstPtrToInt(v, T_int()); }
fn i2p(ValueRef v, TypeRef t) -> ValueRef {
ret llvm::LLVMConstIntToPtr(v, t);
}
fn declare_intrinsics(ModuleRef llmod) -> hashmap[str, ValueRef] {
let TypeRef[] T_memmove32_args =
~[T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()];
let TypeRef[] T_memmove64_args =
~[T_ptr(T_i8()), T_ptr(T_i8()), T_i64(), T_i32(), T_i1()];
let TypeRef[] T_memset32_args =
~[T_ptr(T_i8()), T_i8(), T_i32(), T_i32(), T_i1()];
let TypeRef[] T_memset64_args =
~[T_ptr(T_i8()), T_i8(), T_i64(), T_i32(), T_i1()];
let TypeRef[] T_trap_args = ~[];
auto memmove32 =
decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i32",
T_fn(T_memmove32_args, T_void()));
auto memmove64 =
decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i64",
T_fn(T_memmove64_args, T_void()));
auto memset32 =
decl_cdecl_fn(llmod, "llvm.memset.p0i8.i32",
T_fn(T_memset32_args, T_void()));
auto memset64 =
decl_cdecl_fn(llmod, "llvm.memset.p0i8.i64",
T_fn(T_memset64_args, T_void()));
auto trap =
decl_cdecl_fn(llmod, "llvm.trap", T_fn(T_trap_args, T_void()));
auto intrinsics = new_str_hash[ValueRef]();
intrinsics.insert("llvm.memmove.p0i8.p0i8.i32", memmove32);
intrinsics.insert("llvm.memmove.p0i8.p0i8.i64", memmove64);
intrinsics.insert("llvm.memset.p0i8.i32", memset32);
intrinsics.insert("llvm.memset.p0i8.i64", memset64);
intrinsics.insert("llvm.trap", trap);
ret intrinsics;
}
fn trace_str(&@block_ctxt cx, str s) {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.trace_str,
~[cx.fcx.lltaskptr, C_cstr(cx.fcx.lcx.ccx, s)]);
}
fn trace_word(&@block_ctxt cx, ValueRef v) {
cx.build.Call(cx.fcx.lcx.ccx.upcalls.trace_word, ~[cx.fcx.lltaskptr, v]);
}
fn trace_ptr(&@block_ctxt cx, ValueRef v) {
trace_word(cx, cx.build.PtrToInt(v, T_int()));
}
fn trap(&@block_ctxt bcx) {
let ValueRef[] v = ~[];
alt (bcx.fcx.lcx.ccx.intrinsics.find("llvm.trap")) {
case (some(?x)) { bcx.build.Call(x, v); }
case (_) { bcx.fcx.lcx.ccx.sess.bug("unbound llvm.trap in trap"); }
}
}
fn decl_no_op_type_glue(ModuleRef llmod, TypeRef taskptr_type) -> ValueRef {
auto ty = T_fn(~[taskptr_type, T_ptr(T_i8())], T_void());
ret decl_fastcall_fn(llmod, abi::no_op_type_glue_name(), ty);
}
fn make_no_op_type_glue(ValueRef fun) {
auto bb_name = str::buf("_rust_no_op_type_glue_bb");
auto llbb = llvm::LLVMAppendBasicBlock(fun, bb_name);
new_builder(llbb).RetVoid();
}
fn vec_fill(&@block_ctxt bcx, ValueRef v) -> ValueRef {
ret bcx.build.Load(bcx.build.GEP(v,
~[C_int(0), C_int(abi::vec_elt_fill)]));
}
fn vec_p0(&@block_ctxt bcx, ValueRef v) -> ValueRef {
auto p = bcx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_data)]);
ret bcx.build.PointerCast(p, T_ptr(T_i8()));
}
fn make_glues(ModuleRef llmod, TypeRef taskptr_type) -> @glue_fns {
ret @rec(no_op_type_glue=decl_no_op_type_glue(llmod, taskptr_type));
}
fn make_common_glue(&session::session sess, &str output) {
// FIXME: part of this is repetitive and is probably a good idea
// to autogen it.
auto task_type = T_task();
auto taskptr_type = T_ptr(task_type);
auto llmod =
llvm::LLVMModuleCreateWithNameInContext(str::buf("rust_out"),
llvm::LLVMGetGlobalContext());
llvm::LLVMSetDataLayout(llmod, str::buf(x86::get_data_layout()));
llvm::LLVMSetTarget(llmod, str::buf(x86::get_target_triple()));
mk_target_data(x86::get_data_layout());
declare_intrinsics(llmod);
llvm::LLVMSetModuleInlineAsm(llmod, str::buf(x86::get_module_asm()));
make_glues(llmod, taskptr_type);
link::write::run_passes(sess, llmod, output);
}
fn create_module_map(&@crate_ctxt ccx) -> ValueRef {
auto elttype = T_struct(~[T_int(), T_int()]);
auto maptype = T_array(elttype, ccx.module_data.size() + 1u);
auto map =
llvm::LLVMAddGlobal(ccx.llmod, maptype, str::buf("_rust_mod_map"));
llvm::LLVMSetLinkage(map,
lib::llvm::LLVMInternalLinkage as
llvm::Linkage);
let ValueRef[] elts = ~[];
for each (@tup(str, ValueRef) item in ccx.module_data.items()) {
auto elt = C_struct(~[p2i(C_cstr(ccx, item._0)), p2i(item._1)]);
elts += ~[elt];
}
auto term = C_struct(~[C_int(0), C_int(0)]);
elts += ~[term];
llvm::LLVMSetInitializer(map, C_array(elttype, elts));
ret map;
}
// FIXME use hashed metadata instead of crate names once we have that
fn create_crate_map(&@crate_ctxt ccx) -> ValueRef {
let ValueRef[] subcrates = ~[];
auto i = 1;
auto cstore = ccx.sess.get_cstore();
while (cstore::have_crate_data(cstore, i)) {
auto name = cstore::get_crate_data(cstore, i).name;
auto cr =
llvm::LLVMAddGlobal(ccx.llmod, T_int(),
str::buf("_rust_crate_map_" + name));
subcrates += ~[p2i(cr)];
i += 1;
}
subcrates += ~[C_int(0)];
auto mapname;
if (ccx.sess.get_opts().library) {
mapname = ccx.link_meta.name;
} else { mapname = "toplevel"; }
auto sym_name = "_rust_crate_map_" + mapname;
auto arrtype = T_array(T_int(), std::ivec::len[ValueRef](subcrates));
auto maptype = T_struct(~[T_int(), arrtype]);
auto map = llvm::LLVMAddGlobal(ccx.llmod, maptype, str::buf(sym_name));
llvm::LLVMSetLinkage(map,
lib::llvm::LLVMExternalLinkage as llvm::Linkage);
llvm::LLVMSetInitializer(map,
C_struct(~[p2i(create_module_map(ccx)),
C_array(T_int(), subcrates)]));
ret map;
}
fn write_metadata(&@trans::crate_ctxt cx, &@ast::crate crate) {
if (!cx.sess.get_opts().library) { ret; }
auto llmeta = C_postr(metadata::encoder::encode_metadata(cx, crate));
auto llconst = trans_common::C_struct(~[llmeta]);
auto llglobal =
llvm::LLVMAddGlobal(cx.llmod, trans::val_ty(llconst),
str::buf("rust_metadata"));
llvm::LLVMSetInitializer(llglobal, llconst);
llvm::LLVMSetSection(llglobal, str::buf(x86::get_meta_sect_name()));
}
fn trans_crate(&session::session sess, &@ast::crate crate, &ty::ctxt tcx,
&str output, &ast_map::map amap) -> ModuleRef {
auto llmod =
llvm::LLVMModuleCreateWithNameInContext(str::buf("rust_out"),
llvm::LLVMGetGlobalContext());
llvm::LLVMSetDataLayout(llmod, str::buf(x86::get_data_layout()));
llvm::LLVMSetTarget(llmod, str::buf(x86::get_target_triple()));
auto td = mk_target_data(x86::get_data_layout());
auto tn = mk_type_names();
auto intrinsics = declare_intrinsics(llmod);
auto task_type = T_task();
auto taskptr_type = T_ptr(task_type);
auto tydesc_type = T_tydesc(taskptr_type);
auto glues = make_glues(llmod, taskptr_type);
auto hasher = ty::hash_ty;
auto eqer = ty::eq_ty;
auto tag_sizes = map::mk_hashmap[ty::t, uint](hasher, eqer);
auto tydescs = map::mk_hashmap[ty::t, @tydesc_info](hasher, eqer);
auto lltypes = map::mk_hashmap[ty::t, TypeRef](hasher, eqer);
auto sha1s = map::mk_hashmap[ty::t, str](hasher, eqer);
auto short_names = map::mk_hashmap[ty::t, str](hasher, eqer);
auto sha = std::sha1::mk_sha1();
auto ccx =
@rec(sess=sess,
llmod=llmod,
td=td,
tn=tn,
externs=new_str_hash[ValueRef](),
intrinsics=intrinsics,
item_ids=new_int_hash[ValueRef](),
ast_map=amap,
item_symbols=new_int_hash[str](),
mutable main_fn=none[ValueRef],
link_meta=link::build_link_meta(sess, *crate, output, sha),
tag_sizes=tag_sizes,
discrims=new_int_hash[ValueRef](),
discrim_symbols=new_int_hash[str](),
fn_pairs=new_int_hash[ValueRef](),
consts=new_int_hash[ValueRef](),
obj_methods=new_int_hash[()](),
tydescs=tydescs,
module_data=new_str_hash[ValueRef](),
lltypes=lltypes,
glues=glues,
names=namegen(0),
sha=sha,
type_sha1s=sha1s,
type_short_names=short_names,
tcx=tcx,
stats=rec(mutable n_static_tydescs=0u,
mutable n_derived_tydescs=0u,
mutable n_glues_created=0u,
mutable n_null_glues=0u,
mutable n_real_glues=0u),
upcalls=upcall::declare_upcalls(tn, tydesc_type, taskptr_type,
llmod),
rust_object_type=T_rust_object(),
tydesc_type=tydesc_type,
task_type=task_type);
auto cx = new_local_ctxt(ccx);
collect_items(ccx, crate);
collect_tag_ctors(ccx, crate);
trans_constants(ccx, crate);
trans_mod(cx, crate.node.module);
create_crate_map(ccx);
emit_tydescs(ccx);
// Translate the metadata:
write_metadata(cx.ccx, crate);
if (ccx.sess.get_opts().stats) {
log_err "--- trans stats ---";
log_err #fmt("n_static_tydescs: %u", ccx.stats.n_static_tydescs);
log_err #fmt("n_derived_tydescs: %u", ccx.stats.n_derived_tydescs);
log_err #fmt("n_glues_created: %u", ccx.stats.n_glues_created);
log_err #fmt("n_null_glues: %u", ccx.stats.n_null_glues);
log_err #fmt("n_real_glues: %u", ccx.stats.n_real_glues);
}
ret llmod;
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//