// trans.rs: Translate the completed AST to the LLVM IR. // // Some functions here, such as trans_block and trans_expr, return a value -- // the result of the translation to LLVM -- while others, such as trans_fn, // trans_obj, and trans_item, are called only for the side effect of adding a // particular definition to the LLVM IR output we're producing. // // Hopefully useful general knowledge about trans: // // * There's no way to find out the ty::t type of a ValueRef. Doing so // would be "trying to get the eggs out of an omelette" (credit: // pcwalton). You can, instead, find out its TypeRef by calling val_ty, // but many TypeRefs correspond to one ty::t; for instance, tup(int, int, // int) and rec(x=int, y=int, z=int) will have the same TypeRef. import std::int; import std::str; import std::uint; import std::str::rustrt::sbuf; import std::map; import std::map::hashmap; import std::option; import std::option::some; import std::option::none; import std::fs; import syntax::ast; import syntax::walk; import driver::session; import middle::ty; import back::link; import back::x86; import back::abi; import back::upcall; import syntax::visit; import visit::vt; import util::common; import util::common::*; import std::map::new_int_hash; import std::map::new_str_hash; import syntax::codemap::span; import lib::llvm::llvm; import lib::llvm::builder; import lib::llvm::target_data; import lib::llvm::type_names; import lib::llvm::mk_target_data; import lib::llvm::mk_type_names; import lib::llvm::llvm::ModuleRef; import lib::llvm::llvm::ValueRef; import lib::llvm::llvm::TypeRef; import lib::llvm::llvm::TypeHandleRef; import lib::llvm::llvm::BuilderRef; import lib::llvm::llvm::BasicBlockRef; import lib::llvm::False; import lib::llvm::True; import lib::llvm::Bool; import link::mangle_internal_name_by_type_only; import link::mangle_internal_name_by_seq; import link::mangle_internal_name_by_path; import link::mangle_internal_name_by_path_and_seq; import link::mangle_exported_name; import metadata::creader; import metadata::csearch; import metadata::cstore; import util::ppaux::ty_to_str; import util::ppaux::ty_to_short_str; import syntax::print::pprust::expr_to_str; import syntax::print::pprust::path_to_str; import trans_common::*; import trans_comm::trans_port; import trans_comm::trans_chan; import trans_comm::trans_spawn; import trans_comm::trans_send; import trans_comm::trans_recv; obj namegen(mutable int i) { fn next(str prefix) -> str { i += 1; ret prefix + int::str(i); } } type derived_tydesc_info = rec(ValueRef lltydesc, bool escapes); type glue_fns = rec(ValueRef no_op_type_glue); type tydesc_info = rec(ty::t ty, ValueRef tydesc, ValueRef size, ValueRef align, mutable option::t[ValueRef] copy_glue, mutable option::t[ValueRef] drop_glue, mutable option::t[ValueRef] free_glue, mutable option::t[ValueRef] cmp_glue, uint[] ty_params); /* * A note on nomenclature of linking: "upcall", "extern" and "native". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * A "native" is an extern that references C code. Called with cdecl. * * An upcall is a native call generated by the compiler (not corresponding to * any user-written call in the code) into librustrt, to perform some helper * task such as bringing a task to life, allocating memory, etc. * */ type stats = rec(mutable uint n_static_tydescs, mutable uint n_derived_tydescs, mutable uint n_glues_created, mutable uint n_null_glues, mutable uint n_real_glues); // Crate context. Every crate we compile has one of these. type crate_ctxt = rec(session::session sess, ModuleRef llmod, target_data td, type_names tn, hashmap[str, ValueRef] externs, hashmap[str, ValueRef] intrinsics, // A mapping from the def_id of each item in this crate to the address // of the first instruction of the item's definition in the executable // we're generating. hashmap[ast::node_id, ValueRef] item_ids, ast_map::map ast_map, hashmap[ast::node_id, str] item_symbols, mutable option::t[ValueRef] main_fn, link::link_meta link_meta, // TODO: hashmap[tup(tag_id,subtys), @tag_info] hashmap[ty::t, uint] tag_sizes, hashmap[ast::node_id, ValueRef] discrims, hashmap[ast::node_id, str] discrim_symbols, hashmap[ast::node_id, ValueRef] fn_pairs, hashmap[ast::node_id, ValueRef] consts, hashmap[ast::node_id, ()] obj_methods, hashmap[ty::t, @tydesc_info] tydescs, hashmap[str, ValueRef] module_data, hashmap[ty::t, TypeRef] lltypes, @glue_fns glues, namegen names, std::sha1::sha1 sha, hashmap[ty::t, str] type_sha1s, hashmap[ty::t, str] type_short_names, ty::ctxt tcx, stats stats, @upcall::upcalls upcalls, TypeRef rust_object_type, TypeRef tydesc_type, TypeRef task_type); type local_ctxt = rec(str[] path, str[] module_path, ast::ty_param[] obj_typarams, ast::obj_field[] obj_fields, @crate_ctxt ccx); // Types used for llself. type val_self_pair = rec(ValueRef v, ty::t t); // Function context. Every LLVM function we create will have one of these. type fn_ctxt = rec( // The ValueRef returned from a call to llvm::LLVMAddFunction; the // address of the first instruction in the sequence of instructions // for this function that will go in the .text section of the // executable we're generating. ValueRef llfn, // The three implicit arguments that arrive in the function we're // creating. For instance, foo(int, int) is really foo(ret*, task*, // env*, int, int). These are also available via // llvm::LLVMGetParam(llfn, uint) where uint = 1, 2, 0 respectively, // but we unpack them into these fields for convenience. // Points to the current task. ValueRef lltaskptr, // Points to the current environment (bindings of variables to // values), if this is a regular function; points to the current // object, if this is a method. ValueRef llenv, // Points to where the return value of this function should end up. ValueRef llretptr, // The next three elements: "hoisted basic blocks" containing // administrative activities that have to happen in only one place in // the function, due to LLVM's quirks. // A block for all the function's static allocas, so that LLVM will // coalesce them into a single alloca call. mutable BasicBlockRef llstaticallocas, // A block containing code that copies incoming arguments to space // already allocated by code in one of the llallocas blocks. (LLVM // requires that arguments be copied to local allocas before allowing // most any operation to be performed on them.) mutable BasicBlockRef llcopyargs, // The first block containing derived tydescs received from the // runtime. See description of derived_tydescs, below. mutable BasicBlockRef llderivedtydescs_first, // The last block of the llderivedtydescs group. mutable BasicBlockRef llderivedtydescs, // A block for all of the dynamically sized allocas. This must be // after llderivedtydescs, because these sometimes depend on // information computed from derived tydescs. mutable BasicBlockRef lldynamicallocas, // FIXME: Is llcopyargs actually the block containing the allocas for // incoming function arguments? Or is it merely the block containing // code that copies incoming args to space already alloca'd by code in // llallocas? // The 'self' object currently in use in this function, if there is // one. mutable option::t[val_self_pair] llself, // If this function is actually a iter, a block containing the code // called whenever the iter calls 'put'. mutable option::t[ValueRef] lliterbody, // The next four items: hash tables mapping from AST def_ids to // LLVM-stuff-in-the-frame. // Maps arguments to allocas created for them in llallocas. hashmap[ast::node_id, ValueRef] llargs, // Maps fields in objects to pointers into the interior of llself's // body. hashmap[ast::node_id, ValueRef] llobjfields, // Maps the def_ids for local variables to the allocas created for // them in llallocas. hashmap[ast::node_id, ValueRef] lllocals, // The same as above, but for variables accessed via the frame pointer // we pass into an iter, for access to the static environment of the // iter-calling frame. hashmap[ast::node_id, ValueRef] llupvars, // For convenience, a vector of the incoming tydescs for each of this // functions type parameters, fetched via llvm::LLVMGetParam. For // example, for a function foo[A, B, C](), lltydescs contains the // ValueRefs for the tydescs for A, B, and C. mutable ValueRef[] lltydescs, // Derived tydescs are tydescs created at runtime, for types that // involve type parameters inside type constructors. For example, // suppose a function parameterized by T creates a vector of type // [T]. The function doesn't know what T is until runtime, and the // function's caller knows T but doesn't know that a vector is // involved. So a tydesc for [T] can't be created until runtime, // when information about both "[T]" and "T" are available. When such // a tydesc is created, we cache it in the derived_tydescs table for // the next time that such a tydesc is needed. hashmap[ty::t, derived_tydesc_info] derived_tydescs, // The source span where this function comes from, for error // reporting. span sp, // This function's enclosing local context. @local_ctxt lcx); tag cleanup { clean(fn(&@block_ctxt) -> result); clean_temp(ValueRef, fn(&@block_ctxt) -> result); } fn add_clean(&@block_ctxt cx, ValueRef val, ty::t ty) { find_scope_cx(cx).cleanups += ~[clean(bind drop_slot(_, val, ty))]; } fn add_clean_temp(&@block_ctxt cx, ValueRef val, ty::t ty) { find_scope_cx(cx).cleanups += ~[clean_temp(val, bind drop_ty(_, val, ty))]; } // Note that this only works for temporaries. We should, at some point, move // to a system where we can also cancel the cleanup on local variables, but // this will be more involved. For now, we simply zero out the local, and the // drop glue checks whether it is zero. fn revoke_clean(&@block_ctxt cx, ValueRef val) { auto sc_cx = find_scope_cx(cx); auto found = -1; auto i = 0; for (cleanup c in sc_cx.cleanups) { alt (c) { case (clean_temp(?v, _)) { if (v as uint == val as uint) { found = i; break; } } case (_) {} } i += 1; } // The value does not have a cleanup associated with it. Might be a // constant or some immediate value. if (found == -1) { ret; } // We found the cleanup and remove it sc_cx.cleanups = std::ivec::slice(sc_cx.cleanups, 0u, found as uint) + std::ivec::slice(sc_cx.cleanups, found as uint + 1u, std::ivec::len(sc_cx.cleanups)); } tag block_kind { // A scope block is a basic block created by translating a block { ... } // the the source language. Since these blocks create variable scope, any // variables created in them that are still live at the end of the block // must be dropped and cleaned up when the block ends. SCOPE_BLOCK; // A basic block created from the body of a loop. Contains pointers to // which block to jump to in the case of "continue" or "break", with the // "continue" block optional, because "while" and "do while" don't support // "continue" (TODO: is this intentional?) LOOP_SCOPE_BLOCK(option::t[@block_ctxt], @block_ctxt); // A non-scope block is a basic block created as a translation artifact // from translating code that expresses conditional logic rather than by // explicit { ... } block structure in the source language. It's called a // non-scope block because it doesn't introduce a new variable scope. NON_SCOPE_BLOCK; } // Basic block context. We create a block context for each basic block // (single-entry, single-exit sequence of instructions) we generate from Rust // code. Each basic block we generate is attached to a function, typically // with many basic blocks per function. All the basic blocks attached to a // function are organized as a directed graph. type block_ctxt = rec( // The BasicBlockRef returned from a call to // llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic block to // the function pointed to by llfn. We insert instructions into that // block by way of this block context. BasicBlockRef llbb, // The llvm::builder object serving as an interface to LLVM's // LLVMBuild* functions. builder build, // The block pointing to this one in the function's digraph. block_parent parent, // The 'kind' of basic block this is. block_kind kind, // A list of functions that run at the end of translating this block, // cleaning up any variables that were introduced in the block and // need to go out of scope at the end of it. mutable cleanup[] cleanups, // The source span where this block comes from, for error reporting. span sp, // The function context for the function to which this block is // attached. @fn_ctxt fcx); // FIXME: we should be able to use option::t[@block_parent] here but // the infinite-tag check in rustboot gets upset. tag block_parent { parent_none; parent_some(@block_ctxt); } type result = rec(@block_ctxt bcx, ValueRef val); type result_t = rec(@block_ctxt bcx, ValueRef val, ty::t ty); fn extend_path(@local_ctxt cx, &str name) -> @local_ctxt { ret @rec(path=cx.path + ~[name] with *cx); } fn rslt(@block_ctxt bcx, ValueRef val) -> result { ret rec(bcx=bcx, val=val); } fn ty_str(type_names tn, TypeRef t) -> str { ret lib::llvm::type_to_str(tn, t); } fn val_ty(ValueRef v) -> TypeRef { ret llvm::LLVMTypeOf(v); } fn val_str(type_names tn, ValueRef v) -> str { ret ty_str(tn, val_ty(v)); } // Returns the nth element of the given LLVM structure type. fn struct_elt(TypeRef llstructty, uint n) -> TypeRef { auto elt_count = llvm::LLVMCountStructElementTypes(llstructty); assert (n < elt_count); auto elt_tys = std::ivec::init_elt(T_nil(), elt_count); llvm::LLVMGetStructElementTypes(llstructty, std::ivec::to_ptr(elt_tys)); ret llvm::LLVMGetElementType(elt_tys.(n)); } // This function now fails if called on a type with dynamic size (as its // return value was always meaningless in that case anyhow). Beware! // // TODO: Enforce via a predicate. fn type_of(&@crate_ctxt cx, &span sp, &ty::t t) -> TypeRef { if (ty::type_has_dynamic_size(cx.tcx, t)) { cx.sess.span_fatal(sp, "type_of() called on a type with dynamic size: " + ty_to_str(cx.tcx, t)); } ret type_of_inner(cx, sp, t); } fn type_of_explicit_args(&@crate_ctxt cx, &span sp, &ty::arg[] inputs) -> TypeRef[] { let TypeRef[] atys = ~[]; for (ty::arg arg in inputs) { if (ty::type_has_dynamic_size(cx.tcx, arg.ty)) { assert (arg.mode != ty::mo_val); atys += ~[T_typaram_ptr(cx.tn)]; } else { let TypeRef t; alt (arg.mode) { case (ty::mo_alias(_)) { t = T_ptr(type_of_inner(cx, sp, arg.ty)); } case (_) { t = type_of_inner(cx, sp, arg.ty); } } atys += ~[t]; } } ret atys; } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn type_of_fn_full(&@crate_ctxt cx, &span sp, ast::proto proto, bool is_method, &ty::arg[] inputs, &ty::t output, uint ty_param_count) -> TypeRef { let TypeRef[] atys = ~[]; // Arg 0: Output pointer. if (ty::type_has_dynamic_size(cx.tcx, output)) { atys += ~[T_typaram_ptr(cx.tn)]; } else { atys += ~[T_ptr(type_of_inner(cx, sp, output))]; } // Arg 1: task pointer. atys += ~[T_taskptr(*cx)]; // Arg 2: Env (closure-bindings / self-obj) if (is_method) { atys += ~[cx.rust_object_type]; } else { atys += ~[T_opaque_closure_ptr(*cx)]; } // Args >3: ty params, if not acquired via capture... if (!is_method) { auto i = 0u; while (i < ty_param_count) { atys += ~[T_ptr(cx.tydesc_type)]; i += 1u; } } if (proto == ast::proto_iter) { // If it's an iter, the 'output' type of the iter is actually the // *input* type of the function we're given as our iter-block // argument. atys += ~[T_fn_pair(*cx, type_of_fn_full(cx, sp, ast::proto_fn, false, ~[rec(mode=ty::mo_alias(false), ty=output)], ty::mk_nil(cx.tcx), 0u))]; } // ... then explicit args. atys += type_of_explicit_args(cx, sp, inputs); ret T_fn(atys, llvm::LLVMVoidType()); } fn type_of_fn(&@crate_ctxt cx, &span sp, ast::proto proto, &ty::arg[] inputs, &ty::t output, uint ty_param_count) -> TypeRef { ret type_of_fn_full(cx, sp, proto, false, inputs, output, ty_param_count); } fn type_of_native_fn(&@crate_ctxt cx, &span sp, ast::native_abi abi, &ty::arg[] inputs, &ty::t output, uint ty_param_count) -> TypeRef { let TypeRef[] atys = ~[]; if (abi == ast::native_abi_rust) { atys += ~[T_taskptr(*cx)]; auto i = 0u; while (i < ty_param_count) { atys += ~[T_ptr(cx.tydesc_type)]; i += 1u; } } atys += type_of_explicit_args(cx, sp, inputs); ret T_fn(atys, type_of_inner(cx, sp, output)); } fn type_of_inner(&@crate_ctxt cx, &span sp, &ty::t t) -> TypeRef { // Check the cache. if (cx.lltypes.contains_key(t)) { ret cx.lltypes.get(t); } let TypeRef llty = 0 as TypeRef; alt (ty::struct(cx.tcx, t)) { case (ty::ty_native(_)) { llty = T_ptr(T_i8()); } case (ty::ty_nil) { llty = T_nil(); } case (ty::ty_bot) { llty = T_nil(); /* ...I guess? */ } case (ty::ty_bool) { llty = T_bool(); } case (ty::ty_int) { llty = T_int(); } case (ty::ty_float) { llty = T_float(); } case (ty::ty_uint) { llty = T_int(); } case (ty::ty_machine(?tm)) { alt (tm) { case (ast::ty_i8) { llty = T_i8(); } case (ast::ty_u8) { llty = T_i8(); } case (ast::ty_i16) { llty = T_i16(); } case (ast::ty_u16) { llty = T_i16(); } case (ast::ty_i32) { llty = T_i32(); } case (ast::ty_u32) { llty = T_i32(); } case (ast::ty_i64) { llty = T_i64(); } case (ast::ty_u64) { llty = T_i64(); } case (ast::ty_f32) { llty = T_f32(); } case (ast::ty_f64) { llty = T_f64(); } } } case (ty::ty_char) { llty = T_char(); } case (ty::ty_str) { llty = T_ptr(T_str()); } case (ty::ty_istr) { llty = T_ivec(T_i8()); } case (ty::ty_tag(?did, _)) { llty = type_of_tag(cx, sp, did, t); } case (ty::ty_box(?mt)) { llty = T_ptr(T_box(type_of_inner(cx, sp, mt.ty))); } case (ty::ty_vec(?mt)) { llty = T_ptr(T_vec(type_of_inner(cx, sp, mt.ty))); } case (ty::ty_ivec(?mt)) { if (ty::type_has_dynamic_size(cx.tcx, mt.ty)) { llty = T_opaque_ivec(); } else { llty = T_ivec(type_of_inner(cx, sp, mt.ty)); } } case (ty::ty_ptr(?mt)) { llty = T_ptr(type_of_inner(cx, sp, mt.ty)); } case (ty::ty_port(?t)) { llty = T_ptr(T_port(type_of_inner(cx, sp, t))); } case (ty::ty_chan(?t)) { llty = T_ptr(T_chan(type_of_inner(cx, sp, t))); } case (ty::ty_task) { llty = T_taskptr(*cx); } case (ty::ty_tup(?elts)) { let TypeRef[] tys = ~[]; for (ty::mt elt in elts) { tys += ~[type_of_inner(cx, sp, elt.ty)]; } llty = T_struct(tys); } case (ty::ty_rec(?fields)) { let TypeRef[] tys = ~[]; for (ty::field f in fields) { tys += ~[type_of_inner(cx, sp, f.mt.ty)]; } llty = T_struct(tys); } case (ty::ty_fn(?proto, ?args, ?out, _, _)) { llty = T_fn_pair(*cx, type_of_fn(cx, sp, proto, args, out, 0u)); } case (ty::ty_native_fn(?abi, ?args, ?out)) { auto nft = native_fn_wrapper_type(cx, sp, 0u, t); llty = T_fn_pair(*cx, nft); } case (ty::ty_obj(?meths)) { llty = cx.rust_object_type; } case (ty::ty_res(_, ?sub, ?tps)) { auto sub1 = ty::substitute_type_params(cx.tcx, tps, sub); ret T_struct(~[T_i32(), type_of_inner(cx, sp, sub1)]); } case (ty::ty_var(_)) { cx.tcx.sess.span_fatal(sp, "trans::type_of called on ty_var"); } case (ty::ty_param(_)) { llty = T_i8(); } case (ty::ty_type) { llty = T_ptr(cx.tydesc_type); } } assert (llty as int != 0); cx.lltypes.insert(t, llty); ret llty; } fn type_of_tag(&@crate_ctxt cx, &span sp, &ast::def_id did, &ty::t t) -> TypeRef { auto degen = std::ivec::len(ty::tag_variants(cx.tcx, did)) == 1u; if (ty::type_has_dynamic_size(cx.tcx, t)) { if (degen) { ret T_i8(); } else { ret T_opaque_tag(cx.tn); } } else { auto size = static_size_of_tag(cx, sp, t); if (!degen) { ret T_tag(cx.tn, size); } // LLVM does not like 0-size arrays, apparently if (size == 0u) { size = 1u; } ret T_array(T_i8(), size); } } fn type_of_arg(@local_ctxt cx, &span sp, &ty::arg arg) -> TypeRef { alt (ty::struct(cx.ccx.tcx, arg.ty)) { case (ty::ty_param(_)) { if (arg.mode != ty::mo_val) { ret T_typaram_ptr(cx.ccx.tn); } } case (_) { // fall through } } auto typ; if (arg.mode != ty::mo_val) { typ = T_ptr(type_of_inner(cx.ccx, sp, arg.ty)); } else { typ = type_of_inner(cx.ccx, sp, arg.ty); } ret typ; } fn type_of_ty_param_count_and_ty(@local_ctxt lcx, &span sp, &ty::ty_param_count_and_ty tpt) -> TypeRef { alt (ty::struct(lcx.ccx.tcx, tpt._1)) { case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) { auto llfnty = type_of_fn(lcx.ccx, sp, proto, inputs, output, tpt._0); ret T_fn_pair(*lcx.ccx, llfnty); } case (_) { // fall through } } ret type_of(lcx.ccx, sp, tpt._1); } fn type_of_or_i8(&@block_ctxt bcx, ty::t typ) -> TypeRef { if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, typ)) { ret T_i8(); } ret type_of(bcx.fcx.lcx.ccx, bcx.sp, typ); } // Name sanitation. LLVM will happily accept identifiers with weird names, but // gas doesn't! fn sanitize(&str s) -> str { auto result = ""; for (u8 c in s) { if (c == '@' as u8) { result += "boxed_"; } else { if (c == ',' as u8) { result += "_"; } else { if (c == '{' as u8 || c == '(' as u8) { result += "_of_"; } else { if (c != 10u8 && c != '}' as u8 && c != ')' as u8 && c != ' ' as u8 && c != '\t' as u8 && c != ';' as u8) { auto v = [c]; result += str::from_bytes(v); } } } } } ret result; } fn decl_fn(ModuleRef llmod, &str name, uint cc, TypeRef llty) -> ValueRef { let ValueRef llfn = llvm::LLVMAddFunction(llmod, str::buf(name), llty); llvm::LLVMSetFunctionCallConv(llfn, cc); ret llfn; } fn decl_cdecl_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef { ret decl_fn(llmod, name, lib::llvm::LLVMCCallConv, llty); } fn decl_fastcall_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef { ret decl_fn(llmod, name, lib::llvm::LLVMFastCallConv, llty); } // Only use this if you are going to actually define the function. It's // not valid to simply declare a function as internal. fn decl_internal_fastcall_fn(ModuleRef llmod, &str name, TypeRef llty) -> ValueRef { auto llfn = decl_fn(llmod, name, lib::llvm::LLVMFastCallConv, llty); llvm::LLVMSetLinkage(llfn, lib::llvm::LLVMInternalLinkage as llvm::Linkage); ret llfn; } fn decl_glue(ModuleRef llmod, &crate_ctxt cx, &str s) -> ValueRef { ret decl_cdecl_fn(llmod, s, T_fn(~[T_taskptr(cx)], T_void())); } fn get_extern_fn(&hashmap[str, ValueRef] externs, ModuleRef llmod, &str name, uint cc, TypeRef ty) -> ValueRef { if (externs.contains_key(name)) { ret externs.get(name); } auto f = decl_fn(llmod, name, cc, ty); externs.insert(name, f); ret f; } fn get_extern_const(&hashmap[str, ValueRef] externs, ModuleRef llmod, &str name, TypeRef ty) -> ValueRef { if (externs.contains_key(name)) { ret externs.get(name); } auto c = llvm::LLVMAddGlobal(llmod, ty, str::buf(name)); externs.insert(name, c); ret c; } fn get_simple_extern_fn(&hashmap[str, ValueRef] externs, ModuleRef llmod, &str name, int n_args) -> ValueRef { auto inputs = std::ivec::init_elt[TypeRef](T_int(), n_args as uint); auto output = T_int(); auto t = T_fn(inputs, output); ret get_extern_fn(externs, llmod, name, lib::llvm::LLVMCCallConv, t); } fn trans_native_call(&builder b, @glue_fns glues, ValueRef lltaskptr, &hashmap[str, ValueRef] externs, &type_names tn, ModuleRef llmod, &str name, bool pass_task, &ValueRef[] args) -> ValueRef { let int n = std::ivec::len[ValueRef](args) as int; let ValueRef llnative = get_simple_extern_fn(externs, llmod, name, n); let ValueRef[] call_args = ~[]; for (ValueRef a in args) { call_args += ~[b.ZExtOrBitCast(a, T_int())]; } ret b.Call(llnative, call_args); } fn trans_non_gc_free(&@block_ctxt cx, ValueRef v) -> result { cx.build.Call(cx.fcx.lcx.ccx.upcalls.free, ~[cx.fcx.lltaskptr, cx.build.PointerCast(v, T_ptr(T_i8())), C_int(0)]); ret rslt(cx, C_int(0)); } fn trans_shared_free(&@block_ctxt cx, ValueRef v) -> result { cx.build.Call(cx.fcx.lcx.ccx.upcalls.shared_free, ~[cx.fcx.lltaskptr, cx.build.PointerCast(v, T_ptr(T_i8()))]); ret rslt(cx, C_int(0)); } fn find_scope_cx(&@block_ctxt cx) -> @block_ctxt { if (cx.kind != NON_SCOPE_BLOCK) { ret cx; } alt (cx.parent) { case (parent_some(?b)) { ret find_scope_cx(b); } case (parent_none) { cx.fcx.lcx.ccx.sess.bug("trans::find_scope_cx() " + "called on parentless block_ctxt"); } } } fn umax(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef { auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b); ret cx.build.Select(cond, b, a); } fn umin(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef { auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b); ret cx.build.Select(cond, a, b); } fn align_to(&@block_ctxt cx, ValueRef off, ValueRef align) -> ValueRef { auto mask = cx.build.Sub(align, C_int(1)); auto bumped = cx.build.Add(off, mask); ret cx.build.And(bumped, cx.build.Not(mask)); } // Returns the real size of the given type for the current target. fn llsize_of_real(&@crate_ctxt cx, TypeRef t) -> uint { ret llvm::LLVMStoreSizeOfType(cx.td.lltd, t); } fn llsize_of(TypeRef t) -> ValueRef { ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMSizeOf(t), T_int(), False); } fn llalign_of(TypeRef t) -> ValueRef { ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMAlignOf(t), T_int(), False); } fn size_of(&@block_ctxt cx, &ty::t t) -> result { if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { ret rslt(cx, llsize_of(type_of(cx.fcx.lcx.ccx, cx.sp, t))); } ret dynamic_size_of(cx, t); } fn align_of(&@block_ctxt cx, &ty::t t) -> result { if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { ret rslt(cx, llalign_of(type_of(cx.fcx.lcx.ccx, cx.sp, t))); } ret dynamic_align_of(cx, t); } fn alloca(&@block_ctxt cx, TypeRef t) -> ValueRef { ret new_builder(cx.fcx.llstaticallocas).Alloca(t); } fn array_alloca(&@block_ctxt cx, TypeRef t, ValueRef n) -> ValueRef { ret new_builder(cx.fcx.lldynamicallocas).ArrayAlloca(t, n); } // Creates a simpler, size-equivalent type. The resulting type is guaranteed // to have (a) the same size as the type that was passed in; (b) to be non- // recursive. This is done by replacing all boxes in a type with boxed unit // types. fn simplify_type(&@crate_ctxt ccx, &ty::t typ) -> ty::t { fn simplifier(@crate_ctxt ccx, ty::t typ) -> ty::t { alt (ty::struct(ccx.tcx, typ)) { case (ty::ty_box(_)) { ret ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx)); } case (ty::ty_vec(_)) { ret ty::mk_imm_vec(ccx.tcx, ty::mk_nil(ccx.tcx)); } case (ty::ty_fn(_, _, _, _, _)) { ret ty::mk_imm_tup(ccx.tcx, ~[ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx)), ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx))]); } case (ty::ty_obj(_)) { ret ty::mk_imm_tup(ccx.tcx, ~[ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx)), ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx))]); } case (ty::ty_res(_, ?sub, ?tps)) { auto sub1 = ty::substitute_type_params(ccx.tcx, tps, sub); ret ty::mk_imm_tup(ccx.tcx, ~[ty::mk_int(ccx.tcx), simplify_type(ccx, sub1)]); } case (_) { ret typ; } } } ret ty::fold_ty(ccx.tcx, ty::fm_general(bind simplifier(ccx, _)), typ); } // Computes the size of the data part of a non-dynamically-sized tag. fn static_size_of_tag(&@crate_ctxt cx, &span sp, &ty::t t) -> uint { if (ty::type_has_dynamic_size(cx.tcx, t)) { cx.tcx.sess.span_fatal(sp, "dynamically sized type passed to " + "static_size_of_tag()"); } if (cx.tag_sizes.contains_key(t)) { ret cx.tag_sizes.get(t); } alt (ty::struct(cx.tcx, t)) { case (ty::ty_tag(?tid, ?subtys)) { // Compute max(variant sizes). auto max_size = 0u; auto variants = ty::tag_variants(cx.tcx, tid); for (ty::variant_info variant in variants) { auto tup_ty = simplify_type(cx, ty::mk_imm_tup(cx.tcx, variant.args)); // Perform any type parameter substitutions. tup_ty = ty::substitute_type_params(cx.tcx, subtys, tup_ty); // Here we possibly do a recursive call. auto this_size = llsize_of_real(cx, type_of(cx, sp, tup_ty)); if (max_size < this_size) { max_size = this_size; } } cx.tag_sizes.insert(t, max_size); ret max_size; } case (_) { cx.tcx.sess.span_fatal(sp, "non-tag passed to " + "static_size_of_tag()"); } } } fn dynamic_size_of(&@block_ctxt cx, ty::t t) -> result { fn align_elements(&@block_ctxt cx, &ty::t[] elts) -> result { // // C padding rules: // // // - Pad after each element so that next element is aligned. // - Pad after final structure member so that whole structure // is aligned to max alignment of interior. // auto off = C_int(0); auto max_align = C_int(1); auto bcx = cx; for (ty::t e in elts) { auto elt_align = align_of(bcx, e); bcx = elt_align.bcx; auto elt_size = size_of(bcx, e); bcx = elt_size.bcx; auto aligned_off = align_to(bcx, off, elt_align.val); off = bcx.build.Add(aligned_off, elt_size.val); max_align = umax(bcx, max_align, elt_align.val); } off = align_to(bcx, off, max_align); ret rslt(bcx, off); } alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_param(?p)) { auto szptr = field_of_tydesc(cx, t, false, abi::tydesc_field_size); ret rslt(szptr.bcx, szptr.bcx.build.Load(szptr.val)); } case (ty::ty_tup(?elts)) { let ty::t[] tys = ~[]; for (ty::mt mt in elts) { tys += ~[mt.ty]; } ret align_elements(cx, tys); } case (ty::ty_rec(?flds)) { let ty::t[] tys = ~[]; for (ty::field f in flds) { tys += ~[f.mt.ty]; } ret align_elements(cx, tys); } case (ty::ty_tag(?tid, ?tps)) { auto bcx = cx; // Compute max(variant sizes). let ValueRef max_size = alloca(bcx, T_int()); bcx.build.Store(C_int(0), max_size); auto variants = ty::tag_variants(bcx.fcx.lcx.ccx.tcx, tid); for (ty::variant_info variant in variants) { // Perform type substitution on the raw argument types. let ty::t[] raw_tys = variant.args; let ty::t[] tys = ~[]; for (ty::t raw_ty in raw_tys) { auto t = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, tps, raw_ty); tys += ~[t]; } auto rslt = align_elements(bcx, tys); bcx = rslt.bcx; auto this_size = rslt.val; auto old_max_size = bcx.build.Load(max_size); bcx.build.Store(umax(bcx, this_size, old_max_size), max_size); } auto max_size_val = bcx.build.Load(max_size); auto total_size = if (std::ivec::len(variants) != 1u) { bcx.build.Add(max_size_val, llsize_of(T_int())) } else { max_size_val }; ret rslt(bcx, total_size); } case (ty::ty_ivec(?mt)) { auto rs = size_of(cx, mt.ty); auto bcx = rs.bcx; auto llunitsz = rs.val; auto llsz = bcx.build.Add(llsize_of(T_opaque_ivec()), bcx.build.Mul(llunitsz, C_uint(abi::ivec_default_length))); ret rslt(bcx, llsz); } } } fn dynamic_align_of(&@block_ctxt cx, &ty::t t) -> result { alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_param(?p)) { auto aptr = field_of_tydesc(cx, t, false, abi::tydesc_field_align); ret rslt(aptr.bcx, aptr.bcx.build.Load(aptr.val)); } case (ty::ty_tup(?elts)) { auto a = C_int(1); auto bcx = cx; for (ty::mt e in elts) { auto align = align_of(bcx, e.ty); bcx = align.bcx; a = umax(bcx, a, align.val); } ret rslt(bcx, a); } case (ty::ty_rec(?flds)) { auto a = C_int(1); auto bcx = cx; for (ty::field f in flds) { auto align = align_of(bcx, f.mt.ty); bcx = align.bcx; a = umax(bcx, a, align.val); } ret rslt(bcx, a); } case (ty::ty_tag(_, _)) { ret rslt(cx, C_int(1)); // FIXME: stub } case (ty::ty_ivec(?tm)) { auto rs = align_of(cx, tm.ty); auto bcx = rs.bcx; auto llunitalign = rs.val; auto llalign = umax(bcx, llalign_of(T_int()), llunitalign); ret rslt(bcx, llalign); } } } // Replacement for the LLVM 'GEP' instruction when field-indexing into a // tuple-like structure (tup, rec) with a static index. This one is driven off // ty::struct and knows what to do when it runs into a ty_param stuck in the // middle of the thing it's GEP'ing into. Much like size_of and align_of, // above. fn GEP_tup_like(&@block_ctxt cx, &ty::t t, ValueRef base, &int[] ixs) -> result { assert (ty::type_is_tup_like(cx.fcx.lcx.ccx.tcx, t)); // It might be a static-known type. Handle this. if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { let ValueRef[] v = ~[]; for (int i in ixs) { v += ~[C_int(i)]; } ret rslt(cx, cx.build.GEP(base, v)); } // It is a dynamic-containing type that, if we convert directly to an LLVM // TypeRef, will be all wrong; there's no proper LLVM type to represent // it, and the lowering function will stick in i8* values for each // ty_param, which is not right; the ty_params are all of some dynamic // size. // // What we must do instead is sadder. We must look through the indices // manually and split the input type into a prefix and a target. We then // measure the prefix size, bump the input pointer by that amount, and // cast to a pointer-to-target type. // Given a type, an index vector and an element number N in that vector, // calculate index X and the type that results by taking the first X-1 // elements of the type and splitting the Xth off. Return the prefix as // well as the innermost Xth type. fn split_type(&@crate_ctxt ccx, &ty::t t, &int[] ixs, uint n) -> rec(ty::t[] prefix, ty::t target) { let uint len = std::ivec::len[int](ixs); // We don't support 0-index or 1-index GEPs: The former is nonsense // and the latter would only be meaningful if we supported non-0 // values for the 0th index (we don't). assert (len > 1u); if (n == 0u) { // Since we're starting from a value that's a pointer to a // *single* structure, the first index (in GEP-ese) should just be // 0, to yield the pointee. assert (ixs.(n) == 0); ret split_type(ccx, t, ixs, n + 1u); } assert (n < len); let int ix = ixs.(n); let ty::t[] prefix = ~[]; let int i = 0; while (i < ix) { prefix += ~[ty::get_element_type(ccx.tcx, t, i as uint)]; i += 1; } auto selected = ty::get_element_type(ccx.tcx, t, i as uint); if (n == len - 1u) { // We are at the innermost index. ret rec(prefix=prefix, target=selected); } else { // Not the innermost index; call self recursively to dig deeper. // Once we get an inner result, append it current prefix and // return to caller. auto inner = split_type(ccx, selected, ixs, n + 1u); prefix += inner.prefix; ret rec(prefix=prefix with inner); } } // We make a fake prefix tuple-type here; luckily for measuring sizes // the tuple parens are associative so it doesn't matter that we've // flattened the incoming structure. auto s = split_type(cx.fcx.lcx.ccx, t, ixs, 0u); auto args = ~[]; for (ty::t typ in s.prefix) { args += ~[typ]; } auto prefix_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, args); auto bcx = cx; auto sz = size_of(bcx, prefix_ty); bcx = sz.bcx; auto raw = bcx.build.PointerCast(base, T_ptr(T_i8())); auto bumped = bcx.build.GEP(raw, ~[sz.val]); if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, s.target)) { ret rslt(bcx, bumped); } auto typ = T_ptr(type_of(bcx.fcx.lcx.ccx, bcx.sp, s.target)); ret rslt(bcx, bcx.build.PointerCast(bumped, typ)); } // Replacement for the LLVM 'GEP' instruction when field indexing into a tag. // This function uses GEP_tup_like() above and automatically performs casts as // appropriate. @llblobptr is the data part of a tag value; its actual type is // meaningless, as it will be cast away. fn GEP_tag(@block_ctxt cx, ValueRef llblobptr, &ast::def_id tag_id, &ast::def_id variant_id, &ty::t[] ty_substs, int ix) -> result { auto variant = ty::tag_variant_with_id(cx.fcx.lcx.ccx.tcx, tag_id, variant_id); // Synthesize a tuple type so that GEP_tup_like() can work its magic. // Separately, store the type of the element we're interested in. auto arg_tys = variant.args; auto elem_ty = ty::mk_nil(cx.fcx.lcx.ccx.tcx); // typestate infelicity auto i = 0; let ty::t[] true_arg_tys = ~[]; for (ty::t aty in arg_tys) { auto arg_ty = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, ty_substs, aty); true_arg_tys += ~[arg_ty]; if (i == ix) { elem_ty = arg_ty; } i += 1; } auto tup_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, true_arg_tys); // Cast the blob pointer to the appropriate type, if we need to (i.e. if // the blob pointer isn't dynamically sized). let ValueRef llunionptr; if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, tup_ty)) { auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, tup_ty); llunionptr = cx.build.TruncOrBitCast(llblobptr, T_ptr(llty)); } else { llunionptr = llblobptr; } // Do the GEP_tup_like(). auto rs = GEP_tup_like(cx, tup_ty, llunionptr, ~[0, ix]); // Cast the result to the appropriate type, if necessary. auto val; if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elem_ty)) { auto llelemty = type_of(rs.bcx.fcx.lcx.ccx, cx.sp, elem_ty); val = rs.bcx.build.PointerCast(rs.val, T_ptr(llelemty)); } else { val = rs.val; } ret rslt(rs.bcx, val); } // trans_raw_malloc: expects a type indicating which pointer type we want and // a size indicating how much space we want malloc'd. fn trans_raw_malloc(&@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize) -> result { // FIXME: need a table to collect tydesc globals. auto tydesc = C_null(T_ptr(cx.fcx.lcx.ccx.tydesc_type)); auto rval = cx.build.Call(cx.fcx.lcx.ccx.upcalls.malloc, ~[cx.fcx.lltaskptr, llsize, tydesc]); ret rslt(cx, cx.build.PointerCast(rval, llptr_ty)); } // trans_shared_malloc: expects a type indicating which pointer type we want // and a size indicating how much space we want malloc'd. fn trans_shared_malloc(&@block_ctxt cx, TypeRef llptr_ty, ValueRef llsize) -> result { // FIXME: need a table to collect tydesc globals. auto tydesc = C_null(T_ptr(cx.fcx.lcx.ccx.tydesc_type)); auto rval = cx.build.Call(cx.fcx.lcx.ccx.upcalls.shared_malloc, ~[cx.fcx.lltaskptr, llsize, tydesc]); ret rslt(cx, cx.build.PointerCast(rval, llptr_ty)); } // trans_malloc_boxed: expects an unboxed type and returns a pointer to enough // space for something of that type, along with space for a reference count; // in other words, it allocates a box for something of that type. fn trans_malloc_boxed(&@block_ctxt cx, ty::t t) -> result { // Synthesize a fake box type structurally so we have something // to measure the size of. // We synthesize two types here because we want both the type of the // pointer and the pointee. boxed_body is the type that we measure the // size of; box_ptr is the type that's converted to a TypeRef and used as // the pointer cast target in trans_raw_malloc. auto boxed_body = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, // The mk_int here is the space being // reserved for the refcount. ~[ty::mk_int(cx.fcx.lcx.ccx.tcx), t]); auto box_ptr = ty::mk_imm_box(cx.fcx.lcx.ccx.tcx, t); auto sz = size_of(cx, boxed_body); // Grab the TypeRef type of box_ptr, because that's what trans_raw_malloc // wants. auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, box_ptr); ret trans_raw_malloc(sz.bcx, llty, sz.val); } // Type descriptor and type glue stuff // Given a type and a field index into its corresponding type descriptor, // returns an LLVM ValueRef of that field from the tydesc, generating the // tydesc if necessary. fn field_of_tydesc(&@block_ctxt cx, &ty::t t, bool escapes, int field) -> result { auto ti = none[@tydesc_info]; auto tydesc = get_tydesc(cx, t, escapes, ti); ret rslt(tydesc.bcx, tydesc.bcx.build.GEP(tydesc.val, ~[C_int(0), C_int(field)])); } // Given a type containing ty params, build a vector containing a ValueRef for // each of the ty params it uses (from the current frame) and a vector of the // indices of the ty params present in the type. This is used solely for // constructing derived tydescs. fn linearize_ty_params(&@block_ctxt cx, &ty::t t) -> tup(uint[], ValueRef[]) { let ValueRef[] param_vals = ~[]; let uint[] param_defs = ~[]; type rr = rec(@block_ctxt cx, mutable ValueRef[] vals, mutable uint[] defs); fn linearizer(@rr r, ty::t t) { alt (ty::struct(r.cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_param(?pid)) { let bool seen = false; for (uint d in r.defs) { if (d == pid) { seen = true; } } if (!seen) { r.vals += ~[r.cx.fcx.lltydescs.(pid)]; r.defs += ~[pid]; } } case (_) { } } } auto x = @rec(cx=cx, mutable vals=param_vals, mutable defs=param_defs); auto f = bind linearizer(x, _); ty::walk_ty(cx.fcx.lcx.ccx.tcx, f, t); ret tup(x.defs, x.vals); } fn trans_stack_local_derived_tydesc(&@block_ctxt cx, ValueRef llsz, ValueRef llalign, ValueRef llroottydesc, ValueRef llparamtydescs) -> ValueRef { auto llmyroottydesc = alloca(cx, cx.fcx.lcx.ccx.tydesc_type); // By convention, desc 0 is the root descriptor. llroottydesc = cx.build.Load(llroottydesc); cx.build.Store(llroottydesc, llmyroottydesc); // Store a pointer to the rest of the descriptors. auto llfirstparam = cx.build.GEP(llparamtydescs, ~[C_int(0), C_int(0)]); cx.build.Store(llfirstparam, cx.build.GEP(llmyroottydesc, ~[C_int(0), C_int(0)])); cx.build.Store(llsz, cx.build.GEP(llmyroottydesc, ~[C_int(0), C_int(1)])); cx.build.Store(llalign, cx.build.GEP(llmyroottydesc, ~[C_int(0), C_int(2)])); ret llmyroottydesc; } fn get_derived_tydesc(&@block_ctxt cx, &ty::t t, bool escapes, &mutable option::t[@tydesc_info] static_ti) -> result { alt (cx.fcx.derived_tydescs.find(t)) { case (some(?info)) { // If the tydesc escapes in this context, the cached derived // tydesc also has to be one that was marked as escaping. if (!(escapes && !info.escapes)) { ret rslt(cx, info.lltydesc); } } case (none) {/* fall through */ } } cx.fcx.lcx.ccx.stats.n_derived_tydescs += 1u; auto bcx = new_raw_block_ctxt(cx.fcx, cx.fcx.llderivedtydescs); let uint n_params = ty::count_ty_params(bcx.fcx.lcx.ccx.tcx, t); auto tys = linearize_ty_params(bcx, t); assert (n_params == std::ivec::len[uint](tys._0)); assert (n_params == std::ivec::len[ValueRef](tys._1)); auto root_ti = get_static_tydesc(bcx, t, tys._0); static_ti = some[@tydesc_info](root_ti); lazily_emit_all_tydesc_glue(cx, static_ti); auto root = root_ti.tydesc; auto sz = size_of(bcx, t); bcx = sz.bcx; auto align = align_of(bcx, t); bcx = align.bcx; auto v; if (escapes) { auto tydescs = alloca(bcx, /* for root*/ T_array(T_ptr(bcx.fcx.lcx.ccx.tydesc_type), 1u + n_params)); auto i = 0; auto tdp = bcx.build.GEP(tydescs, ~[C_int(0), C_int(i)]); bcx.build.Store(root, tdp); i += 1; for (ValueRef td in tys._1) { auto tdp = bcx.build.GEP(tydescs, ~[C_int(0), C_int(i)]); bcx.build.Store(td, tdp); i += 1; } auto lltydescsptr = bcx.build.PointerCast(tydescs, T_ptr(T_ptr(bcx.fcx.lcx.ccx.tydesc_type))); auto td_val = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.get_type_desc, ~[bcx.fcx.lltaskptr, C_null(T_ptr(T_nil())), sz.val, align.val, C_int(1u + n_params as int), lltydescsptr]); v = td_val; } else { auto llparamtydescs = alloca(bcx, T_array(T_ptr(bcx.fcx.lcx.ccx.tydesc_type), n_params)); auto i = 0; for (ValueRef td in tys._1) { auto tdp = bcx.build.GEP(llparamtydescs, ~[C_int(0), C_int(i)]); bcx.build.Store(td, tdp); i += 1; } v = trans_stack_local_derived_tydesc(bcx, sz.val, align.val, root, llparamtydescs); } bcx.fcx.derived_tydescs.insert(t, rec(lltydesc=v, escapes=escapes)); ret rslt(cx, v); } fn get_tydesc(&@block_ctxt cx, &ty::t t, bool escapes, &mutable option::t[@tydesc_info] static_ti) -> result { // Is the supplied type a type param? If so, return the passed-in tydesc. alt (ty::type_param(cx.fcx.lcx.ccx.tcx, t)) { case (some(?id)) { ret rslt(cx, cx.fcx.lltydescs.(id)); } case (none) {/* fall through */ } } // Does it contain a type param? If so, generate a derived tydesc. if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, t)) { ret get_derived_tydesc(cx, t, escapes, static_ti); } // Otherwise, generate a tydesc if necessary, and return it. auto info = get_static_tydesc(cx, t, ~[]); static_ti = some[@tydesc_info](info); ret rslt(cx, info.tydesc); } fn get_static_tydesc(&@block_ctxt cx, &ty::t t, &uint[] ty_params) -> @tydesc_info { alt (cx.fcx.lcx.ccx.tydescs.find(t)) { case (some(?info)) { ret info; } case (none) { cx.fcx.lcx.ccx.stats.n_static_tydescs += 1u; auto info = declare_tydesc(cx.fcx.lcx, cx.sp, t, ty_params); cx.fcx.lcx.ccx.tydescs.insert(t, info); ret info; } } } fn set_no_inline(ValueRef f) { llvm::LLVMAddFunctionAttr(f, lib::llvm::LLVMNoInlineAttribute as lib::llvm::llvm::Attribute); } // Tell LLVM to emit the information necessary to unwind the stack for the // function f. fn set_uwtable(ValueRef f) { llvm::LLVMAddFunctionAttr(f, lib::llvm::LLVMUWTableAttribute as lib::llvm::llvm::Attribute); } fn set_always_inline(ValueRef f) { llvm::LLVMAddFunctionAttr(f, lib::llvm::LLVMAlwaysInlineAttribute as lib::llvm::llvm::Attribute); } fn set_glue_inlining(&@local_ctxt cx, ValueRef f, &ty::t t) { if (ty::type_is_structural(cx.ccx.tcx, t)) { set_no_inline(f); } else { set_always_inline(f); } } // Generates the declaration for (but doesn't emit) a type descriptor. fn declare_tydesc(&@local_ctxt cx, &span sp, &ty::t t, &uint[] ty_params) -> @tydesc_info { log "+++ declare_tydesc " + ty_to_str(cx.ccx.tcx, t); auto ccx = cx.ccx; auto llsize; auto llalign; if (!ty::type_has_dynamic_size(ccx.tcx, t)) { auto llty = type_of(ccx, sp, t); llsize = llsize_of(llty); llalign = llalign_of(llty); } else { // These will be overwritten as the derived tydesc is generated, so // we create placeholder values. llsize = C_int(0); llalign = C_int(0); } auto name; if (cx.ccx.sess.get_opts().debuginfo) { name = mangle_internal_name_by_type_only(cx.ccx, t, "tydesc"); name = sanitize(name); } else { name = mangle_internal_name_by_seq(cx.ccx, "tydesc"); } auto gvar = llvm::LLVMAddGlobal(ccx.llmod, ccx.tydesc_type, str::buf(name)); auto info = @rec(ty=t, tydesc=gvar, size=llsize, align=llalign, mutable copy_glue=none[ValueRef], mutable drop_glue=none[ValueRef], mutable free_glue=none[ValueRef], mutable cmp_glue=none[ValueRef], ty_params=ty_params); log "--- declare_tydesc " + ty_to_str(cx.ccx.tcx, t); ret info; } tag make_generic_glue_helper_fn { mgghf_single(fn(&@block_ctxt, ValueRef, &ty::t) ); mgghf_cmp; } fn declare_generic_glue(&@local_ctxt cx, &ty::t t, TypeRef llfnty, &str name) -> ValueRef { auto fn_nm; if (cx.ccx.sess.get_opts().debuginfo) { fn_nm = mangle_internal_name_by_type_only(cx.ccx, t, "glue_" + name); fn_nm = sanitize(fn_nm); } else { fn_nm = mangle_internal_name_by_seq(cx.ccx, "glue_" + name); } auto llfn = decl_cdecl_fn(cx.ccx.llmod, fn_nm, llfnty); set_glue_inlining(cx, llfn, t); ret llfn; } fn make_generic_glue(&@local_ctxt cx, &span sp, &ty::t t, ValueRef llfn, &make_generic_glue_helper_fn helper, &uint[] ty_params) -> ValueRef { auto fcx = new_fn_ctxt(cx, sp, llfn); llvm::LLVMSetLinkage(llfn, lib::llvm::LLVMInternalLinkage as llvm::Linkage); cx.ccx.stats.n_glues_created += 1u; // Any nontrivial glue is with values passed *by alias*; this is a // requirement since in many contexts glue is invoked indirectly and // the caller has no idea if it's dealing with something that can be // passed by value. auto llty; if (ty::type_has_dynamic_size(cx.ccx.tcx, t)) { llty = T_ptr(T_i8()); } else { llty = T_ptr(type_of(cx.ccx, sp, t)); } auto ty_param_count = std::ivec::len[uint](ty_params); auto lltyparams = llvm::LLVMGetParam(llfn, 3u); auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs); auto lltydescs = ~[mutable]; auto p = 0u; while (p < ty_param_count) { auto llparam = copy_args_bcx.build.GEP(lltyparams, ~[C_int(p as int)]); llparam = copy_args_bcx.build.Load(llparam); std::ivec::grow_set(lltydescs, ty_params.(p), 0 as ValueRef, llparam); p += 1u; } // TODO: Implement some kind of freeze operation in the standard library. auto lltydescs_frozen = ~[]; for (ValueRef lltydesc in lltydescs) { lltydescs_frozen += ~[lltydesc]; } fcx.lltydescs = lltydescs_frozen; auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; auto llrawptr0 = llvm::LLVMGetParam(llfn, 4u); auto llval0 = bcx.build.BitCast(llrawptr0, llty); alt (helper) { case (mgghf_single(?single_fn)) { single_fn(bcx, llval0, t); } case (mgghf_cmp) { auto llrawptr1 = llvm::LLVMGetParam(llfn, 5u); auto llval1 = bcx.build.BitCast(llrawptr1, llty); auto llcmpval = llvm::LLVMGetParam(llfn, 6u); make_cmp_glue(bcx, llval0, llval1, t, llcmpval); } } finish_fn(fcx, lltop); ret llfn; } fn emit_tydescs(&@crate_ctxt ccx) { for each (@tup(ty::t, @tydesc_info) pair in ccx.tydescs.items()) { auto glue_fn_ty = T_ptr(T_glue_fn(*ccx)); auto cmp_fn_ty = T_ptr(T_cmp_glue_fn(*ccx)); auto ti = pair._1; auto copy_glue = alt ({ ti.copy_glue }) { case (none) { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) } case (some(?v)) { ccx.stats.n_real_glues += 1u; v } }; auto drop_glue = alt ({ ti.drop_glue }) { case (none) { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) } case (some(?v)) { ccx.stats.n_real_glues += 1u; v } }; auto free_glue = alt ({ ti.free_glue }) { case (none) { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) } case (some(?v)) { ccx.stats.n_real_glues += 1u; v } }; auto cmp_glue = alt ({ ti.cmp_glue }) { case (none) { ccx.stats.n_null_glues += 1u; C_null(cmp_fn_ty) } case (some(?v)) { ccx.stats.n_real_glues += 1u; v } }; auto tydesc = C_named_struct(ccx.tydesc_type, ~[C_null(T_ptr(T_ptr(ccx.tydesc_type))), ti.size, ti.align, copy_glue, // copy_glue drop_glue, // drop_glue free_glue, // free_glue C_null(glue_fn_ty), // sever_glue C_null(glue_fn_ty), // mark_glue C_null(glue_fn_ty), // obj_drop_glue C_null(glue_fn_ty), // is_stateful cmp_glue]); // cmp_glue auto gvar = ti.tydesc; llvm::LLVMSetInitializer(gvar, tydesc); llvm::LLVMSetGlobalConstant(gvar, True); llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMInternalLinkage as llvm::Linkage); } } fn make_copy_glue(&@block_ctxt cx, ValueRef v, &ty::t t) { // NB: v is an *alias* of type t here, not a direct value. auto bcx; if (ty::type_is_boxed(cx.fcx.lcx.ccx.tcx, t)) { bcx = incr_refcnt_of_boxed(cx, cx.build.Load(v)).bcx; } else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) { bcx = duplicate_heap_parts_if_necessary(cx, v, t).bcx; bcx = iter_structural_ty(bcx, v, t, bind copy_ty(_, _, _)).bcx; } else { bcx = cx; } bcx.build.RetVoid(); } fn incr_refcnt_of_boxed(&@block_ctxt cx, ValueRef box_ptr) -> result { auto rc_ptr = cx.build.GEP(box_ptr, ~[C_int(0), C_int(abi::box_rc_field_refcnt)]); auto rc = cx.build.Load(rc_ptr); auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto const_test = cx.build.ICmp(lib::llvm::LLVMIntEQ, C_int(abi::const_refcount as int), rc); cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb); rc = rc_adj_cx.build.Add(rc, C_int(1)); rc_adj_cx.build.Store(rc, rc_ptr); rc_adj_cx.build.Br(next_cx.llbb); ret rslt(next_cx, C_nil()); } fn make_free_glue(&@block_ctxt cx, ValueRef v0, &ty::t t) { // NB: v is an *alias* of type t here, not a direct value. auto rs = alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_str) { auto v = cx.build.Load(v0); trans_non_gc_free(cx, v) } case (ty::ty_vec(_)) { auto v = cx.build.Load(v0); auto rs = iter_sequence(cx, v, t, bind drop_ty(_, _, _)); // FIXME: switch gc/non-gc on layer of the type. trans_non_gc_free(rs.bcx, v) } case (ty::ty_box(?body_mt)) { auto v = cx.build.Load(v0); auto body = cx.build.GEP(v, ~[C_int(0), C_int(abi::box_rc_field_body)]); auto body_ty = body_mt.ty; auto body_val = load_if_immediate(cx, body, body_ty); auto rs = drop_ty(cx, body_val, body_ty); // FIXME: switch gc/non-gc on layer of the type. trans_non_gc_free(rs.bcx, v) } case (ty::ty_port(_)) { auto v = cx.build.Load(v0); cx.build.Call(cx.fcx.lcx.ccx.upcalls.del_port, ~[cx.fcx.lltaskptr, cx.build.PointerCast(v, T_opaque_port_ptr())]); rslt(cx, C_int(0)) } case (ty::ty_chan(_)) { auto v = cx.build.Load(v0); cx.build.Call(cx.fcx.lcx.ccx.upcalls.del_chan, ~[cx.fcx.lltaskptr, cx.build.PointerCast(v, T_opaque_chan_ptr())]); rslt(cx, C_int(0)) } case (ty::ty_task) { // TODO: call upcall_kill rslt(cx, C_nil()) } case (ty::ty_obj(_)) { auto box_cell = cx.build.GEP(v0, ~[C_int(0), C_int(abi::obj_field_box)]); auto b = cx.build.Load(box_cell); auto ccx = cx.fcx.lcx.ccx; auto llbox_ty = T_opaque_obj_ptr(*ccx); b = cx.build.PointerCast(b, llbox_ty); auto body = cx.build.GEP(b, ~[C_int(0), C_int(abi::box_rc_field_body)]); auto tydescptr = cx.build.GEP(body, ~[C_int(0), C_int(abi::obj_body_elt_tydesc)]); auto tydesc = cx.build.Load(tydescptr); auto cx_ = maybe_call_dtor(cx, v0); // Call through the obj's own fields-drop glue first. auto ti = none[@tydesc_info]; call_tydesc_glue_full(cx_, body, tydesc, abi::tydesc_field_drop_glue, ti); // Then free the body. // FIXME: switch gc/non-gc on layer of the type. trans_non_gc_free(cx_, b) } case (ty::ty_fn(_, _, _, _, _)) { auto box_cell = cx.build.GEP(v0, ~[C_int(0), C_int(abi::fn_field_box)]); auto v = cx.build.Load(box_cell); // Call through the closure's own fields-drop glue first. auto body = cx.build.GEP(v, ~[C_int(0), C_int(abi::box_rc_field_body)]); auto bindings = cx.build.GEP(body, ~[C_int(0), C_int(abi::closure_elt_bindings)]); auto tydescptr = cx.build.GEP(body, ~[C_int(0), C_int(abi::closure_elt_tydesc)]); auto ti = none[@tydesc_info]; call_tydesc_glue_full(cx, bindings, cx.build.Load(tydescptr), abi::tydesc_field_drop_glue, ti); // Then free the body. // FIXME: switch gc/non-gc on layer of the type. trans_non_gc_free(cx, v) } case (_) { rslt(cx, C_nil()) } }; rs.bcx.build.RetVoid(); } fn maybe_free_ivec_heap_part(&@block_ctxt cx, ValueRef v0, ty::t unit_ty) -> result { auto llunitty = type_of_or_i8(cx, unit_ty); auto stack_len = cx.build.Load(cx.build.InBoundsGEP(v0, ~[C_int(0), C_uint(abi::ivec_elt_len)])); auto maybe_on_heap_cx = new_sub_block_ctxt(cx, "maybe_on_heap"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto maybe_on_heap = cx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0)); cx.build.CondBr(maybe_on_heap, maybe_on_heap_cx.llbb, next_cx.llbb); // Might be on the heap. Load the heap pointer and free it. (It's ok to // free a null pointer.) auto stub_ptr = maybe_on_heap_cx.build.PointerCast(v0, T_ptr(T_ivec_heap(llunitty))); auto heap_ptr = { auto v = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]; auto m = maybe_on_heap_cx.build.InBoundsGEP(stub_ptr, v); maybe_on_heap_cx.build.Load(m) }; auto after_free_cx = trans_shared_free(maybe_on_heap_cx, heap_ptr).bcx; after_free_cx.build.Br(next_cx.llbb); ret rslt(next_cx, C_nil()); } fn make_drop_glue(&@block_ctxt cx, ValueRef v0, &ty::t t) { // NB: v0 is an *alias* of type t here, not a direct value. auto ccx = cx.fcx.lcx.ccx; auto rs = alt (ty::struct(ccx.tcx, t)) { case (ty::ty_str) { decr_refcnt_maybe_free(cx, v0, v0, t) } case (ty::ty_vec(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) } case (ty::ty_ivec(?tm)) { auto v1; if (ty::type_has_dynamic_size(ccx.tcx, tm.ty)) { v1 = cx.build.PointerCast(v0, T_ptr(T_opaque_ivec())); } else { v1 = v0; } auto rslt = iter_structural_ty(cx, v1, t, drop_ty); maybe_free_ivec_heap_part(rslt.bcx, v1, tm.ty) } case (ty::ty_box(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) } case (ty::ty_port(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) } case (ty::ty_chan(_)) { decr_refcnt_maybe_free(cx, v0, v0, t) } case (ty::ty_task) { decr_refcnt_maybe_free(cx, v0, v0, t) } case (ty::ty_obj(_)) { auto box_cell = cx.build.GEP(v0, ~[C_int(0), C_int(abi::obj_field_box)]); decr_refcnt_maybe_free(cx, box_cell, v0, t) } case (ty::ty_res(?did, ?inner, ?tps)) { trans_res_drop(cx, v0, did, inner, tps) } case (ty::ty_fn(_, _, _, _, _)) { auto box_cell = cx.build.GEP(v0, ~[C_int(0), C_int(abi::fn_field_box)]); decr_refcnt_maybe_free(cx, box_cell, v0, t) } case (_) { if (ty::type_has_pointers(ccx.tcx, t) && ty::type_is_structural(ccx.tcx, t)) { iter_structural_ty(cx, v0, t, bind drop_ty(_, _, _)) } else { rslt(cx, C_nil()) } } }; rs.bcx.build.RetVoid(); } fn trans_res_drop(@block_ctxt cx, ValueRef rs, &ast::def_id did, ty::t inner_t, &ty::t[] tps) -> result { auto ccx = cx.fcx.lcx.ccx; auto inner_t_s = ty::substitute_type_params(ccx.tcx, tps, inner_t); auto tup_ty = ty::mk_imm_tup(ccx.tcx, ~[ty::mk_int(ccx.tcx), inner_t_s]); auto drop_cx = new_sub_block_ctxt(cx, "drop res"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto drop_flag = GEP_tup_like(cx, tup_ty, rs, ~[0, 0]); cx = drop_flag.bcx; auto null_test = cx.build.IsNull(cx.build.Load(drop_flag.val)); cx.build.CondBr(null_test, next_cx.llbb, drop_cx.llbb); cx = drop_cx; auto val = GEP_tup_like(cx, tup_ty, rs, ~[0, 1]); cx = val.bcx; // Find and call the actual destructor. auto dtor_pair = if (did._0 == ast::local_crate) { alt (ccx.fn_pairs.find(did._1)) { case (some(?x)) { x } case (_) { ccx.tcx.sess.bug("internal error in trans_res_drop") } } } else { auto params = csearch::get_type_param_count(ccx.sess.get_cstore(), did); auto f_t = type_of_fn(ccx, cx.sp, ast::proto_fn, ~[rec(mode=ty::mo_alias(false), ty=inner_t)], ty::mk_nil(ccx.tcx), params); get_extern_const(ccx.externs, ccx.llmod, csearch::get_symbol(ccx.sess.get_cstore(), did), T_fn_pair(*ccx, f_t)) }; auto dtor_addr = cx.build.Load (cx.build.GEP(dtor_pair, ~[C_int(0), C_int(abi::fn_field_code)])); auto dtor_env = cx.build.Load (cx.build.GEP(dtor_pair, ~[C_int(0), C_int(abi::fn_field_box)])); auto args = ~[cx.fcx.llretptr, cx.fcx.lltaskptr, dtor_env]; for (ty::t tp in tps) { let option::t[@tydesc_info] ti = none; auto td = get_tydesc(cx, tp, false, ti); args += ~[td.val]; cx = td.bcx; } // Kludge to work around the fact that we know the precise type of the // value here, but the dtor expects a type that still has opaque pointers // for type variables. auto val_llty = lib::llvm::fn_ty_param_tys (llvm::LLVMGetElementType(llvm::LLVMTypeOf(dtor_addr))) .(std::ivec::len(args)); auto val_cast = cx.build.BitCast(val.val, val_llty); cx.build.FastCall(dtor_addr, args + ~[val_cast]); cx = drop_slot(cx, val.val, inner_t_s).bcx; cx.build.Store(C_int(0), drop_flag.val); cx.build.Br(next_cx.llbb); ret rslt(next_cx, C_nil()); } fn decr_refcnt_maybe_free(&@block_ctxt cx, ValueRef box_ptr_alias, ValueRef full_alias, &ty::t t) -> result { auto ccx = cx.fcx.lcx.ccx; auto load_rc_cx = new_sub_block_ctxt(cx, "load rc"); auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--"); auto free_cx = new_sub_block_ctxt(cx, "free"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto box_ptr = cx.build.Load(box_ptr_alias); auto llbox_ty = T_opaque_obj_ptr(*ccx); box_ptr = cx.build.PointerCast(box_ptr, llbox_ty); auto null_test = cx.build.IsNull(box_ptr); cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb); auto rc_ptr = load_rc_cx.build.GEP(box_ptr, ~[C_int(0), C_int(abi::box_rc_field_refcnt)]); auto rc = load_rc_cx.build.Load(rc_ptr); auto const_test = load_rc_cx.build.ICmp(lib::llvm::LLVMIntEQ, C_int(abi::const_refcount as int), rc); load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb); rc = rc_adj_cx.build.Sub(rc, C_int(1)); rc_adj_cx.build.Store(rc, rc_ptr); auto zero_test = rc_adj_cx.build.ICmp(lib::llvm::LLVMIntEQ, C_int(0), rc); rc_adj_cx.build.CondBr(zero_test, free_cx.llbb, next_cx.llbb); auto free_res = free_ty(free_cx, load_if_immediate(free_cx, full_alias, t), t); free_res.bcx.build.Br(next_cx.llbb); auto t_else = T_nil(); auto v_else = C_nil(); auto phi = next_cx.build.Phi(t_else, ~[v_else, v_else, v_else, free_res.val], ~[cx.llbb, load_rc_cx.llbb, rc_adj_cx.llbb, free_res.bcx.llbb]); ret rslt(next_cx, phi); } // Structural comparison: a rather involved form of glue. fn maybe_name_value(&@crate_ctxt cx, ValueRef v, &str s) { if (cx.sess.get_opts().save_temps) { llvm::LLVMSetValueName(v, str::buf(s)); } } fn make_cmp_glue(&@block_ctxt cx, ValueRef lhs0, ValueRef rhs0, &ty::t t, ValueRef llop) { auto lhs = load_if_immediate(cx, lhs0, t); auto rhs = load_if_immediate(cx, rhs0, t); if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t)) { make_scalar_cmp_glue(cx, lhs, rhs, t, llop); } else if (ty::type_is_box(cx.fcx.lcx.ccx.tcx, t)) { lhs = cx.build.GEP(lhs, ~[C_int(0), C_int(abi::box_rc_field_body)]); rhs = cx.build.GEP(rhs, ~[C_int(0), C_int(abi::box_rc_field_body)]); auto t_inner = alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_box(?ti)) { ti.ty } }; auto rslt = compare(cx, lhs, rhs, t_inner, llop); rslt.bcx.build.Store(rslt.val, cx.fcx.llretptr); rslt.bcx.build.RetVoid(); } else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t) || ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) { auto scx = new_sub_block_ctxt(cx, "structural compare start"); auto next = new_sub_block_ctxt(cx, "structural compare end"); cx.build.Br(scx.llbb); /* * We're doing lexicographic comparison here. We start with the * assumption that the two input elements are equal. Depending on * operator, this means that the result is either true or false; * equality produces 'true' for ==, <= and >=. It produces 'false' for * !=, < and >. * * We then move one element at a time through the structure checking * for pairwise element equality: If we have equality, our assumption * about overall sequence equality is not modified, so we have to move * to the next element. * * If we do not have pairwise element equality, we have reached an * element that 'decides' the lexicographic comparison. So we exit the * loop with a flag that indicates the true/false sense of that * decision, by testing the element again with the operator we're * interested in. * * When we're lucky, LLVM should be able to fold some of these two * tests together (as they're applied to the same operands and in some * cases are sometimes redundant). But we don't bother trying to * optimize combinations like that, at this level. */ auto flag = alloca(scx, T_i1()); maybe_name_value(cx.fcx.lcx.ccx, flag, "flag"); auto r; if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) { // If we hit == all the way through the minimum-shared-length // section, default to judging the relative sequence lengths. auto lhs_fill; auto rhs_fill; auto bcx; if (ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, t)) { auto st = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t); auto lad = ivec::get_len_and_data(scx, lhs, st); bcx = lad._2; lhs_fill = lad._0; lad = ivec::get_len_and_data(bcx, rhs, st); bcx = lad._2; rhs_fill = lad._0; } else { lhs_fill = vec_fill(scx, lhs); rhs_fill = vec_fill(scx, rhs); bcx = scx; } r = compare_scalar_values(bcx, lhs_fill, rhs_fill, unsigned_int, llop); r.bcx.build.Store(r.val, flag); } else { // == and <= default to true if they find == all the way. < // defaults to false if it finds == all the way. auto result_if_equal = scx.build.ICmp(lib::llvm::LLVMIntNE, llop, C_u8(abi::cmp_glue_op_lt)); scx.build.Store(result_if_equal, flag); r = rslt(scx, C_nil()); } fn inner(@block_ctxt last_cx, bool load_inner, ValueRef flag, ValueRef llop, &@block_ctxt cx, ValueRef av0, ValueRef bv0, ty::t t) -> result { auto cnt_cx = new_sub_block_ctxt(cx, "continue_comparison"); auto stop_cx = new_sub_block_ctxt(cx, "stop_comparison"); auto av = av0; auto bv = bv0; if (load_inner) { // If `load_inner` is true, then the pointer type will always // be i8, because the data part of a vector always has type // i8[]. So we need to cast it to the proper type. if (!ty::type_has_dynamic_size(last_cx.fcx.lcx.ccx.tcx, t)) { auto llelemty = T_ptr(type_of(last_cx.fcx.lcx.ccx, last_cx.sp, t)); av = cx.build.PointerCast(av, llelemty); bv = cx.build.PointerCast(bv, llelemty); } av = load_if_immediate(cx, av, t); bv = load_if_immediate(cx, bv, t); } // First 'eq' comparison: if so, continue to next elts. auto eq_r = compare(cx, av, bv, t, C_u8(abi::cmp_glue_op_eq)); eq_r.bcx.build.CondBr(eq_r.val, cnt_cx.llbb, stop_cx.llbb); // Second 'op' comparison: find out how this elt-pair decides. auto stop_r = compare(stop_cx, av, bv, t, llop); stop_r.bcx.build.Store(stop_r.val, flag); stop_r.bcx.build.Br(last_cx.llbb); ret rslt(cnt_cx, C_nil()); } if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t)) { r = iter_structural_ty_full(r.bcx, lhs, rhs, t, bind inner(next, false, flag, llop, _, _, _, _)); } else { auto lhs_p0 = vec_p0(r.bcx, lhs); auto rhs_p0 = vec_p0(r.bcx, rhs); auto min_len = umin(r.bcx, vec_fill(r.bcx, lhs), vec_fill(r.bcx, rhs)); auto rhs_lim = r.bcx.build.GEP(rhs_p0, ~[min_len]); auto elt_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t); r = size_of(r.bcx, elt_ty); r = iter_sequence_raw(r.bcx, lhs_p0, rhs_p0, rhs_lim, r.val, bind inner(next, true, flag, llop, _, _, _, elt_ty)); } r.bcx.build.Br(next.llbb); auto v = next.build.Load(flag); next.build.Store(v, cx.fcx.llretptr); next.build.RetVoid(); } else { // FIXME: compare obj, fn by pointer? trans_fail(cx, none[span], "attempt to compare values of type " + ty_to_str(cx.fcx.lcx.ccx.tcx, t)); } } // Used only for creating scalar comparsion glue. tag scalar_type { nil_type; signed_int; unsigned_int; floating_point; } fn compare_scalar_types(@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t, ValueRef llop) -> result { // FIXME: this could be a lot shorter if we could combine multiple cases // of alt expressions (issue #449). auto f = bind compare_scalar_values(cx, lhs, rhs, _, llop); alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_nil) { ret f(nil_type); } case (ty::ty_bool) { ret f(unsigned_int); } case (ty::ty_int) { ret f(signed_int); } case (ty::ty_float) { ret f(floating_point); } case (ty::ty_uint) { ret f(unsigned_int); } case (ty::ty_machine(_)) { if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) { // Floating point machine types ret f(floating_point); } else if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, t)) { // Signed, integral machine types ret f(signed_int); } else { // Unsigned, integral machine types ret f(unsigned_int); } } case (ty::ty_char) { ret f(unsigned_int); } case (ty::ty_type) { trans_fail(cx, none[span], "attempt to compare values of type type"); // This is a bit lame, because we return a dummy block to the // caller that's actually unreachable, but I don't think it // matters. ret rslt(new_sub_block_ctxt(cx, "after_fail_dummy"), C_bool(false)); } case (ty::ty_native(_)) { trans_fail(cx, none[span], "attempt to compare values of type native"); ret rslt(new_sub_block_ctxt(cx, "after_fail_dummy"), C_bool(false)); } case (ty::ty_ptr(_)) { ret f(unsigned_int); } case (_) { // Should never get here, because t is scalar. cx.fcx.lcx.ccx.sess.bug("non-scalar type passed to " + "compare_scalar_types"); } } } // A helper function to create scalar comparison glue. fn make_scalar_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t, ValueRef llop) { assert ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t); // In most cases, we need to know whether to do signed, unsigned, or float // comparison. auto rslt = compare_scalar_types(cx, lhs, rhs, t, llop); auto bcx = rslt.bcx; auto compare_result = rslt.val; bcx.build.Store(compare_result, cx.fcx.llretptr); bcx.build.RetVoid(); } // A helper function to do the actual comparison of scalar values. fn compare_scalar_values(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, scalar_type nt, ValueRef llop) -> result { auto eq_cmp; auto lt_cmp; auto le_cmp; alt (nt) { case (nil_type) { // We don't need to do actual comparisons for nil. // () == () holds but () < () does not. eq_cmp = 1u; lt_cmp = 0u; le_cmp = 1u; } case (floating_point) { eq_cmp = lib::llvm::LLVMRealUEQ; lt_cmp = lib::llvm::LLVMRealULT; le_cmp = lib::llvm::LLVMRealULE; } case (signed_int) { eq_cmp = lib::llvm::LLVMIntEQ; lt_cmp = lib::llvm::LLVMIntSLT; le_cmp = lib::llvm::LLVMIntSLE; } case (unsigned_int) { eq_cmp = lib::llvm::LLVMIntEQ; lt_cmp = lib::llvm::LLVMIntULT; le_cmp = lib::llvm::LLVMIntULE; } } // FIXME: This wouldn't be necessary if we could bind methods off of // objects and therefore abstract over FCmp and ICmp (issue #435). Then // we could just write, e.g., "cmp_fn = bind cx.build.FCmp(_, _, _);" in // the above, and "auto eq_result = cmp_fn(eq_cmp, lhs, rhs);" in the // below. fn generic_cmp(&@block_ctxt cx, scalar_type nt, uint op, ValueRef lhs, ValueRef rhs) -> ValueRef { let ValueRef r; if (nt == nil_type) { r = C_bool(op != 0u); } else if (nt == floating_point) { r = cx.build.FCmp(op, lhs, rhs); } else { r = cx.build.ICmp(op, lhs, rhs); } ret r; } auto last_cx = new_sub_block_ctxt(cx, "last"); auto eq_cx = new_sub_block_ctxt(cx, "eq"); auto eq_result = generic_cmp(eq_cx, nt, eq_cmp, lhs, rhs); eq_cx.build.Br(last_cx.llbb); auto lt_cx = new_sub_block_ctxt(cx, "lt"); auto lt_result = generic_cmp(lt_cx, nt, lt_cmp, lhs, rhs); lt_cx.build.Br(last_cx.llbb); auto le_cx = new_sub_block_ctxt(cx, "le"); auto le_result = generic_cmp(le_cx, nt, le_cmp, lhs, rhs); le_cx.build.Br(last_cx.llbb); auto unreach_cx = new_sub_block_ctxt(cx, "unreach"); unreach_cx.build.Unreachable(); auto llswitch = cx.build.Switch(llop, unreach_cx.llbb, 3u); llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_eq), eq_cx.llbb); llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_lt), lt_cx.llbb); llvm::LLVMAddCase(llswitch, C_u8(abi::cmp_glue_op_le), le_cx.llbb); auto last_result = last_cx.build.Phi(T_i1(), ~[eq_result, lt_result, le_result], ~[eq_cx.llbb, lt_cx.llbb, le_cx.llbb]); ret rslt(last_cx, last_result); } type val_pair_fn = fn(&@block_ctxt, ValueRef, ValueRef) -> result ; type val_and_ty_fn = fn(&@block_ctxt, ValueRef, ty::t) -> result ; type val_pair_and_ty_fn = fn(&@block_ctxt, ValueRef, ValueRef, ty::t) -> result ; // Iterates through the elements of a structural type. fn iter_structural_ty(&@block_ctxt cx, ValueRef v, &ty::t t, val_and_ty_fn f) -> result { fn adaptor_fn(val_and_ty_fn f, &@block_ctxt cx, ValueRef av, ValueRef bv, ty::t t) -> result { ret f(cx, av, t); } ret iter_structural_ty_full(cx, v, v, t, bind adaptor_fn(f, _, _, _, _)); } fn load_inbounds(&@block_ctxt cx, ValueRef p, &ValueRef[] idxs) -> ValueRef { ret cx.build.Load(cx.build.InBoundsGEP(p, idxs)); } fn store_inbounds(&@block_ctxt cx, ValueRef v, ValueRef p, &ValueRef[] idxs) { cx.build.Store(v, cx.build.InBoundsGEP(p, idxs)); } // This uses store and inboundsGEP, but it only doing so superficially; it's // really storing an incremented pointer to another pointer. fn incr_ptr(&@block_ctxt cx, ValueRef p, ValueRef incr, ValueRef pp) { cx.build.Store(cx.build.InBoundsGEP(p, ~[incr]), pp); } fn iter_structural_ty_full(&@block_ctxt cx, ValueRef av, ValueRef bv, &ty::t t, &val_pair_and_ty_fn f) -> result { fn iter_boxpp(@block_ctxt cx, ValueRef box_a_cell, ValueRef box_b_cell, &val_pair_and_ty_fn f) -> result { auto box_a_ptr = cx.build.Load(box_a_cell); auto box_b_ptr = cx.build.Load(box_b_cell); auto tnil = ty::mk_nil(cx.fcx.lcx.ccx.tcx); auto tbox = ty::mk_imm_box(cx.fcx.lcx.ccx.tcx, tnil); auto inner_cx = new_sub_block_ctxt(cx, "iter box"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto null_test = cx.build.IsNull(box_a_ptr); cx.build.CondBr(null_test, next_cx.llbb, inner_cx.llbb); auto r = f(inner_cx, box_a_ptr, box_b_ptr, tbox); r.bcx.build.Br(next_cx.llbb); ret rslt(next_cx, C_nil()); } fn iter_ivec(@block_ctxt bcx, ValueRef av, ValueRef bv, ty::t unit_ty, &val_pair_and_ty_fn f) -> result { // FIXME: "unimplemented rebinding existing function" workaround fn adapter(&@block_ctxt bcx, ValueRef av, ValueRef bv, ty::t unit_ty, val_pair_and_ty_fn f) -> result { ret f(bcx, av, bv, unit_ty); } auto llunitty = type_of_or_i8(bcx, unit_ty); auto rs = size_of(bcx, unit_ty); auto unit_sz = rs.val; bcx = rs.bcx; auto a_len_and_data = ivec::get_len_and_data(bcx, av, unit_ty); auto a_len = a_len_and_data._0; auto a_elem = a_len_and_data._1; bcx = a_len_and_data._2; auto b_len_and_data = ivec::get_len_and_data(bcx, bv, unit_ty); auto b_len = b_len_and_data._0; auto b_elem = b_len_and_data._1; bcx = b_len_and_data._2; // Calculate the last pointer address we want to handle. // TODO: Optimize this when the size of the unit type is statically // known to not use pointer casts, which tend to confuse LLVM. auto len = umin(bcx, a_len, b_len); auto b_elem_i8 = bcx.build.PointerCast(b_elem, T_ptr(T_i8())); auto b_end_i8 = bcx.build.GEP(b_elem_i8, ~[len]); auto b_end = bcx.build.PointerCast(b_end_i8, T_ptr(llunitty)); auto dest_elem_ptr = alloca(bcx, T_ptr(llunitty)); auto src_elem_ptr = alloca(bcx, T_ptr(llunitty)); bcx.build.Store(a_elem, dest_elem_ptr); bcx.build.Store(b_elem, src_elem_ptr); // Now perform the iteration. auto loop_header_cx = new_sub_block_ctxt(bcx, "iter_ivec_loop_header"); bcx.build.Br(loop_header_cx.llbb); auto dest_elem = loop_header_cx.build.Load(dest_elem_ptr); auto src_elem = loop_header_cx.build.Load(src_elem_ptr); auto not_yet_at_end = loop_header_cx.build.ICmp(lib::llvm::LLVMIntULT, dest_elem, b_end); auto loop_body_cx = new_sub_block_ctxt(bcx, "iter_ivec_loop_body"); auto next_cx = new_sub_block_ctxt(bcx, "iter_ivec_next"); loop_header_cx.build.CondBr(not_yet_at_end, loop_body_cx.llbb, next_cx.llbb); rs = f(loop_body_cx, load_if_immediate(loop_body_cx, dest_elem, unit_ty), load_if_immediate(loop_body_cx, src_elem, unit_ty), unit_ty); loop_body_cx = rs.bcx; auto increment; if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, unit_ty)) { increment = unit_sz; } else { increment = C_int(1); } incr_ptr(loop_body_cx, dest_elem, increment, dest_elem_ptr); incr_ptr(loop_body_cx, src_elem, increment, src_elem_ptr); loop_body_cx.build.Br(loop_header_cx.llbb); ret rslt(next_cx, C_nil()); } fn iter_variant(@block_ctxt cx, ValueRef a_tup, ValueRef b_tup, &ty::variant_info variant, &ty::t[] tps, &ast::def_id tid, &val_pair_and_ty_fn f) -> result { if (std::ivec::len[ty::t](variant.args) == 0u) { ret rslt(cx, C_nil()); } auto fn_ty = variant.ctor_ty; auto ccx = cx.fcx.lcx.ccx; alt (ty::struct(ccx.tcx, fn_ty)) { case (ty::ty_fn(_, ?args, _, _, _)) { auto j = 0; for (ty::arg a in args) { auto rslt = GEP_tag(cx, a_tup, tid, variant.id, tps, j); auto llfldp_a = rslt.val; cx = rslt.bcx; rslt = GEP_tag(cx, b_tup, tid, variant.id, tps, j); auto llfldp_b = rslt.val; cx = rslt.bcx; auto ty_subst = ty::substitute_type_params(ccx.tcx, tps, a.ty); auto llfld_a = load_if_immediate(cx, llfldp_a, ty_subst); auto llfld_b = load_if_immediate(cx, llfldp_b, ty_subst); rslt = f(cx, llfld_a, llfld_b, ty_subst); cx = rslt.bcx; j += 1; } } } ret rslt(cx, C_nil()); } let result r = rslt(cx, C_nil()); alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_tup(?args)) { let int i = 0; for (ty::mt arg in args) { r = GEP_tup_like(r.bcx, t, av, ~[0, i]); auto elt_a = r.val; r = GEP_tup_like(r.bcx, t, bv, ~[0, i]); auto elt_b = r.val; r = f(r.bcx, load_if_immediate(r.bcx, elt_a, arg.ty), load_if_immediate(r.bcx, elt_b, arg.ty), arg.ty); i += 1; } } case (ty::ty_rec(?fields)) { let int i = 0; for (ty::field fld in fields) { r = GEP_tup_like(r.bcx, t, av, ~[0, i]); auto llfld_a = r.val; r = GEP_tup_like(r.bcx, t, bv, ~[0, i]); auto llfld_b = r.val; r = f(r.bcx, load_if_immediate(r.bcx, llfld_a, fld.mt.ty), load_if_immediate(r.bcx, llfld_b, fld.mt.ty), fld.mt.ty); i += 1; } } case (ty::ty_res(_, ?inner, ?tps)) { auto inner1 = ty::substitute_type_params(cx.fcx.lcx.ccx.tcx, tps, inner); r = GEP_tup_like(r.bcx, t, av, ~[0, 1]); auto llfld_a = r.val; r = GEP_tup_like(r.bcx, t, bv, ~[0, 1]); auto llfld_b = r.val; f(r.bcx, load_if_immediate(r.bcx, llfld_a, inner1), load_if_immediate(r.bcx, llfld_b, inner1), inner1); } case (ty::ty_tag(?tid, ?tps)) { auto variants = ty::tag_variants(cx.fcx.lcx.ccx.tcx, tid); auto n_variants = std::ivec::len(variants); // Cast the tags to types we can GEP into. if (n_variants == 1u) { ret iter_variant(cx, av, bv, variants.(0), tps, tid, f); } auto lltagty = T_opaque_tag_ptr(cx.fcx.lcx.ccx.tn); auto av_tag = cx.build.PointerCast(av, lltagty); auto bv_tag = cx.build.PointerCast(bv, lltagty); auto lldiscrim_a_ptr = cx.build.GEP(av_tag, ~[C_int(0), C_int(0)]); auto llunion_a_ptr = cx.build.GEP(av_tag, ~[C_int(0), C_int(1)]); auto lldiscrim_a = cx.build.Load(lldiscrim_a_ptr); auto lldiscrim_b_ptr = cx.build.GEP(bv_tag, ~[C_int(0), C_int(0)]); auto llunion_b_ptr = cx.build.GEP(bv_tag, ~[C_int(0), C_int(1)]); auto lldiscrim_b = cx.build.Load(lldiscrim_b_ptr); // NB: we must hit the discriminant first so that structural // comparison know not to proceed when the discriminants differ. auto bcx = cx; bcx = f(bcx, lldiscrim_a, lldiscrim_b, ty::mk_int(cx.fcx.lcx.ccx.tcx)).bcx; auto unr_cx = new_sub_block_ctxt(bcx, "tag-iter-unr"); unr_cx.build.Unreachable(); auto llswitch = bcx.build.Switch(lldiscrim_a, unr_cx.llbb, n_variants); auto next_cx = new_sub_block_ctxt(bcx, "tag-iter-next"); auto i = 0u; for (ty::variant_info variant in variants) { auto variant_cx = new_sub_block_ctxt(bcx, "tag-iter-variant-" + uint::to_str(i, 10u)); llvm::LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb); variant_cx = iter_variant (variant_cx, llunion_a_ptr, llunion_b_ptr, variant, tps, tid, f).bcx; variant_cx.build.Br(next_cx.llbb); i += 1u; } ret rslt(next_cx, C_nil()); } case (ty::ty_fn(_, _, _, _, _)) { auto box_cell_a = cx.build.GEP(av, ~[C_int(0), C_int(abi::fn_field_box)]); auto box_cell_b = cx.build.GEP(bv, ~[C_int(0), C_int(abi::fn_field_box)]); ret iter_boxpp(cx, box_cell_a, box_cell_b, f); } case (ty::ty_obj(_)) { auto box_cell_a = cx.build.GEP(av, ~[C_int(0), C_int(abi::obj_field_box)]); auto box_cell_b = cx.build.GEP(bv, ~[C_int(0), C_int(abi::obj_field_box)]); ret iter_boxpp(cx, box_cell_a, box_cell_b, f); } case (ty::ty_ivec(?unit_tm)) { ret iter_ivec(cx, av, bv, unit_tm.ty, f); } case (ty::ty_istr) { auto unit_ty = ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8); ret iter_ivec(cx, av, bv, unit_ty, f); } case (_) { cx.fcx.lcx.ccx.sess.unimpl("type in iter_structural_ty_full"); } } ret r; } // Iterates through a pointer range, until the src* hits the src_lim*. fn iter_sequence_raw(@block_ctxt cx, ValueRef dst, // elt* ValueRef src, // elt* ValueRef src_lim, // elt* ValueRef elt_sz, &val_pair_fn f) -> result { auto bcx = cx; let ValueRef dst_int = vp2i(bcx, dst); let ValueRef src_int = vp2i(bcx, src); let ValueRef src_lim_int = vp2i(bcx, src_lim); auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond"); auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body"); auto next_cx = new_sub_block_ctxt(cx, "next"); bcx.build.Br(cond_cx.llbb); let ValueRef dst_curr = cond_cx.build.Phi(T_int(), ~[dst_int], ~[bcx.llbb]); let ValueRef src_curr = cond_cx.build.Phi(T_int(), ~[src_int], ~[bcx.llbb]); auto end_test = cond_cx.build.ICmp(lib::llvm::LLVMIntULT, src_curr, src_lim_int); cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb); auto dst_curr_ptr = vi2p(body_cx, dst_curr, T_ptr(T_i8())); auto src_curr_ptr = vi2p(body_cx, src_curr, T_ptr(T_i8())); auto body_res = f(body_cx, dst_curr_ptr, src_curr_ptr); body_cx = body_res.bcx; auto dst_next = body_cx.build.Add(dst_curr, elt_sz); auto src_next = body_cx.build.Add(src_curr, elt_sz); body_cx.build.Br(cond_cx.llbb); cond_cx.build.AddIncomingToPhi(dst_curr, ~[dst_next], ~[body_cx.llbb]); cond_cx.build.AddIncomingToPhi(src_curr, ~[src_next], ~[body_cx.llbb]); ret rslt(next_cx, C_nil()); } fn iter_sequence_inner(&@block_ctxt cx, ValueRef src, // elt* ValueRef src_lim, & // elt* ty::t elt_ty, &val_and_ty_fn f) -> result { fn adaptor_fn(val_and_ty_fn f, ty::t elt_ty, &@block_ctxt cx, ValueRef dst, ValueRef src) -> result { auto llptrty; if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, elt_ty)) { auto llty = type_of(cx.fcx.lcx.ccx, cx.sp, elt_ty); llptrty = T_ptr(llty); } else { llptrty = T_ptr(T_ptr(T_i8())); } auto p = cx.build.PointerCast(src, llptrty); ret f(cx, load_if_immediate(cx, p, elt_ty), elt_ty); } auto elt_sz = size_of(cx, elt_ty); ret iter_sequence_raw(elt_sz.bcx, src, src, src_lim, elt_sz.val, bind adaptor_fn(f, elt_ty, _, _, _)); } // Iterates through the elements of a vec or str. fn iter_sequence(@block_ctxt cx, ValueRef v, &ty::t t, &val_and_ty_fn f) -> result { fn iter_sequence_body(@block_ctxt cx, ValueRef v, &ty::t elt_ty, &val_and_ty_fn f, bool trailing_null, bool interior) -> result { auto p0; auto len; auto bcx; if (!interior) { p0 = cx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_data)]); auto lp = cx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_fill)]); len = cx.build.Load(lp); bcx = cx; } else { auto len_and_data_rslt = ivec::get_len_and_data(cx, v, elt_ty); len = len_and_data_rslt._0; p0 = len_and_data_rslt._1; bcx = len_and_data_rslt._2; } auto llunit_ty = type_of_or_i8(cx, elt_ty); if (trailing_null) { auto unit_sz = size_of(bcx, elt_ty); bcx = unit_sz.bcx; len = bcx.build.Sub(len, unit_sz.val); } auto p1 = vi2p(bcx, bcx.build.Add(vp2i(bcx, p0), len), T_ptr(llunit_ty)); ret iter_sequence_inner(bcx, p0, p1, elt_ty, f); } alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_vec(?elt)) { ret iter_sequence_body(cx, v, elt.ty, f, false, false); } case (ty::ty_str) { auto et = ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8); ret iter_sequence_body(cx, v, et, f, true, false); } case (ty::ty_ivec(?elt)) { ret iter_sequence_body(cx, v, elt.ty, f, false, true); } case (ty::ty_istr) { auto et = ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8); ret iter_sequence_body(cx, v, et, f, true, true); } case (_) { cx.fcx.lcx.ccx.sess.bug("unexpected type in " + "trans::iter_sequence: " + ty_to_str(cx.fcx.lcx.ccx.tcx, t)); } } } fn lazily_emit_all_tydesc_glue(&@block_ctxt cx, &option::t[@tydesc_info] static_ti) { lazily_emit_tydesc_glue(cx, abi::tydesc_field_copy_glue, static_ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, static_ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, static_ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, static_ti); } fn lazily_emit_all_generic_info_tydesc_glues(&@block_ctxt cx, &generic_info gi) { for (option::t[@tydesc_info] ti in gi.static_tis) { lazily_emit_all_tydesc_glue(cx, ti); } } fn lazily_emit_tydesc_glue(&@block_ctxt cx, int field, &option::t[@tydesc_info] static_ti) { alt (static_ti) { case (none) { } case (some(?ti)) { if (field == abi::tydesc_field_copy_glue) { alt ({ ti.copy_glue }) { case (some(_)) { } case (none) { log #fmt("+++ lazily_emit_tydesc_glue TAKE %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); auto lcx = cx.fcx.lcx; auto glue_fn = declare_generic_glue(lcx, ti.ty, T_glue_fn(*lcx.ccx), "copy"); ti.copy_glue = some[ValueRef](glue_fn); auto tg = make_copy_glue; make_generic_glue(lcx, cx.sp, ti.ty, glue_fn, mgghf_single(tg), ti.ty_params); log #fmt("--- lazily_emit_tydesc_glue TAKE %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); } } } else if (field == abi::tydesc_field_drop_glue) { alt ({ ti.drop_glue }) { case (some(_)) { } case (none) { log #fmt("+++ lazily_emit_tydesc_glue DROP %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); auto lcx = cx.fcx.lcx; auto glue_fn = declare_generic_glue(lcx, ti.ty, T_glue_fn(*lcx.ccx), "drop"); ti.drop_glue = some[ValueRef](glue_fn); make_generic_glue(lcx, cx.sp, ti.ty, glue_fn, mgghf_single(make_drop_glue), ti.ty_params); log #fmt("--- lazily_emit_tydesc_glue DROP %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); } } } else if (field == abi::tydesc_field_free_glue) { alt ({ ti.free_glue }) { case (some(_)) { } case (none) { log #fmt("+++ lazily_emit_tydesc_glue FREE %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); auto lcx = cx.fcx.lcx; auto glue_fn = declare_generic_glue(lcx, ti.ty, T_glue_fn(*lcx.ccx), "free"); ti.free_glue = some[ValueRef](glue_fn); auto dg = make_free_glue; make_generic_glue(lcx, cx.sp, ti.ty, glue_fn, mgghf_single(dg), ti.ty_params); log #fmt("--- lazily_emit_tydesc_glue FREE %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); } } } else if (field == abi::tydesc_field_cmp_glue) { alt ({ ti.cmp_glue }) { case (some(_)) { } case (none) { log #fmt("+++ lazily_emit_tydesc_glue CMP %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); auto lcx = cx.fcx.lcx; auto glue_fn = declare_generic_glue(lcx, ti.ty, T_cmp_glue_fn(*lcx.ccx), "cmp"); ti.cmp_glue = some[ValueRef](glue_fn); make_generic_glue(lcx, cx.sp, ti.ty, glue_fn, mgghf_cmp, ti.ty_params); log #fmt("--- lazily_emit_tydesc_glue CMP %s", ty_to_str(cx.fcx.lcx.ccx.tcx, ti.ty)); } } } } } } fn call_tydesc_glue_full(&@block_ctxt cx, ValueRef v, ValueRef tydesc, int field, &option::t[@tydesc_info] static_ti) { lazily_emit_tydesc_glue(cx, field, static_ti); auto static_glue_fn = none; alt (static_ti) { case (none) { /* no-op */ } case (some(?sti)) { if (field == abi::tydesc_field_copy_glue) { static_glue_fn = sti.copy_glue; } else if (field == abi::tydesc_field_drop_glue) { static_glue_fn = sti.drop_glue; } else if (field == abi::tydesc_field_free_glue) { static_glue_fn = sti.free_glue; } else if (field == abi::tydesc_field_cmp_glue) { static_glue_fn = sti.cmp_glue; } } } auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8())); auto lltydescs = cx.build.GEP(tydesc, ~[C_int(0), C_int(abi::tydesc_field_first_param)]); lltydescs = cx.build.Load(lltydescs); auto llfn; alt (static_glue_fn) { case (none) { auto llfnptr = cx.build.GEP(tydesc, ~[C_int(0), C_int(field)]); llfn = cx.build.Load(llfnptr); } case (some(?sgf)) { llfn = sgf; } } cx.build.Call(llfn, ~[C_null(T_ptr(T_nil())), cx.fcx.lltaskptr, C_null(T_ptr(T_nil())), lltydescs, llrawptr]); } fn call_tydesc_glue(&@block_ctxt cx, ValueRef v, &ty::t t, int field) -> result { let option::t[@tydesc_info] ti = none[@tydesc_info]; auto td = get_tydesc(cx, t, false, ti); call_tydesc_glue_full(td.bcx, spill_if_immediate(td.bcx, v, t), td.val, field, ti); ret rslt(td.bcx, C_nil()); } fn maybe_call_dtor(&@block_ctxt cx, ValueRef v) -> @block_ctxt { auto vtbl = cx.build.GEP(v, ~[C_int(0), C_int(abi::obj_field_vtbl)]); vtbl = cx.build.Load(vtbl); auto vtbl_type = T_ptr(T_array(T_ptr(T_nil()), 1u)); vtbl = cx.build.PointerCast(vtbl, vtbl_type); auto dtor_ptr = cx.build.GEP(vtbl, ~[C_int(0), C_int(0)]); dtor_ptr = cx.build.Load(dtor_ptr); dtor_ptr = cx.build.BitCast(dtor_ptr, T_ptr(T_dtor(cx.fcx.lcx.ccx, cx.sp))); auto dtor_cx = new_sub_block_ctxt(cx, "dtor"); auto after_cx = new_sub_block_ctxt(cx, "after_dtor"); auto test = cx.build.ICmp(lib::llvm::LLVMIntNE, dtor_ptr, C_null(val_ty(dtor_ptr))); cx.build.CondBr(test, dtor_cx.llbb, after_cx.llbb); auto me = dtor_cx.build.Load(v); dtor_cx.build.FastCall(dtor_ptr, ~[C_null(T_ptr(T_nil())), cx.fcx.lltaskptr, me]); dtor_cx.build.Br(after_cx.llbb); ret after_cx; } fn call_cmp_glue(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t, ValueRef llop) -> result { // We can't use call_tydesc_glue_full() and friends here because compare // glue has a special signature. auto lllhs = spill_if_immediate(cx, lhs, t); auto llrhs = spill_if_immediate(cx, rhs, t); auto llrawlhsptr = cx.build.BitCast(lllhs, T_ptr(T_i8())); auto llrawrhsptr = cx.build.BitCast(llrhs, T_ptr(T_i8())); auto ti = none[@tydesc_info]; auto r = get_tydesc(cx, t, false, ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, ti); auto lltydescs = r.bcx.build.GEP(r.val, ~[C_int(0), C_int(abi::tydesc_field_first_param)]); lltydescs = r.bcx.build.Load(lltydescs); auto llfn; alt (ti) { case (none) { auto llfnptr = r.bcx.build.GEP(r.val, ~[C_int(0), C_int(abi::tydesc_field_cmp_glue)]); llfn = r.bcx.build.Load(llfnptr); } case (some(?sti)) { llfn = option::get(sti.cmp_glue); } } auto llcmpresultptr = alloca(r.bcx, T_i1()); let ValueRef[] llargs = ~[llcmpresultptr, r.bcx.fcx.lltaskptr, C_null(T_ptr(T_nil())), lltydescs, llrawlhsptr, llrawrhsptr, llop]; r.bcx.build.Call(llfn, llargs); ret rslt(r.bcx, r.bcx.build.Load(llcmpresultptr)); } // Compares two values. Performs the simple scalar comparison if the types are // scalar and calls to comparison glue otherwise. fn compare(&@block_ctxt cx, ValueRef lhs, ValueRef rhs, &ty::t t, ValueRef llop) -> result { if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t)) { ret compare_scalar_types(cx, lhs, rhs, t, llop); } ret call_cmp_glue(cx, lhs, rhs, t, llop); } fn copy_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result { if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t) || ty::type_owns_heap_mem(cx.fcx.lcx.ccx.tcx, t)) { ret call_tydesc_glue(cx, v, t, abi::tydesc_field_copy_glue); } ret rslt(cx, C_nil()); } fn drop_slot(&@block_ctxt cx, ValueRef slot, &ty::t t) -> result { auto llptr = load_if_immediate(cx, slot, t); auto re = drop_ty(cx, llptr, t); auto llty = val_ty(slot); auto llelemty = lib::llvm::llvm::LLVMGetElementType(llty); re.bcx.build.Store(C_null(llelemty), slot); ret re; } fn drop_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result { if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) { ret call_tydesc_glue(cx, v, t, abi::tydesc_field_drop_glue); } ret rslt(cx, C_nil()); } fn free_ty(&@block_ctxt cx, ValueRef v, ty::t t) -> result { if (ty::type_has_pointers(cx.fcx.lcx.ccx.tcx, t)) { ret call_tydesc_glue(cx, v, t, abi::tydesc_field_free_glue); } ret rslt(cx, C_nil()); } fn call_memmove(&@block_ctxt cx, ValueRef dst, ValueRef src, ValueRef n_bytes) -> result { // FIXME: switch to the 64-bit variant when on such a platform. // TODO: Provide LLVM with better alignment information when the alignment // is statically known (it must be nothing more than a constant int, or // LLVM complains -- not even a constant element of a tydesc works). auto i = cx.fcx.lcx.ccx.intrinsics; assert (i.contains_key("llvm.memmove.p0i8.p0i8.i32")); auto memmove = i.get("llvm.memmove.p0i8.p0i8.i32"); auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8())); auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8())); auto size = cx.build.IntCast(n_bytes, T_i32()); auto align = C_int(0); auto volatile = C_bool(false); ret rslt(cx, cx.build.Call(memmove, ~[dst_ptr, src_ptr, size, align, volatile])); } fn call_bzero(&@block_ctxt cx, ValueRef dst, ValueRef n_bytes, ValueRef align_bytes) -> result { // FIXME: switch to the 64-bit variant when on such a platform. auto i = cx.fcx.lcx.ccx.intrinsics; assert (i.contains_key("llvm.memset.p0i8.i32")); auto memset = i.get("llvm.memset.p0i8.i32"); auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8())); auto size = cx.build.IntCast(n_bytes, T_i32()); auto align = if (lib::llvm::llvm::LLVMIsConstant(align_bytes) == True) { cx.build.IntCast(align_bytes, T_i32()) } else { cx.build.IntCast(C_int(0), T_i32()) }; auto volatile = C_bool(false); ret rslt(cx, cx.build.Call(memset, ~[dst_ptr, C_u8(0u), size, align, volatile])); } fn memmove_ty(&@block_ctxt cx, ValueRef dst, ValueRef src, &ty::t t) -> result { if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { auto llsz = size_of(cx, t); ret call_memmove(llsz.bcx, dst, src, llsz.val); } else { ret rslt(cx, cx.build.Store(cx.build.Load(src), dst)); } } // Duplicates any heap-owned memory owned by a value of the given type. fn duplicate_heap_parts_if_necessary(&@block_ctxt cx, ValueRef vptr, ty::t typ) -> result { alt (ty::struct(cx.fcx.lcx.ccx.tcx, typ)) { case (ty::ty_ivec(?tm)) { ret ivec::duplicate_heap_part(cx, vptr, tm.ty); } case (ty::ty_istr) { ret ivec::duplicate_heap_part(cx, vptr, ty::mk_mach(cx.fcx.lcx.ccx.tcx, ast::ty_u8)); } case (_) { ret rslt(cx, C_nil()); } } } tag copy_action { INIT; DROP_EXISTING; } fn copy_val(&@block_ctxt cx, copy_action action, ValueRef dst, ValueRef src, &ty::t t) -> result { auto ccx = cx.fcx.lcx.ccx; // FIXME this is just a clunky stopgap. we should do proper checking in an // earlier pass. if (!ty::type_is_copyable(ccx.tcx, t)) { ccx.sess.span_fatal(cx.sp, "Copying a non-copyable type."); } if (ty::type_is_scalar(ccx.tcx, t) || ty::type_is_native(ccx.tcx, t)) { ret rslt(cx, cx.build.Store(src, dst)); } else if (ty::type_is_nil(ccx.tcx, t) || ty::type_is_bot(ccx.tcx, t)) { ret rslt(cx, C_nil()); } else if (ty::type_is_boxed(ccx.tcx, t)) { auto bcx; if (action == DROP_EXISTING) { bcx = drop_ty(cx, cx.build.Load(dst), t).bcx; } else { bcx = cx; } bcx = copy_ty(bcx, src, t).bcx; ret rslt(bcx, bcx.build.Store(src, dst)); } else if (ty::type_is_structural(ccx.tcx, t) || ty::type_has_dynamic_size(ccx.tcx, t)) { // Check for self-assignment. auto do_copy_cx = new_sub_block_ctxt(cx, "do_copy"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto self_assigning = cx.build.ICmp(lib::llvm::LLVMIntNE, cx.build.PointerCast(dst, val_ty(src)), src); cx.build.CondBr(self_assigning, do_copy_cx.llbb, next_cx.llbb); if (action == DROP_EXISTING) { do_copy_cx = drop_ty(do_copy_cx, dst, t).bcx; } do_copy_cx = memmove_ty(do_copy_cx, dst, src, t).bcx; do_copy_cx = copy_ty(do_copy_cx, dst, t).bcx; do_copy_cx.build.Br(next_cx.llbb); ret rslt(next_cx, C_nil()); } ccx.sess.bug("unexpected type in trans::copy_val: " + ty_to_str(ccx.tcx, t)); } // This works like copy_val, except that it deinitializes the source. // Since it needs to zero out the source, src also needs to be an lval. // FIXME: We always zero out the source. Ideally we would detect the // case where a variable is always deinitialized by block exit and thus // doesn't need to be dropped. fn move_val(@block_ctxt cx, copy_action action, ValueRef dst, &lval_result src, &ty::t t) -> result { auto src_val = src.res.val; if (ty::type_is_scalar(cx.fcx.lcx.ccx.tcx, t) || ty::type_is_native(cx.fcx.lcx.ccx.tcx, t)) { if (src.is_mem) { src_val = cx.build.Load(src_val); } cx.build.Store(src_val, dst); ret rslt(cx, C_nil()); } else if (ty::type_is_nil(cx.fcx.lcx.ccx.tcx, t) || ty::type_is_bot(cx.fcx.lcx.ccx.tcx, t)) { ret rslt(cx, C_nil()); } else if (ty::type_is_boxed(cx.fcx.lcx.ccx.tcx, t)) { if (src.is_mem) { src_val = cx.build.Load(src_val); } if (action == DROP_EXISTING) { cx = drop_ty(cx, cx.build.Load(dst), t).bcx; } cx.build.Store(src_val, dst); if (src.is_mem) { ret zero_alloca(cx, src.res.val, t); } else { // It must be a temporary revoke_clean(cx, src_val); ret rslt(cx, C_nil()); } } else if (ty::type_is_structural(cx.fcx.lcx.ccx.tcx, t) || ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { if (action == DROP_EXISTING) { cx = drop_ty(cx, dst, t).bcx; } cx = memmove_ty(cx, dst, src_val, t).bcx; if (src.is_mem) { ret zero_alloca(cx, src_val, t); } else { // Temporary value revoke_clean(cx, src_val); ret rslt(cx, C_nil()); } } cx.fcx.lcx.ccx.sess.bug("unexpected type in trans::move_val: " + ty_to_str(cx.fcx.lcx.ccx.tcx, t)); } fn move_val_if_temp(@block_ctxt cx, copy_action action, ValueRef dst, &lval_result src, &ty::t t) -> result { // Lvals in memory are not temporaries. Copy them. if (src.is_mem) { ret copy_val(cx, action, dst, load_if_immediate(cx, src.res.val, t), t); } else { ret move_val(cx, action, dst, src, t); } } fn trans_lit_istr(&@block_ctxt cx, str s) -> result { auto llstackpart = alloca(cx, T_ivec(T_i8())); auto len = str::byte_len(s); auto bcx; if (len < 3u) { // 3 because of the \0 cx.build.Store(C_uint(len + 1u), cx.build.InBoundsGEP(llstackpart, ~[C_int(0), C_int(0)])); cx.build.Store(C_int(4), cx.build.InBoundsGEP(llstackpart, ~[C_int(0), C_int(1)])); auto i = 0u; while (i < len) { cx.build.Store(C_u8(s.(i) as uint), cx.build.InBoundsGEP(llstackpart, ~[C_int(0), C_int(2), C_uint(i)])); i += 1u; } cx.build.Store(C_u8(0u), cx.build.InBoundsGEP(llstackpart, ~[C_int(0), C_int(2), C_uint(len)])); bcx = cx; } else { auto r = trans_shared_malloc(cx, T_ptr(T_ivec_heap_part(T_i8())), llsize_of(T_struct(~[T_int(), T_array(T_i8(), len + 1u)]))); bcx = r.bcx; auto llheappart = r.val; bcx.build.Store(C_uint(len + 1u), bcx.build.InBoundsGEP(llheappart, ~[C_int(0), C_int(0)])); bcx.build.Store(llvm::LLVMConstString(str::buf(s), len, False), bcx.build.InBoundsGEP(llheappart, ~[C_int(0), C_int(1)])); auto llspilledstackpart = bcx.build.PointerCast(llstackpart, T_ptr(T_ivec_heap(T_i8()))); bcx.build.Store(C_int(0), bcx.build.InBoundsGEP(llspilledstackpart, ~[C_int(0), C_int(0)])); bcx.build.Store(C_uint(len + 1u), bcx.build.InBoundsGEP(llspilledstackpart, ~[C_int(0), C_int(1)])); bcx.build.Store(llheappart, bcx.build.InBoundsGEP(llspilledstackpart, ~[C_int(0), C_int(2)])); } ret rslt(bcx, llstackpart); } fn trans_crate_lit(&@crate_ctxt cx, &ast::lit lit) -> ValueRef { alt (lit.node) { case (ast::lit_int(?i)) { ret C_int(i); } case (ast::lit_uint(?u)) { ret C_int(u as int); } case (ast::lit_mach_int(?tm, ?i)) { // FIXME: the entire handling of mach types falls apart // if target int width is larger than host, at the moment; // re-do the mach-int types using 'big' when that works. auto t = T_int(); auto s = True; alt (tm) { case (ast::ty_u8) { t = T_i8(); s = False; } case (ast::ty_u16) { t = T_i16(); s = False; } case (ast::ty_u32) { t = T_i32(); s = False; } case (ast::ty_u64) { t = T_i64(); s = False; } case (ast::ty_i8) { t = T_i8(); } case (ast::ty_i16) { t = T_i16(); } case (ast::ty_i32) { t = T_i32(); } case (ast::ty_i64) { t = T_i64(); } } ret C_integral(t, i as uint, s); } case (ast::lit_float(?fs)) { ret C_float(fs); } case (ast::lit_mach_float(?tm, ?s)) { auto t = T_float(); alt (tm) { case (ast::ty_f32) { t = T_f32(); } case (ast::ty_f64) { t = T_f64(); } } ret C_floating(s, t); } case (ast::lit_char(?c)) { ret C_integral(T_char(), c as uint, False); } case (ast::lit_bool(?b)) { ret C_bool(b); } case (ast::lit_nil) { ret C_nil(); } case (ast::lit_str(?s, ast::sk_rc)) { ret C_str(cx, s); } case (ast::lit_str(?s, ast::sk_unique)) { cx.sess.span_unimpl(lit.span, "unique string in this context"); } } } fn trans_lit(&@block_ctxt cx, &ast::lit lit) -> result { alt (lit.node) { ast::lit_str(?s, ast::sk_unique) { ret trans_lit_istr(cx, s); } _ { ret rslt(cx, trans_crate_lit(cx.fcx.lcx.ccx, lit)); } } } // Converts an annotation to a type fn node_id_type(&@crate_ctxt cx, ast::node_id id) -> ty::t { ret ty::node_id_to_monotype(cx.tcx, id); } fn node_type(&@crate_ctxt cx, &span sp, ast::node_id id) -> TypeRef { ret type_of(cx, sp, node_id_type(cx, id)); } fn trans_unary(&@block_ctxt cx, ast::unop op, &@ast::expr e, ast::node_id id) -> result { auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e); alt (op) { case (ast::not) { auto sub = trans_expr(cx, e); auto dr = autoderef(sub.bcx, sub.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, e)); ret rslt(dr.bcx, dr.bcx.build.Not(dr.val)); } case (ast::neg) { auto sub = trans_expr(cx, e); auto dr = autoderef(sub.bcx, sub.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, e)); if (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty) == ty::ty_float) { ret rslt(dr.bcx, dr.bcx.build.FNeg(dr.val)); } else { ret rslt(dr.bcx, sub.bcx.build.Neg(dr.val)); } } case (ast::box(_)) { auto lv = trans_lval(cx, e); auto box_ty = node_id_type(lv.res.bcx.fcx.lcx.ccx, id); auto sub = trans_malloc_boxed(lv.res.bcx, e_ty); add_clean_temp(cx, sub.val, box_ty); auto box = sub.val; auto rc = sub.bcx.build.GEP (box, ~[C_int(0), C_int(abi::box_rc_field_refcnt)]); auto body = sub.bcx.build.GEP (box, ~[C_int(0), C_int(abi::box_rc_field_body)]); sub.bcx.build.Store(C_int(1), rc); // Cast the body type to the type of the value. This is needed to // make tags work, since tags have a different LLVM type depending // on whether they're boxed or not. if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, e_ty)) { auto llety = T_ptr(type_of(sub.bcx.fcx.lcx.ccx, e.span, e_ty)); body = sub.bcx.build.PointerCast(body, llety); } sub = move_val_if_temp(sub.bcx, INIT, body, lv, e_ty); ret rslt(sub.bcx, box); } case (ast::deref) { cx.fcx.lcx.ccx.sess.bug("deref expressions should have been " + "translated using trans_lval(), not " + "trans_unary()"); } } } fn trans_compare(&@block_ctxt cx0, ast::binop op, &ty::t t0, ValueRef lhs0, ValueRef rhs0) -> result { // Autoderef both sides. auto cx = cx0; auto lhs_r = autoderef(cx, lhs0, t0); auto lhs = lhs_r.val; cx = lhs_r.bcx; auto rhs_r = autoderef(cx, rhs0, t0); auto rhs = rhs_r.val; cx = rhs_r.bcx; // Determine the operation we need. // FIXME: Use or-patterns when we have them. auto llop; alt (op) { case (ast::eq) { llop = C_u8(abi::cmp_glue_op_eq); } case (ast::lt) { llop = C_u8(abi::cmp_glue_op_lt); } case (ast::le) { llop = C_u8(abi::cmp_glue_op_le); } case (ast::ne) { llop = C_u8(abi::cmp_glue_op_eq); } case (ast::ge) { llop = C_u8(abi::cmp_glue_op_lt); } case (ast::gt) { llop = C_u8(abi::cmp_glue_op_le); } } auto rs = compare(cx, lhs, rhs, rhs_r.ty, llop); // Invert the result if necessary. // FIXME: Use or-patterns when we have them. alt (op) { case (ast::eq) { ret rslt(rs.bcx, rs.val); } case (ast::lt) { ret rslt(rs.bcx, rs.val); } case (ast::le) { ret rslt(rs.bcx, rs.val); } case (ast::ne) { ret rslt(rs.bcx, rs.bcx.build.Not(rs.val)); } case (ast::ge) { ret rslt(rs.bcx, rs.bcx.build.Not(rs.val)); } case (ast::gt) { ret rslt(rs.bcx, rs.bcx.build.Not(rs.val)); } } } fn trans_vec_append(&@block_ctxt cx, &ty::t t, ValueRef lhs, ValueRef rhs) -> result { auto elt_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t); auto skip_null = C_bool(false); alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_str) { skip_null = C_bool(true); } case (_) { } } auto bcx = cx; auto ti = none[@tydesc_info]; auto llvec_tydesc = get_tydesc(bcx, t, false, ti); bcx = llvec_tydesc.bcx; ti = none[@tydesc_info]; auto llelt_tydesc = get_tydesc(bcx, elt_ty, false, ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_copy_glue, ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, ti); lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, ti); bcx = llelt_tydesc.bcx; auto dst = bcx.build.PointerCast(lhs, T_ptr(T_opaque_vec_ptr())); auto src = bcx.build.PointerCast(rhs, T_opaque_vec_ptr()); ret rslt(bcx, bcx.build.Call(cx.fcx.lcx.ccx.upcalls.vec_append, ~[cx.fcx.lltaskptr, llvec_tydesc.val, llelt_tydesc.val, dst, src, skip_null])); } mod ivec { // Returns the length of an interior vector and a pointer to its first // element, in that order. fn get_len_and_data(&@block_ctxt bcx, ValueRef orig_v, ty::t unit_ty) -> tup(ValueRef, ValueRef, @block_ctxt) { // If this interior vector has dynamic size, we can't assume anything // about the LLVM type of the value passed in, so we cast it to an // opaque vector type. auto v; if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, unit_ty)) { v = bcx.build.PointerCast(orig_v, T_ptr(T_opaque_ivec())); } else { v = orig_v; } auto llunitty = type_of_or_i8(bcx, unit_ty); auto stack_len = load_inbounds(bcx, v, ~[C_int(0), C_uint(abi::ivec_elt_len)]); auto stack_elem = bcx.build.InBoundsGEP(v, ~[C_int(0), C_uint(abi::ivec_elt_elems), C_int(0)]); auto on_heap = bcx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0)); auto on_heap_cx = new_sub_block_ctxt(bcx, "on_heap"); auto next_cx = new_sub_block_ctxt(bcx, "next"); bcx.build.CondBr(on_heap, on_heap_cx.llbb, next_cx.llbb); auto heap_stub = on_heap_cx.build.PointerCast(v, T_ptr(T_ivec_heap(llunitty))); auto heap_ptr = load_inbounds(on_heap_cx, heap_stub, ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]); // Check whether the heap pointer is null. If it is, the vector length // is truly zero. auto llstubty = T_ivec_heap(llunitty); auto llheapptrty = struct_elt(llstubty, abi::ivec_heap_stub_elt_ptr); auto heap_ptr_is_null = on_heap_cx.build.ICmp(lib::llvm::LLVMIntEQ, heap_ptr, C_null(T_ptr(llheapptrty))); auto zero_len_cx = new_sub_block_ctxt(bcx, "zero_len"); auto nonzero_len_cx = new_sub_block_ctxt(bcx, "nonzero_len"); on_heap_cx.build.CondBr(heap_ptr_is_null, zero_len_cx.llbb, nonzero_len_cx.llbb); // Technically this context is unnecessary, but it makes this function // clearer. auto zero_len = C_int(0); auto zero_elem = C_null(T_ptr(llunitty)); zero_len_cx.build.Br(next_cx.llbb); // If we're here, then we actually have a heapified vector. auto heap_len = load_inbounds(nonzero_len_cx, heap_ptr, ~[C_int(0), C_uint(abi::ivec_heap_elt_len)]); auto heap_elem = { auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems), C_int(0)]; nonzero_len_cx.build.InBoundsGEP(heap_ptr,v) }; nonzero_len_cx.build.Br(next_cx.llbb); // Now we can figure out the length of `v` and get a pointer to its // first element. auto len = next_cx.build.Phi(T_int(), ~[stack_len, zero_len, heap_len], ~[bcx.llbb, zero_len_cx.llbb, nonzero_len_cx.llbb]); auto elem = next_cx.build.Phi(T_ptr(llunitty), ~[stack_elem, zero_elem, heap_elem], ~[bcx.llbb, zero_len_cx.llbb, nonzero_len_cx.llbb]); ret tup(len, elem, next_cx); } // Returns a tuple consisting of a pointer to the newly-reserved space and // a block context. Updates the length appropriately. fn reserve_space(&@block_ctxt cx, TypeRef llunitty, ValueRef v, ValueRef len_needed) -> result { auto stack_len_ptr = cx.build.InBoundsGEP(v, ~[C_int(0), C_uint(abi::ivec_elt_len)]); auto stack_len = cx.build.Load(stack_len_ptr); auto alen = load_inbounds(cx, v, ~[C_int(0), C_uint(abi::ivec_elt_alen)]); // There are four cases we have to consider: // (1) On heap, no resize necessary. // (2) On heap, need to resize. // (3) On stack, no resize necessary. // (4) On stack, need to spill to heap. auto maybe_on_heap = cx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0)); auto maybe_on_heap_cx = new_sub_block_ctxt(cx, "maybe_on_heap"); auto on_stack_cx = new_sub_block_ctxt(cx, "on_stack"); cx.build.CondBr(maybe_on_heap, maybe_on_heap_cx.llbb, on_stack_cx.llbb); auto next_cx = new_sub_block_ctxt(cx, "next"); // We're possibly on the heap, unless the vector is zero-length. auto stub_p = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]; auto stub_ptr = maybe_on_heap_cx.build.PointerCast(v, T_ptr(T_ivec_heap(llunitty))); auto heap_ptr = load_inbounds(maybe_on_heap_cx, stub_ptr, stub_p); auto on_heap = maybe_on_heap_cx.build.ICmp(lib::llvm::LLVMIntNE, heap_ptr, C_null(val_ty(heap_ptr))); auto on_heap_cx = new_sub_block_ctxt(cx, "on_heap"); maybe_on_heap_cx.build.CondBr(on_heap, on_heap_cx.llbb, on_stack_cx.llbb); // We're definitely on the heap. Check whether we need to resize. auto heap_len_ptr = on_heap_cx.build.InBoundsGEP(heap_ptr, ~[C_int(0), C_uint(abi::ivec_heap_elt_len)]); auto heap_len = on_heap_cx.build.Load(heap_len_ptr); auto new_heap_len = on_heap_cx.build.Add(heap_len, len_needed); auto heap_len_unscaled = on_heap_cx.build.UDiv(heap_len, llsize_of(llunitty)); auto heap_no_resize_needed = on_heap_cx.build.ICmp(lib::llvm::LLVMIntULE, new_heap_len, alen); auto heap_no_resize_cx = new_sub_block_ctxt(cx, "heap_no_resize"); auto heap_resize_cx = new_sub_block_ctxt(cx, "heap_resize"); on_heap_cx.build.CondBr(heap_no_resize_needed, heap_no_resize_cx.llbb, heap_resize_cx.llbb); // Case (1): We're on the heap and don't need to resize. auto heap_data_no_resize = { auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems), heap_len_unscaled]; heap_no_resize_cx.build.InBoundsGEP(heap_ptr,v) }; heap_no_resize_cx.build.Store(new_heap_len, heap_len_ptr); heap_no_resize_cx.build.Br(next_cx.llbb); // Case (2): We're on the heap and need to resize. This path is rare, // so we delegate to cold glue. { auto p = heap_resize_cx.build.PointerCast(v, T_ptr(T_opaque_ivec())); auto upcall = cx.fcx.lcx.ccx.upcalls.ivec_resize_shared; heap_resize_cx.build.Call(upcall, ~[cx.fcx.lltaskptr, p, new_heap_len]); } auto heap_ptr_resize = load_inbounds(heap_resize_cx, stub_ptr, stub_p); auto heap_data_resize = { auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems), heap_len_unscaled]; heap_resize_cx.build.InBoundsGEP(heap_ptr_resize, v) }; heap_resize_cx.build.Br(next_cx.llbb); // We're on the stack. Check whether we need to spill to the heap. auto new_stack_len = on_stack_cx.build.Add(stack_len, len_needed); auto stack_no_spill_needed = on_stack_cx.build.ICmp(lib::llvm::LLVMIntULE, new_stack_len, alen); auto stack_len_unscaled = on_stack_cx.build.UDiv(stack_len, llsize_of(llunitty)); auto stack_no_spill_cx = new_sub_block_ctxt(cx, "stack_no_spill"); auto stack_spill_cx = new_sub_block_ctxt(cx, "stack_spill"); on_stack_cx.build.CondBr(stack_no_spill_needed, stack_no_spill_cx.llbb, stack_spill_cx.llbb); // Case (3): We're on the stack and don't need to spill. auto stack_data_no_spill = stack_no_spill_cx.build.InBoundsGEP(v, ~[C_int(0), C_uint(abi::ivec_elt_elems), stack_len_unscaled]); stack_no_spill_cx.build.Store(new_stack_len, stack_len_ptr); stack_no_spill_cx.build.Br(next_cx.llbb); // Case (4): We're on the stack and need to spill. Like case (2), this // path is rare, so we delegate to cold glue. { auto p = stack_spill_cx.build.PointerCast(v, T_ptr(T_opaque_ivec())); auto upcall = cx.fcx.lcx.ccx.upcalls.ivec_spill_shared; stack_spill_cx.build.Call(upcall, ~[cx.fcx.lltaskptr, p, new_stack_len]); } auto spill_stub = stack_spill_cx.build.PointerCast(v, T_ptr(T_ivec_heap(llunitty))); auto heap_ptr_spill = load_inbounds(stack_spill_cx, spill_stub, stub_p); auto heap_data_spill = { auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_elems), stack_len_unscaled]; stack_spill_cx.build.InBoundsGEP(heap_ptr_spill, v) }; stack_spill_cx.build.Br(next_cx.llbb); // Phi together the different data pointers to get the result. auto data_ptr = next_cx.build.Phi(T_ptr(llunitty), ~[heap_data_no_resize, heap_data_resize, stack_data_no_spill, heap_data_spill], ~[heap_no_resize_cx.llbb, heap_resize_cx.llbb, stack_no_spill_cx.llbb, stack_spill_cx.llbb]); ret rslt(next_cx, data_ptr); } fn trans_append(&@block_ctxt cx, &ty::t t, ValueRef orig_lhs, ValueRef orig_rhs) -> result { // Cast to opaque interior vector types if necessary. auto lhs; auto rhs; if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { lhs = cx.build.PointerCast(orig_lhs, T_ptr(T_opaque_ivec())); rhs = cx.build.PointerCast(orig_rhs, T_ptr(T_opaque_ivec())); } else { lhs = orig_lhs; rhs = orig_rhs; } auto unit_ty = ty::sequence_element_type(cx.fcx.lcx.ccx.tcx, t); auto llunitty = type_of_or_i8(cx, unit_ty); alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_istr) { } case (ty::ty_ivec(_)) { } case (_) { cx.fcx.lcx.ccx.tcx.sess.bug("non-istr/ivec in trans_append"); } } auto rs = size_of(cx, unit_ty); auto bcx = rs.bcx; auto unit_sz = rs.val; // Gather the various type descriptors we'll need. // FIXME (issue #511): This is needed to prevent a leak. auto no_tydesc_info = none; rs = get_tydesc(bcx, t, false, no_tydesc_info); bcx = rs.bcx; rs = get_tydesc(bcx, unit_ty, false, no_tydesc_info); bcx = rs.bcx; lazily_emit_tydesc_glue(bcx, abi::tydesc_field_copy_glue, none); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, none); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, none); auto rhs_len_and_data = get_len_and_data(bcx, rhs, unit_ty); auto rhs_len = rhs_len_and_data._0; auto rhs_data = rhs_len_and_data._1; bcx = rhs_len_and_data._2; rs = reserve_space(bcx, llunitty, lhs, rhs_len); auto lhs_data = rs.val; bcx = rs.bcx; // Work out the end pointer. auto lhs_unscaled_idx = bcx.build.UDiv(rhs_len, llsize_of(llunitty)); auto lhs_end = bcx.build.InBoundsGEP(lhs_data, ~[lhs_unscaled_idx]); // Now emit the copy loop. auto dest_ptr = alloca(bcx, T_ptr(llunitty)); bcx.build.Store(lhs_data, dest_ptr); auto src_ptr = alloca(bcx, T_ptr(llunitty)); bcx.build.Store(rhs_data, src_ptr); auto copy_loop_header_cx = new_sub_block_ctxt(bcx, "copy_loop_header"); bcx.build.Br(copy_loop_header_cx.llbb); auto copy_dest_ptr = copy_loop_header_cx.build.Load(dest_ptr); auto not_yet_at_end = copy_loop_header_cx.build.ICmp(lib::llvm::LLVMIntNE, copy_dest_ptr, lhs_end); auto copy_loop_body_cx = new_sub_block_ctxt(bcx, "copy_loop_body"); auto next_cx = new_sub_block_ctxt(bcx, "next"); copy_loop_header_cx.build.CondBr(not_yet_at_end, copy_loop_body_cx.llbb, next_cx.llbb); auto copy_src_ptr = copy_loop_body_cx.build.Load(src_ptr); auto copy_src = load_if_immediate(copy_loop_body_cx, copy_src_ptr, unit_ty); rs = copy_val(copy_loop_body_cx, INIT, copy_dest_ptr, copy_src, unit_ty); auto post_copy_cx = rs.bcx; // Increment both pointers. if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { // We have to increment by the dynamically-computed size. incr_ptr(post_copy_cx, copy_dest_ptr, unit_sz, dest_ptr); incr_ptr(post_copy_cx, copy_src_ptr, unit_sz, src_ptr); } else { incr_ptr(post_copy_cx, copy_dest_ptr, C_int(1), dest_ptr); incr_ptr(post_copy_cx, copy_src_ptr, C_int(1), src_ptr); } post_copy_cx.build.Br(copy_loop_header_cx.llbb); ret rslt(next_cx, C_nil()); } type alloc_result = rec(@block_ctxt bcx, ValueRef llptr, ValueRef llunitsz, ValueRef llalen); fn alloc(&@block_ctxt cx, ty::t unit_ty) -> alloc_result { auto dynamic = ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty); auto bcx; if (dynamic) { bcx = llderivedtydescs_block_ctxt(cx.fcx); } else { bcx = cx; } auto llunitsz; auto rslt = size_of(bcx, unit_ty); bcx = rslt.bcx; llunitsz = rslt.val; if (dynamic) { cx.fcx.llderivedtydescs = bcx.llbb; } auto llalen = bcx.build.Mul(llunitsz, C_uint(abi::ivec_default_length)); auto llptr; auto llunitty = type_of_or_i8(bcx, unit_ty); auto bcx_result; if (dynamic) { auto llarraysz = bcx.build.Add(llsize_of(T_opaque_ivec()), llalen); auto llvecptr = array_alloca(bcx, T_i8(), llarraysz); bcx_result = cx; llptr = bcx_result.build.PointerCast(llvecptr, T_ptr(T_opaque_ivec())); } else { llptr = alloca(bcx, T_ivec(llunitty)); bcx_result = bcx; } ret rec(bcx=bcx_result, llptr=llptr, llunitsz=llunitsz, llalen=llalen); } fn trans_add(&@block_ctxt cx, ty::t vec_ty, ValueRef lhs, ValueRef rhs) -> result { auto bcx = cx; auto unit_ty = ty::sequence_element_type(bcx.fcx.lcx.ccx.tcx, vec_ty); auto ares = alloc(bcx, unit_ty); bcx = ares.bcx; auto llvecptr = ares.llptr; auto unit_sz = ares.llunitsz; auto llalen = ares.llalen; add_clean_temp(bcx, llvecptr, vec_ty); auto llunitty = type_of_or_i8(bcx, unit_ty); auto llheappartty = T_ivec_heap_part(llunitty); auto lhs_len_and_data = get_len_and_data(bcx, lhs, unit_ty); auto lhs_len = lhs_len_and_data._0; auto lhs_data = lhs_len_and_data._1; bcx = lhs_len_and_data._2; auto rhs_len_and_data = get_len_and_data(bcx, rhs, unit_ty); auto rhs_len = rhs_len_and_data._0; auto rhs_data = rhs_len_and_data._1; bcx = rhs_len_and_data._2; auto lllen = bcx.build.Add(lhs_len, rhs_len); // We have three cases to handle here: // (1) Length is zero ([] + []). // (2) Copy onto stack. // (3) Allocate on heap and copy there. auto len_is_zero = bcx.build.ICmp(lib::llvm::LLVMIntEQ, lllen, C_int(0)); auto zero_len_cx = new_sub_block_ctxt(bcx, "zero_len"); auto nonzero_len_cx = new_sub_block_ctxt(bcx, "nonzero_len"); bcx.build.CondBr(len_is_zero, zero_len_cx.llbb, nonzero_len_cx.llbb); // Case (1): Length is zero. auto stub_z = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_zero)]; auto stub_a = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_alen)]; auto stub_p = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]; auto vec_l = ~[C_int(0), C_uint(abi::ivec_elt_len)]; auto vec_a = ~[C_int(0), C_uint(abi::ivec_elt_alen)]; auto stub_ptr_zero = zero_len_cx.build.PointerCast(llvecptr, T_ptr(T_ivec_heap(llunitty))); zero_len_cx.build.Store(C_int(0), zero_len_cx.build.InBoundsGEP(stub_ptr_zero, stub_z)); zero_len_cx.build.Store(llalen, zero_len_cx.build.InBoundsGEP(stub_ptr_zero, stub_a)); zero_len_cx.build.Store(C_null(T_ptr(llheappartty)), zero_len_cx.build.InBoundsGEP(stub_ptr_zero, stub_p)); auto next_cx = new_sub_block_ctxt(bcx, "next"); zero_len_cx.build.Br(next_cx.llbb); // Determine whether we need to spill to the heap. auto on_stack = nonzero_len_cx.build.ICmp(lib::llvm::LLVMIntULE, lllen, llalen); auto stack_cx = new_sub_block_ctxt(bcx, "stack"); auto heap_cx = new_sub_block_ctxt(bcx, "heap"); nonzero_len_cx.build.CondBr(on_stack, stack_cx.llbb, heap_cx.llbb); // Case (2): Copy onto stack. stack_cx.build.Store(lllen, stack_cx.build.InBoundsGEP(llvecptr, vec_l)); stack_cx.build.Store(llalen, stack_cx.build.InBoundsGEP(llvecptr, vec_a)); auto dest_ptr_stack = stack_cx.build.InBoundsGEP(llvecptr, ~[C_int(0), C_uint(abi::ivec_elt_elems), C_int(0)]); auto copy_cx = new_sub_block_ctxt(bcx, "copy"); stack_cx.build.Br(copy_cx.llbb); // Case (3): Allocate on heap and copy there. auto stub_ptr_heap = heap_cx.build.PointerCast(llvecptr, T_ptr(T_ivec_heap(llunitty))); heap_cx.build.Store(C_int(0), heap_cx.build.InBoundsGEP(stub_ptr_heap, stub_z)); heap_cx.build.Store(lllen, heap_cx.build.InBoundsGEP(stub_ptr_heap, stub_a)); auto heap_sz = heap_cx.build.Add(llsize_of(llheappartty), lllen); auto rs = trans_shared_malloc(heap_cx, T_ptr(llheappartty), heap_sz); auto heap_part = rs.val; heap_cx = rs.bcx; heap_cx.build.Store(heap_part, heap_cx.build.InBoundsGEP(stub_ptr_heap, stub_p)); { auto v = ~[C_int(0), C_uint(abi::ivec_heap_elt_len)]; heap_cx.build.Store(lllen, heap_cx.build.InBoundsGEP(heap_part, v)); } auto dest_ptr_heap = heap_cx.build.InBoundsGEP(heap_part, ~[C_int(0), C_uint(abi::ivec_heap_elt_elems), C_int(0)]); heap_cx.build.Br(copy_cx.llbb); // Emit the copy loop. auto first_dest_ptr = copy_cx.build.Phi(T_ptr(llunitty), ~[dest_ptr_stack, dest_ptr_heap], ~[stack_cx.llbb, heap_cx.llbb]); auto lhs_end_ptr; auto rhs_end_ptr; if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) { lhs_end_ptr = copy_cx.build.InBoundsGEP(lhs_data, ~[lhs_len]); rhs_end_ptr = copy_cx.build.InBoundsGEP(rhs_data, ~[rhs_len]); } else { auto lhs_len_unscaled = copy_cx.build.UDiv(lhs_len, unit_sz); lhs_end_ptr = copy_cx.build.InBoundsGEP(lhs_data, ~[lhs_len_unscaled]); auto rhs_len_unscaled = copy_cx.build.UDiv(rhs_len, unit_sz); rhs_end_ptr = copy_cx.build.InBoundsGEP(rhs_data, ~[rhs_len_unscaled]); } auto dest_ptr_ptr = alloca(copy_cx, T_ptr(llunitty)); copy_cx.build.Store(first_dest_ptr, dest_ptr_ptr); auto lhs_ptr_ptr = alloca(copy_cx, T_ptr(llunitty)); copy_cx.build.Store(lhs_data, lhs_ptr_ptr); auto rhs_ptr_ptr = alloca(copy_cx, T_ptr(llunitty)); copy_cx.build.Store(rhs_data, rhs_ptr_ptr); auto lhs_copy_cx = new_sub_block_ctxt(bcx, "lhs_copy"); copy_cx.build.Br(lhs_copy_cx.llbb); // Copy in elements from the LHS. auto lhs_ptr = lhs_copy_cx.build.Load(lhs_ptr_ptr); auto not_at_end_lhs = lhs_copy_cx.build.ICmp(lib::llvm::LLVMIntNE, lhs_ptr, lhs_end_ptr); auto lhs_do_copy_cx = new_sub_block_ctxt(bcx, "lhs_do_copy"); auto rhs_copy_cx = new_sub_block_ctxt(bcx, "rhs_copy"); lhs_copy_cx.build.CondBr(not_at_end_lhs, lhs_do_copy_cx.llbb, rhs_copy_cx.llbb); auto dest_ptr_lhs_copy = lhs_do_copy_cx.build.Load(dest_ptr_ptr); auto lhs_val = load_if_immediate(lhs_do_copy_cx, lhs_ptr, unit_ty); rs = copy_val(lhs_do_copy_cx, INIT, dest_ptr_lhs_copy, lhs_val, unit_ty); lhs_do_copy_cx = rs.bcx; // Increment both pointers. if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) { // We have to increment by the dynamically-computed size. incr_ptr(lhs_do_copy_cx, dest_ptr_lhs_copy, unit_sz, dest_ptr_ptr); incr_ptr(lhs_do_copy_cx, lhs_ptr, unit_sz, lhs_ptr_ptr); } else { incr_ptr(lhs_do_copy_cx, dest_ptr_lhs_copy, C_int(1), dest_ptr_ptr); incr_ptr(lhs_do_copy_cx, lhs_ptr, C_int(1), lhs_ptr_ptr); } lhs_do_copy_cx.build.Br(lhs_copy_cx.llbb); // Copy in elements from the RHS. auto rhs_ptr = rhs_copy_cx.build.Load(rhs_ptr_ptr); auto not_at_end_rhs = rhs_copy_cx.build.ICmp(lib::llvm::LLVMIntNE, rhs_ptr, rhs_end_ptr); auto rhs_do_copy_cx = new_sub_block_ctxt(bcx, "rhs_do_copy"); rhs_copy_cx.build.CondBr(not_at_end_rhs, rhs_do_copy_cx.llbb, next_cx.llbb); auto dest_ptr_rhs_copy = rhs_do_copy_cx.build.Load(dest_ptr_ptr); auto rhs_val = load_if_immediate(rhs_do_copy_cx, rhs_ptr, unit_ty); rs = copy_val(rhs_do_copy_cx, INIT, dest_ptr_rhs_copy, rhs_val, unit_ty); rhs_do_copy_cx = rs.bcx; // Increment both pointers. if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) { // We have to increment by the dynamically-computed size. incr_ptr(rhs_do_copy_cx, dest_ptr_rhs_copy, unit_sz, dest_ptr_ptr); incr_ptr(rhs_do_copy_cx, rhs_ptr, unit_sz, rhs_ptr_ptr); } else { incr_ptr(rhs_do_copy_cx, dest_ptr_rhs_copy, C_int(1), dest_ptr_ptr); incr_ptr(rhs_do_copy_cx, rhs_ptr, C_int(1), rhs_ptr_ptr); } rhs_do_copy_cx.build.Br(rhs_copy_cx.llbb); // Finally done! ret rslt(next_cx, llvecptr); } // NB: This does *not* adjust reference counts. The caller must have done // this via copy_ty() beforehand. fn duplicate_heap_part(&@block_ctxt cx, ValueRef orig_vptr, ty::t unit_ty) -> result { // Cast to an opaque interior vector if we can't trust the pointer // type. auto vptr; if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) { vptr = cx.build.PointerCast(orig_vptr, T_ptr(T_opaque_ivec())); } else { vptr = orig_vptr; } auto llunitty = type_of_or_i8(cx, unit_ty); auto llheappartty = T_ivec_heap_part(llunitty); // Check to see if the vector is heapified. auto stack_len_ptr = cx.build.InBoundsGEP(vptr, ~[C_int(0), C_uint(abi::ivec_elt_len)]); auto stack_len = cx.build.Load(stack_len_ptr); auto stack_len_is_zero = cx.build.ICmp(lib::llvm::LLVMIntEQ, stack_len, C_int(0)); auto maybe_on_heap_cx = new_sub_block_ctxt(cx, "maybe_on_heap"); auto next_cx = new_sub_block_ctxt(cx, "next"); cx.build.CondBr(stack_len_is_zero, maybe_on_heap_cx.llbb, next_cx.llbb); auto stub_ptr = maybe_on_heap_cx.build.PointerCast(vptr, T_ptr(T_ivec_heap(llunitty))); auto heap_ptr_ptr = maybe_on_heap_cx.build.InBoundsGEP(stub_ptr, ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]); auto heap_ptr = maybe_on_heap_cx.build.Load(heap_ptr_ptr); auto heap_ptr_is_nonnull = maybe_on_heap_cx.build.ICmp( lib::llvm::LLVMIntNE, heap_ptr, C_null(T_ptr(llheappartty))); auto on_heap_cx = new_sub_block_ctxt(cx, "on_heap"); maybe_on_heap_cx.build.CondBr(heap_ptr_is_nonnull, on_heap_cx.llbb, next_cx.llbb); // Ok, the vector is on the heap. Copy the heap part. auto alen_ptr = on_heap_cx.build.InBoundsGEP(stub_ptr, ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_alen)]); auto alen = on_heap_cx.build.Load(alen_ptr); auto heap_part_sz = on_heap_cx.build.Add(alen, llsize_of(T_opaque_ivec_heap_part())); auto rs = trans_shared_malloc(on_heap_cx, T_ptr(llheappartty), heap_part_sz); on_heap_cx = rs.bcx; auto new_heap_ptr = rs.val; rs = call_memmove(on_heap_cx, new_heap_ptr, heap_ptr, heap_part_sz); on_heap_cx = rs.bcx; on_heap_cx.build.Store(new_heap_ptr, heap_ptr_ptr); on_heap_cx.build.Br(next_cx.llbb); ret rslt(next_cx, C_nil()); } } fn trans_vec_add(&@block_ctxt cx, &ty::t t, ValueRef lhs, ValueRef rhs) -> result { auto r = alloc_ty(cx, t); auto tmp = r.val; r = copy_val(r.bcx, INIT, tmp, lhs, t); auto bcx = trans_vec_append(r.bcx, t, tmp, rhs).bcx; tmp = load_if_immediate(bcx, tmp, t); add_clean_temp(cx, tmp, t); ret rslt(bcx, tmp); } fn trans_eager_binop(&@block_ctxt cx, ast::binop op, &ty::t intype, ValueRef lhs, ValueRef rhs) -> result { auto is_float = false; alt (ty::struct(cx.fcx.lcx.ccx.tcx, intype)) { case (ty::ty_float) { is_float = true; } case (_) { is_float = false; } } alt (op) { case (ast::add) { if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, intype)) { if (ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, intype)) { ret ivec::trans_add(cx, intype, lhs, rhs); } ret trans_vec_add(cx, intype, lhs, rhs); } if (is_float) { ret rslt(cx, cx.build.FAdd(lhs, rhs)); } else { ret rslt(cx, cx.build.Add(lhs, rhs)); } } case (ast::sub) { if (is_float) { ret rslt(cx, cx.build.FSub(lhs, rhs)); } else { ret rslt(cx, cx.build.Sub(lhs, rhs)); } } case (ast::mul) { if (is_float) { ret rslt(cx, cx.build.FMul(lhs, rhs)); } else { ret rslt(cx, cx.build.Mul(lhs, rhs)); } } case (ast::div) { if (is_float) { ret rslt(cx, cx.build.FDiv(lhs, rhs)); } if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype)) { ret rslt(cx, cx.build.SDiv(lhs, rhs)); } else { ret rslt(cx, cx.build.UDiv(lhs, rhs)); } } case (ast::rem) { if (is_float) { ret rslt(cx, cx.build.FRem(lhs, rhs)); } if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, intype)) { ret rslt(cx, cx.build.SRem(lhs, rhs)); } else { ret rslt(cx, cx.build.URem(lhs, rhs)); } } case (ast::bitor) { ret rslt(cx, cx.build.Or(lhs, rhs)); } case (ast::bitand) { ret rslt(cx, cx.build.And(lhs, rhs)); } case (ast::bitxor) { ret rslt(cx, cx.build.Xor(lhs, rhs)); } case (ast::lsl) { ret rslt(cx, cx.build.Shl(lhs, rhs)); } case (ast::lsr) { ret rslt(cx, cx.build.LShr(lhs, rhs)); } case (ast::asr) { ret rslt(cx, cx.build.AShr(lhs, rhs)); } case (_) { ret trans_compare(cx, op, intype, lhs, rhs); } } } fn autoderef(&@block_ctxt cx, ValueRef v, &ty::t t) -> result_t { let ValueRef v1 = v; let ty::t t1 = t; auto ccx = cx.fcx.lcx.ccx; while (true) { alt (ty::struct(ccx.tcx, t1)) { case (ty::ty_box(?mt)) { auto body = cx.build.GEP(v1, ~[C_int(0), C_int(abi::box_rc_field_body)]); t1 = mt.ty; // Since we're changing levels of box indirection, we may have // to cast this pointer, since statically-sized tag types have // different types depending on whether they're behind a box // or not. if (!ty::type_has_dynamic_size(ccx.tcx, mt.ty)) { auto llty = type_of(ccx, cx.sp, mt.ty); v1 = cx.build.PointerCast(body, T_ptr(llty)); } else { v1 = body; } } case (ty::ty_res(?did, ?inner, ?tps)) { t1 = ty::substitute_type_params(ccx.tcx, tps, inner); v1 = cx.build.GEP(v1, ~[C_int(0), C_int(1)]); } case (ty::ty_tag(?did, ?tps)) { auto variants = ty::tag_variants(ccx.tcx, did); if (std::ivec::len(variants) != 1u || std::ivec::len(variants.(0).args) != 1u) { break; } t1 = ty::substitute_type_params (ccx.tcx, tps, variants.(0).args.(0)); if (!ty::type_has_dynamic_size(ccx.tcx, t1)) { v1 = cx.build.PointerCast (v1, T_ptr(type_of(ccx, cx.sp, t1))); } } case (_) { break; } } v1 = load_if_immediate(cx, v1, t1); } ret rec(bcx=cx, val=v1, ty=t1); } fn trans_binary(&@block_ctxt cx, ast::binop op, &@ast::expr a, &@ast::expr b) -> result { // First couple cases are lazy: alt (op) { case (ast::and) { // Lazy-eval and auto lhs_expr = trans_expr(cx, a); auto lhs_res = autoderef(lhs_expr.bcx, lhs_expr.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, a)); auto rhs_cx = new_scope_block_ctxt(cx, "rhs"); auto rhs_expr = trans_expr(rhs_cx, b); auto rhs_res = autoderef(rhs_expr.bcx, rhs_expr.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, b)); auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false"); auto lhs_false_res = rslt(lhs_false_cx, C_bool(false)); // The following line ensures that any cleanups for rhs // are done within the block for rhs. This is necessary // because and/or are lazy. So the rhs may never execute, // and the cleanups can't be pushed into later code. auto rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx); lhs_res.bcx.build.CondBr(lhs_res.val, rhs_cx.llbb, lhs_false_cx.llbb); ret join_results(cx, T_bool(), ~[lhs_false_res, rec(bcx=rhs_bcx, val=rhs_res.val)]); } case (ast::or) { // Lazy-eval or auto lhs_expr = trans_expr(cx, a); auto lhs_res = autoderef(lhs_expr.bcx, lhs_expr.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, a)); auto rhs_cx = new_scope_block_ctxt(cx, "rhs"); auto rhs_expr = trans_expr(rhs_cx, b); auto rhs_res = autoderef(rhs_expr.bcx, rhs_expr.val, ty::expr_ty(cx.fcx.lcx.ccx.tcx, b)); auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true"); auto lhs_true_res = rslt(lhs_true_cx, C_bool(true)); // see the and case for an explanation auto rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx); lhs_res.bcx.build.CondBr(lhs_res.val, lhs_true_cx.llbb, rhs_cx.llbb); ret join_results(cx, T_bool(), ~[lhs_true_res, rec(bcx=rhs_bcx, val=rhs_res.val)]); } case (_) { // Remaining cases are eager: auto lhs_expr = trans_expr(cx, a); auto lhty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, a); auto lhs = autoderef(lhs_expr.bcx, lhs_expr.val, lhty); auto rhs_expr = trans_expr(lhs.bcx, b); auto rhty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, b); auto rhs = autoderef(rhs_expr.bcx, rhs_expr.val, rhty); ret trans_eager_binop(rhs.bcx, op, lhs.ty, lhs.val, rhs.val); } } } fn join_results(&@block_ctxt parent_cx, TypeRef t, &result[] ins) -> result { let result[] live = ~[]; let ValueRef[] vals = ~[]; let BasicBlockRef[] bbs = ~[]; for (result r in ins) { if (!is_terminated(r.bcx)) { live += ~[r]; vals += ~[r.val]; bbs += ~[r.bcx.llbb]; } } alt (std::ivec::len[result](live)) { case (0u) { // No incoming edges are live, so we're in dead-code-land. // Arbitrarily pick the first dead edge, since the caller // is just going to propagate it outward. assert (std::ivec::len[result](ins) >= 1u); ret ins.(0); } case (_) {/* fall through */ } } // We have >1 incoming edges. Make a join block and br+phi them into it. auto join_cx = new_sub_block_ctxt(parent_cx, "join"); for (result r in live) { r.bcx.build.Br(join_cx.llbb); } auto phi = join_cx.build.Phi(t, vals, bbs); ret rslt(join_cx, phi); } fn join_branches(&@block_ctxt parent_cx, &result[] ins) -> @block_ctxt { auto out = new_sub_block_ctxt(parent_cx, "join"); for (result r in ins) { if (!is_terminated(r.bcx)) { r.bcx.build.Br(out.llbb); } } ret out; } tag out_method { return; save_in(ValueRef); } fn trans_if(&@block_ctxt cx, &@ast::expr cond, &ast::block thn, &option::t[@ast::expr] els, ast::node_id id, &out_method output) -> result { auto cond_res = trans_expr(cx, cond); auto then_cx = new_scope_block_ctxt(cx, "then"); auto then_res = trans_block(then_cx, thn, output); auto else_cx = new_scope_block_ctxt(cx, "else"); auto else_res = alt (els) { case (some(?elexpr)) { alt (elexpr.node) { case (ast::expr_if(_, _, _)) { // Synthesize a block here to act as the else block // containing an if expression. Needed in order for the // else scope to behave like a normal block scope. A tad // ugly. auto elseif_blk = ast::block_from_expr(elexpr); trans_block(else_cx, elseif_blk, output) } case (ast::expr_block(?blk)) { // Calling trans_block directly instead of trans_expr // because trans_expr will create another scope block // context for the block, but we've already got the // 'else' context trans_block(else_cx, blk, output) } } } case (_) { rslt(else_cx, C_nil()) } }; cond_res.bcx.build.CondBr(cond_res.val, then_cx.llbb, else_cx.llbb); ret rslt(join_branches(cx, ~[then_res, else_res]), C_nil()); } fn trans_for(&@block_ctxt cx, &@ast::local local, &@ast::expr seq, &ast::block body) -> result { // FIXME: We bind to an alias here to avoid a segfault... this is // obviously a bug. fn inner(&@block_ctxt cx, @ast::local local, ValueRef curr, ty::t t, &ast::block body, @block_ctxt outer_next_cx) -> result { auto next_cx = new_sub_block_ctxt(cx, "next"); auto scope_cx = new_loop_scope_block_ctxt(cx, option::some[@block_ctxt](next_cx), outer_next_cx, "for loop scope"); cx.build.Br(scope_cx.llbb); auto local_res = alloc_local(scope_cx, local); auto bcx = copy_val(local_res.bcx, INIT, local_res.val, curr, t).bcx; add_clean(scope_cx, local_res.val, t); bcx = trans_block(bcx, body, return).bcx; if (!bcx.build.is_terminated()) { bcx.build.Br(next_cx.llbb); // otherwise, this code is unreachable } ret rslt(next_cx, C_nil()); } auto next_cx = new_sub_block_ctxt(cx, "next"); auto seq_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, seq); auto seq_res = trans_expr(cx, seq); auto it = iter_sequence(seq_res.bcx, seq_res.val, seq_ty, bind inner(_, local, _, _, body, next_cx)); it.bcx.build.Br(next_cx.llbb); ret rslt(next_cx, it.val); } // Iterator translation // Searches through part of the AST for all references to locals or // upvars in this frame and returns the list of definition IDs thus found. // Since we want to be able to collect upvars in some arbitrary piece // of the AST, we take a walker function that we invoke with a visitor // in order to start the search. fn collect_upvars(&@block_ctxt cx, &fn (&walk::ast_visitor) walker, ast::node_id[] initial_decls) -> ast::node_id[] { type env = @rec(mutable ast::node_id[] refs, hashmap[ast::node_id, ()] decls, resolve::def_map def_map, session::session sess); fn walk_fn(env e, &ast::_fn f, &ast::ty_param[] tps, &span sp, &ast::fn_ident i, ast::node_id nid) { for (ast::arg a in f.decl.inputs) { e.decls.insert(a.id, ()); } } fn walk_expr(env e, &@ast::expr expr) { alt (expr.node) { case (ast::expr_path(?path)) { if (! e.def_map.contains_key(expr.id)) { e.sess.span_fatal(expr.span, "internal error in collect_upvars"); } alt (e.def_map.get(expr.id)) { case (ast::def_arg(?did)) { e.refs += ~[did._1]; } case (ast::def_local(?did)) { e.refs += ~[did._1]; } case (ast::def_binding(?did)) { e.refs += ~[did._1]; } case (_) { /* no-op */ } } } case (_) { } } } fn walk_local(env e, &@ast::local local) { e.decls.insert(local.node.id, ()); } fn walk_pat(env e, &@ast::pat p) { alt (p.node) { case (ast::pat_bind(_)) { e.decls.insert(p.id, ()); } case (_) {} } } let hashmap[ast::node_id, ()] decls = new_int_hash[()](); for (ast::node_id decl in initial_decls) { decls.insert(decl, ()); } let env e = @rec(mutable refs=~[], decls=decls, def_map=cx.fcx.lcx.ccx.tcx.def_map, sess=cx.fcx.lcx.ccx.tcx.sess); auto visitor = @rec(visit_fn_pre=bind walk_fn(e, _, _, _, _, _), visit_local_pre=bind walk_local(e, _), visit_expr_pre=bind walk_expr(e, _), visit_pat_pre=bind walk_pat(e, _) with walk::default_visitor()); walker(*visitor); // Calculate (refs - decls). This is the set of captured upvars. let ast::node_id[] result = ~[]; for (ast::node_id ref_id_ in e.refs) { auto ref_id = ref_id_; if (!decls.contains_key(ref_id)) { result += ~[ref_id]; } } ret result; } // Finds the ValueRef associated with a variable in a function // context. It checks locals, upvars, and args. fn find_variable(&@fn_ctxt fcx, ast::node_id nid) -> ValueRef { ret alt (fcx.lllocals.find(nid)) { case (none) { alt (fcx.llupvars.find(nid)) { case (none) { alt (fcx.llargs.find(nid)) { case (some(?llval)) { llval } case (_) { fcx.lcx.ccx.sess.bug("unbound var \ in build_environment " + int::str(nid)) } } } case (some(?llval)) { llval } } } case (some(?llval)) { llval } } } // Given a block context and a list of upvars, construct a closure that // contains pointers to all of the upvars and all of the tydescs in // scope. Return the ValueRef and TypeRef corresponding to the closure. fn build_environment(&@block_ctxt cx, &ast::node_id[] upvars) -> tup(ValueRef, TypeRef) { auto upvar_count = std::ivec::len(upvars); auto has_iterbody = !option::is_none(cx.fcx.lliterbody); if (has_iterbody) { upvar_count += 1u; } auto llbindingsptr; if (upvar_count > 0u) { // Gather up the upvars. let ValueRef[] llbindings = ~[]; let TypeRef[] llbindingtys = ~[]; if (has_iterbody) { llbindings += ~[option::get(cx.fcx.lliterbody)]; llbindingtys += ~[val_ty(llbindings.(0))]; } for (ast::node_id nid in upvars) { auto llbinding = find_variable(cx.fcx, nid); llbindings += ~[llbinding]; llbindingtys += ~[val_ty(llbinding)]; } // Create an array of bindings and copy in aliases to the upvars. llbindingsptr = alloca(cx, T_struct(llbindingtys)); auto i = 0u; while (i < upvar_count) { auto llbindingptr = cx.build.GEP(llbindingsptr, ~[C_int(0), C_int(i as int)]); cx.build.Store(llbindings.(i), llbindingptr); i += 1u; } } else { // Null bindings. llbindingsptr = C_null(T_ptr(T_i8())); } // Create an environment and populate it with the bindings. auto tydesc_count = std::ivec::len[ValueRef](cx.fcx.lltydescs); auto llenvptrty = T_closure_ptr(*cx.fcx.lcx.ccx, T_ptr(T_nil()), val_ty(llbindingsptr), tydesc_count); auto llenvptr = alloca(cx, llvm::LLVMGetElementType(llenvptrty)); auto llbindingsptrptr = cx.build.GEP(llenvptr, ~[C_int(0), C_int(abi::box_rc_field_body), C_int(2)]); cx.build.Store(llbindingsptr, llbindingsptrptr); // Copy in our type descriptors, in case the iterator body needs to refer // to them. auto lltydescsptr = cx.build.GEP(llenvptr, ~[C_int(0), C_int(abi::box_rc_field_body), C_int(abi::closure_elt_ty_params)]); auto i = 0u; while (i < tydesc_count) { auto lltydescptr = cx.build.GEP(lltydescsptr, ~[C_int(0), C_int(i as int)]); cx.build.Store(cx.fcx.lltydescs.(i), lltydescptr); i += 1u; } ret tup(llenvptr, llenvptrty); } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. fn load_environment(&@block_ctxt cx, &@fn_ctxt fcx, TypeRef llenvptrty, &ast::node_id[] upvars) { auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs); // Populate the upvars from the environment. auto llremoteenvptr = copy_args_bcx.build.PointerCast(fcx.llenv, llenvptrty); auto llremotebindingsptrptr = copy_args_bcx.build.GEP(llremoteenvptr, ~[C_int(0), C_int(abi::box_rc_field_body), C_int(abi::closure_elt_bindings)]); auto llremotebindingsptr = copy_args_bcx.build.Load(llremotebindingsptrptr); auto base = 0u; auto i = 0u; auto end = std::ivec::len(upvars); if (!option::is_none(cx.fcx.lliterbody)) { base += 1u; auto lliterbodyptr = copy_args_bcx.build.GEP(llremotebindingsptr, ~[C_int(0), C_int(0)]); auto lliterbody = copy_args_bcx.build.Load(lliterbodyptr); fcx.lliterbody = some(lliterbody); } while (i < end) { auto upvar_id = upvars.(i); auto llupvarptrptr = copy_args_bcx.build.GEP(llremotebindingsptr, ~[C_int(0), C_int(base+i as int)]); auto llupvarptr = copy_args_bcx.build.Load(llupvarptrptr); fcx.llupvars.insert(upvar_id, llupvarptr); i += 1u; } // Populate the type parameters from the environment. auto llremotetydescsptr = copy_args_bcx.build.GEP(llremoteenvptr, ~[C_int(0), C_int(abi::box_rc_field_body), C_int(abi::closure_elt_ty_params)]); auto tydesc_count = std::ivec::len(cx.fcx.lltydescs); i = 0u; while (i < tydesc_count) { auto llremotetydescptr = copy_args_bcx.build.GEP(llremotetydescsptr, ~[C_int(0), C_int(i as int)]); auto llremotetydesc = copy_args_bcx.build.Load(llremotetydescptr); fcx.lltydescs += ~[llremotetydesc]; i += 1u; } } fn trans_for_each(&@block_ctxt cx, &@ast::local local, &@ast::expr seq, &ast::block body) -> result { /* * The translation is a little .. complex here. Code like: * * let ty1 p = ...; * * let ty1 q = ...; * * foreach (ty v in foo(a,b)) { body(p,q,v) } * * * Turns into a something like so (C/Rust mishmash): * * type env = { *ty1 p, *ty2 q, ... }; * * let env e = { &p, &q, ... }; * * fn foreach123_body(env* e, ty v) { body(*(e->p),*(e->q),v) } * * foo([foreach123_body, env*], a, b); * */ // Step 1: walk body and figure out which references it makes // escape. This could be determined upstream, and probably ought // to be so, eventualy. auto lcx = cx.fcx.lcx; // FIXME: possibly support alias-mode here? auto decl_ty = node_id_type(lcx.ccx, local.node.id); auto decl_id = local.node.id; auto upvars = collect_upvars(cx, bind walk::walk_block(_, body), ~[decl_id]); auto environment_data = build_environment(cx, upvars); auto llenvptr = environment_data._0; auto llenvptrty = environment_data._1; // Step 2: Declare foreach body function. let str s = mangle_internal_name_by_path_and_seq(lcx.ccx, lcx.path, "foreach"); // The 'env' arg entering the body function is a fake env member (as in // the env-part of the normal rust calling convention) that actually // points to a stack allocated env in this frame. We bundle that env // pointer along with the foreach-body-fn pointer into a 'normal' fn pair // and pass it in as a first class fn-arg to the iterator. auto iter_body_llty = type_of_fn_full(lcx.ccx, cx.sp, ast::proto_fn, false, ~[rec(mode=ty::mo_alias(false), ty=decl_ty)], ty::mk_nil(lcx.ccx.tcx), 0u); let ValueRef lliterbody = decl_internal_fastcall_fn(lcx.ccx.llmod, s, iter_body_llty); auto fcx = new_fn_ctxt(lcx, cx.sp, lliterbody); // Generate code to load the environment out of the // environment pointer. load_environment(cx, fcx, llenvptrty, upvars); // Add an upvar for the loop variable alias. fcx.llupvars.insert(decl_id, llvm::LLVMGetParam(fcx.llfn, 3u)); auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; auto r = trans_block(bcx, body, return); finish_fn(fcx, lltop); if (!r.bcx.build.is_terminated()) { // if terminated is true, no need for the ret-fail r.bcx.build.RetVoid(); } // Step 3: Call iter passing [lliterbody, llenv], plus other args. alt (seq.node) { case (ast::expr_call(?f, ?args)) { auto pair = create_real_fn_pair(cx, iter_body_llty, lliterbody, llenvptr); r = trans_call(cx, f, some[ValueRef](cx.build.Load(pair)), args, seq.id); ret rslt(r.bcx, C_nil()); } } } fn trans_while(&@block_ctxt cx, &@ast::expr cond, &ast::block body) -> result { auto cond_cx = new_scope_block_ctxt(cx, "while cond"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto body_cx = new_loop_scope_block_ctxt(cx, option::none[@block_ctxt], next_cx, "while loop body"); auto body_res = trans_block(body_cx, body, return); auto cond_res = trans_expr(cond_cx, cond); body_res.bcx.build.Br(cond_cx.llbb); auto cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx); cond_bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb); cx.build.Br(cond_cx.llbb); ret rslt(next_cx, C_nil()); } fn trans_do_while(&@block_ctxt cx, &ast::block body, &@ast::expr cond) -> result { auto next_cx = new_sub_block_ctxt(cx, "next"); auto body_cx = new_loop_scope_block_ctxt(cx, option::none[@block_ctxt], next_cx, "do-while loop body"); auto body_res = trans_block(body_cx, body, return); auto cond_res = trans_expr(body_res.bcx, cond); cond_res.bcx.build.CondBr(cond_res.val, body_cx.llbb, next_cx.llbb); cx.build.Br(body_cx.llbb); ret rslt(next_cx, body_res.val); } type generic_info = rec(ty::t item_type, (option::t[@tydesc_info])[] static_tis, ValueRef[] tydescs); type lval_result = rec(result res, bool is_mem, option::t[generic_info] generic, option::t[ValueRef] llobj, option::t[ty::t] method_ty); fn lval_mem(&@block_ctxt cx, ValueRef val) -> lval_result { ret rec(res=rslt(cx, val), is_mem=true, generic=none[generic_info], llobj=none[ValueRef], method_ty=none[ty::t]); } fn lval_val(&@block_ctxt cx, ValueRef val) -> lval_result { ret rec(res=rslt(cx, val), is_mem=false, generic=none[generic_info], llobj=none[ValueRef], method_ty=none[ty::t]); } fn trans_external_path(&@block_ctxt cx, &ast::def_id did, &ty::ty_param_count_and_ty tpt) -> lval_result { auto lcx = cx.fcx.lcx; auto name = csearch::get_symbol(lcx.ccx.sess.get_cstore(), did); auto v = get_extern_const(lcx.ccx.externs, lcx.ccx.llmod, name, type_of_ty_param_count_and_ty(lcx, cx.sp, tpt)); ret lval_val(cx, v); } fn lval_generic_fn(&@block_ctxt cx, &ty::ty_param_count_and_ty tpt, &ast::def_id fn_id, ast::node_id id) -> lval_result { auto lv; if (fn_id._0 == ast::local_crate) { // Internal reference. assert (cx.fcx.lcx.ccx.fn_pairs.contains_key(fn_id._1)); lv = lval_val(cx, cx.fcx.lcx.ccx.fn_pairs.get(fn_id._1)); } else { // External reference. lv = trans_external_path(cx, fn_id, tpt); } auto tys = ty::node_id_to_type_params(cx.fcx.lcx.ccx.tcx, id); if (std::ivec::len[ty::t](tys) != 0u) { auto bcx = lv.res.bcx; let ValueRef[] tydescs = ~[]; let (option::t[@tydesc_info])[] tis = ~[]; for (ty::t t in tys) { // TODO: Doesn't always escape. auto ti = none[@tydesc_info]; auto td = get_tydesc(bcx, t, true, ti); tis += ~[ti]; bcx = td.bcx; tydescs += ~[td.val]; } auto gen = rec(item_type=tpt._1, static_tis=tis, tydescs=tydescs); lv = rec(res=rslt(bcx, lv.res.val), generic=some[generic_info](gen) with lv); } ret lv; } fn lookup_discriminant(&@local_ctxt lcx, &ast::def_id tid, &ast::def_id vid) -> ValueRef { alt (lcx.ccx.discrims.find(vid._1)) { case (none) { // It's an external discriminant that we haven't seen yet. assert (vid._0 != ast::local_crate); auto sym = csearch::get_symbol(lcx.ccx.sess.get_cstore(), vid); auto gvar = llvm::LLVMAddGlobal(lcx.ccx.llmod, T_int(), str::buf(sym)); llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMExternalLinkage as llvm::Linkage); llvm::LLVMSetGlobalConstant(gvar, True); lcx.ccx.discrims.insert(vid._1, gvar); ret gvar; } case (some(?llval)) { ret llval; } } } fn trans_path(&@block_ctxt cx, &ast::path p, ast::node_id id) -> lval_result { auto ccx = cx.fcx.lcx.ccx; alt (cx.fcx.lcx.ccx.tcx.def_map.find(id)) { case (some(ast::def_arg(?did))) { alt (cx.fcx.llargs.find(did._1)) { case (none) { assert (cx.fcx.llupvars.contains_key(did._1)); ret lval_mem(cx, cx.fcx.llupvars.get(did._1)); } case (some(?llval)) { ret lval_mem(cx, llval); } } } case (some(ast::def_local(?did))) { alt (cx.fcx.lllocals.find(did._1)) { case (none) { assert (cx.fcx.llupvars.contains_key(did._1)); ret lval_mem(cx, cx.fcx.llupvars.get(did._1)); } case (some(?llval)) { ret lval_mem(cx, llval); } } } case (some(ast::def_binding(?did))) { alt (cx.fcx.lllocals.find(did._1)) { case (none) { assert (cx.fcx.llupvars.contains_key(did._1)); ret lval_mem(cx, cx.fcx.llupvars.get(did._1)); } case (some(?llval)) { ret lval_mem(cx, llval); } } } case (some(ast::def_obj_field(?did))) { assert (cx.fcx.llobjfields.contains_key(did._1)); ret lval_mem(cx, cx.fcx.llobjfields.get(did._1)); } case (some(ast::def_fn(?did, _))) { auto tyt = ty::lookup_item_type(ccx.tcx, did); ret lval_generic_fn(cx, tyt, did, id); } case (some(ast::def_variant(?tid, ?vid))) { auto v_tyt = ty::lookup_item_type(ccx.tcx, vid); alt (ty::struct(ccx.tcx, v_tyt._1)) { case (ty::ty_fn(_, _, _, _, _)) { // N-ary variant. ret lval_generic_fn(cx, v_tyt, vid, id); } case (_) { // Nullary variant. auto tag_ty = node_id_type(ccx, id); auto alloc_result = alloc_ty(cx, tag_ty); auto lltagblob = alloc_result.val; auto lltagty = type_of_tag(ccx, p.span, tid, tag_ty); auto bcx = alloc_result.bcx; auto lltagptr = bcx.build.PointerCast (lltagblob, T_ptr(lltagty)); if (std::ivec::len(ty::tag_variants(ccx.tcx, tid)) != 1u) { auto lldiscrim_gv = lookup_discriminant(bcx.fcx.lcx, tid, vid); auto lldiscrim = bcx.build.Load(lldiscrim_gv); auto lldiscrimptr = bcx.build.GEP (lltagptr, ~[C_int(0), C_int(0)]); bcx.build.Store(lldiscrim, lldiscrimptr); } ret lval_val(bcx, lltagptr); } } } case (some(ast::def_const(?did))) { // TODO: externals assert (ccx.consts.contains_key(did._1)); ret lval_mem(cx, ccx.consts.get(did._1)); } case (some(ast::def_native_fn(?did))) { auto tyt = ty::lookup_item_type(ccx.tcx, did); ret lval_generic_fn(cx, tyt, did, id); } case (_) { ccx.sess.span_unimpl(cx.sp, "def variant in trans"); } } } fn trans_field(&@block_ctxt cx, &span sp, ValueRef v, &ty::t t0, &ast::ident field, ast::node_id id) -> lval_result { auto r = autoderef(cx, v, t0); auto t = r.ty; alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_tup(_)) { let uint ix = ty::field_num(cx.fcx.lcx.ccx.sess, sp, field); auto v = GEP_tup_like(r.bcx, t, r.val, ~[0, ix as int]); ret lval_mem(v.bcx, v.val); } case (ty::ty_rec(?fields)) { let uint ix = ty::field_idx(cx.fcx.lcx.ccx.sess, sp, field, fields); auto v = GEP_tup_like(r.bcx, t, r.val, ~[0, ix as int]); ret lval_mem(v.bcx, v.val); } case (ty::ty_obj(?methods)) { let uint ix = ty::method_idx(cx.fcx.lcx.ccx.sess, sp, field, methods); auto vtbl = r.bcx.build.GEP(r.val, ~[C_int(0), C_int(abi::obj_field_vtbl)]); vtbl = r.bcx.build.Load(vtbl); auto vtbl_type = T_ptr(T_array(T_ptr(T_nil()), ix + 2u)); vtbl = cx.build.PointerCast(vtbl, vtbl_type); // +1 because slot #0 contains the destructor auto v = r.bcx.build.GEP(vtbl, ~[C_int(0), C_int(ix + 1u as int)]); let ty::t fn_ty = ty::method_ty_to_fn_ty(cx.fcx.lcx.ccx.tcx, methods.(ix)); auto tcx = cx.fcx.lcx.ccx.tcx; auto ll_fn_ty = type_of_fn_full(cx.fcx.lcx.ccx, sp, ty::ty_fn_proto(tcx, fn_ty), true, ty::ty_fn_args(tcx, fn_ty), ty::ty_fn_ret(tcx, fn_ty), 0u); v = r.bcx.build.PointerCast(v, T_ptr(T_ptr(ll_fn_ty))); auto lvo = lval_mem(r.bcx, v); ret rec(llobj=some[ValueRef](r.val), method_ty=some[ty::t](fn_ty) with lvo); } case (_) { cx.fcx.lcx.ccx.sess.unimpl("field variant in trans_field"); } } } fn trans_index(&@block_ctxt cx, &span sp, &@ast::expr base, &@ast::expr idx, ast::node_id id) -> lval_result { // Is this an interior vector? auto base_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, base); auto exp = trans_expr(cx, base); auto lv = autoderef(exp.bcx, exp.val, base_ty); auto base_ty_no_boxes = lv.ty; auto is_interior = ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, base_ty_no_boxes); auto ix = trans_expr(lv.bcx, idx); auto v = lv.val; auto bcx = ix.bcx; // Cast to an LLVM integer. Rust is less strict than LLVM in this regard. auto ix_val; auto ix_size = llsize_of_real(cx.fcx.lcx.ccx, val_ty(ix.val)); auto int_size = llsize_of_real(cx.fcx.lcx.ccx, T_int()); if (ix_size < int_size) { ix_val = bcx.build.ZExt(ix.val, T_int()); } else if (ix_size > int_size) { ix_val = bcx.build.Trunc(ix.val, T_int()); } else { ix_val = ix.val; } auto unit_ty = node_id_type(cx.fcx.lcx.ccx, id); auto unit_sz = size_of(bcx, unit_ty); bcx = unit_sz.bcx; maybe_name_value(cx.fcx.lcx.ccx, unit_sz.val, "unit_sz"); auto scaled_ix = bcx.build.Mul(ix_val, unit_sz.val); maybe_name_value(cx.fcx.lcx.ccx, scaled_ix, "scaled_ix"); auto interior_len_and_data; if (is_interior) { auto rslt = ivec::get_len_and_data(bcx, v, unit_ty); interior_len_and_data = some(tup(rslt._0, rslt._1)); bcx = rslt._2; } else { interior_len_and_data = none; } auto lim; alt (interior_len_and_data) { case (some(?lad)) { lim = lad._0; } case (none) { lim = bcx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_fill)]); lim = bcx.build.Load(lim); } } auto bounds_check = bcx.build.ICmp(lib::llvm::LLVMIntULT, scaled_ix, lim); auto fail_cx = new_sub_block_ctxt(bcx, "fail"); auto next_cx = new_sub_block_ctxt(bcx, "next"); bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb); // fail: bad bounds check. trans_fail(fail_cx, some[span](sp), "bounds check"); auto body; alt (interior_len_and_data) { case (some(?lad)) { body = lad._1; } case (none) { body = next_cx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_data), C_int(0)]); } } auto elt; if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) { body = next_cx.build.PointerCast(body, T_ptr(T_i8())); elt = next_cx.build.GEP(body, ~[scaled_ix]); } else { elt = next_cx.build.GEP(body, ~[ix_val]); // We're crossing a box boundary here, so we may need to pointer cast. auto llunitty = type_of(next_cx.fcx.lcx.ccx, sp, unit_ty); elt = next_cx.build.PointerCast(elt, T_ptr(llunitty)); } ret lval_mem(next_cx, elt); } // The additional bool returned indicates whether it's mem (that is // represented as an alloca or heap, hence needs a 'load' to be used as an // immediate). fn trans_lval_gen(&@block_ctxt cx, &@ast::expr e) -> lval_result { alt (e.node) { case (ast::expr_path(?p)) { ret trans_path(cx, p, e.id); } case (ast::expr_field(?base, ?ident)) { auto r = trans_expr(cx, base); auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, base); ret trans_field(r.bcx, e.span, r.val, t, ident, e.id); } case (ast::expr_index(?base, ?idx)) { ret trans_index(cx, e.span, base, idx, e.id); } case (ast::expr_unary(ast::deref, ?base)) { auto ccx = cx.fcx.lcx.ccx; auto sub = trans_expr(cx, base); auto t = ty::expr_ty(ccx.tcx, base); auto val = alt (ty::struct(ccx.tcx, t)) { case (ty::ty_box(_)) { sub.bcx.build.InBoundsGEP (sub.val, ~[C_int(0), C_int(abi::box_rc_field_body)]) } case (ty::ty_res(_, _, _)) { sub.bcx.build.InBoundsGEP(sub.val, ~[C_int(0), C_int(1)]) } case (ty::ty_tag(_, _)) { auto ety = ty::expr_ty(ccx.tcx, e); auto ellty; if (ty::type_has_dynamic_size(ccx.tcx, ety)) { ellty = T_typaram_ptr(ccx.tn); } else { ellty = T_ptr(type_of(ccx, e.span, ety)); }; sub.bcx.build.PointerCast(sub.val, ellty) } case (ty::ty_ptr(_)) { sub.val } }; ret lval_mem(sub.bcx, val); } case (ast::expr_self_method(?ident)) { alt ({ cx.fcx.llself }) { case (some(?pair)) { auto r = pair.v; auto t = pair.t; ret trans_field(cx, e.span, r, t, ident, e.id); } case (_) { // Shouldn't happen. cx.fcx.lcx.ccx.sess.bug("trans_lval called on " + "expr_self_method in " + "a context without llself"); } } } case (_) { ret rec(res=trans_expr(cx, e), is_mem=false, generic=none, llobj=none, method_ty=none); } } } fn trans_lval(&@block_ctxt cx, &@ast::expr e) -> lval_result { auto lv = trans_lval_gen(cx, e); alt (lv.generic) { case (some(?gi)) { auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e); auto n_args = std::ivec::len(ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, t)); auto args = std::ivec::init_elt(none[@ast::expr], n_args); auto bound = trans_bind_1(lv.res.bcx, e, lv, args, e.id); ret lval_val(bound.bcx, bound.val); } case (none) { ret lv; } } } fn int_cast(&@block_ctxt bcx, TypeRef lldsttype, TypeRef llsrctype, ValueRef llsrc, bool signed) -> ValueRef { if (llvm::LLVMGetIntTypeWidth(lldsttype) > llvm::LLVMGetIntTypeWidth(llsrctype)) { if (signed) { // Widening signed cast. ret bcx.build.SExtOrBitCast(llsrc, lldsttype); } // Widening unsigned cast. ret bcx.build.ZExtOrBitCast(llsrc, lldsttype); } ret bcx.build.TruncOrBitCast(llsrc, lldsttype); } fn trans_cast(&@block_ctxt cx, &@ast::expr e, ast::node_id id) -> result { auto e_res = trans_expr(cx, e); auto llsrctype = val_ty(e_res.val); auto t = node_id_type(cx.fcx.lcx.ccx, id); auto lldsttype = type_of(cx.fcx.lcx.ccx, e.span, t); if (!ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) { // TODO: native-to-native casts if (ty::type_is_native(cx.fcx.lcx.ccx.tcx, ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) { e_res = rslt(e_res.bcx, e_res.bcx.build.PtrToInt(e_res.val, lldsttype)); } else if (ty::type_is_native(cx.fcx.lcx.ccx.tcx, t)) { e_res = rslt(e_res.bcx, e_res.bcx.build.IntToPtr(e_res.val, lldsttype)); } else { e_res = rslt(e_res.bcx, int_cast(e_res.bcx, lldsttype, llsrctype, e_res.val, ty::type_is_signed(cx.fcx.lcx.ccx.tcx, t))); } } else { if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) { if (ty::type_is_signed(cx.fcx.lcx.ccx.tcx, ty::expr_ty(cx.fcx.lcx.ccx.tcx, e))) { e_res = rslt(e_res.bcx, e_res.bcx.build.SIToFP(e_res.val, lldsttype)); } else { e_res = rslt(e_res.bcx, e_res.bcx.build.UIToFP(e_res.val, lldsttype)); } } else { cx.fcx.lcx.ccx.sess.unimpl("fp cast"); } } ret e_res; } fn trans_bind_thunk(&@local_ctxt cx, &span sp, &ty::t incoming_fty, &ty::t outgoing_fty, &(option::t[@ast::expr])[] args, &ty::t closure_ty, &ty::t[] bound_tys, uint ty_param_count) -> ValueRef { // Here we're not necessarily constructing a thunk in the sense of // "function with no arguments". The result of compiling 'bind f(foo, // bar, baz)' would be a thunk that, when called, applies f to those // arguments and returns the result. But we're stretching the meaning of // the word "thunk" here to also mean the result of compiling, say, 'bind // f(foo, _, baz)', or any other bind expression that binds f and leaves // some (or all) of the arguments unbound. // Here, 'incoming_fty' is the type of the entire bind expression, while // 'outgoing_fty' is the type of the function that is having some of its // arguments bound. If f is a function that takes three arguments of type // int and returns int, and we're translating, say, 'bind f(3, _, 5)', // then outgoing_fty is the type of f, which is (int, int, int) -> int, // and incoming_fty is the type of 'bind f(3, _, 5)', which is int -> int. // Once translated, the entire bind expression will be the call f(foo, // bar, baz) wrapped in a (so-called) thunk that takes 'bar' as its // argument and that has bindings of 'foo' to 3 and 'baz' to 5 and a // pointer to 'f' all saved in its environment. So, our job is to // construct and return that thunk. // Give the thunk a name, type, and value. let str s = mangle_internal_name_by_path_and_seq(cx.ccx, cx.path, "thunk"); let TypeRef llthunk_ty = get_pair_fn_ty(type_of(cx.ccx, sp, incoming_fty)); let ValueRef llthunk = decl_internal_fastcall_fn(cx.ccx.llmod, s, llthunk_ty); // Create a new function context and block context for the thunk, and hold // onto a pointer to the first block in the function for later use. auto fcx = new_fn_ctxt(cx, sp, llthunk); auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; // Since we might need to construct derived tydescs that depend on // our bound tydescs, we need to load tydescs out of the environment // before derived tydescs are constructed. To do this, we load them // in the copy_args block. auto copy_args_bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs); // The 'llenv' that will arrive in the thunk we're creating is an // environment that will contain the values of its arguments and a pointer // to the original function. So, let's create one of those: // The llenv pointer needs to be the correct size. That size is // 'closure_ty', which was determined by trans_bind. auto llclosure_ptr_ty = type_of(cx.ccx, sp, ty::mk_imm_box(cx.ccx.tcx, closure_ty)); auto llclosure = copy_args_bcx.build.PointerCast(fcx.llenv, llclosure_ptr_ty); // "target", in this context, means the function that's having some of its // arguments bound and that will be called inside the thunk we're // creating. (In our running example, target is the function f.) Pick // out the pointer to the target function from the environment. auto lltarget = GEP_tup_like(bcx, closure_ty, llclosure, ~[0, abi::box_rc_field_body, abi::closure_elt_target]); bcx = lltarget.bcx; // And then, pick out the target function's own environment. That's what // we'll use as the environment the thunk gets. auto lltargetclosure = bcx.build.GEP(lltarget.val, ~[C_int(0), C_int(abi::fn_field_box)]); lltargetclosure = bcx.build.Load(lltargetclosure); // Get f's return type, which will also be the return type of the entire // bind expression. auto outgoing_ret_ty = ty::ty_fn_ret(cx.ccx.tcx, outgoing_fty); // Get the types of the arguments to f. auto outgoing_args = ty::ty_fn_args(cx.ccx.tcx, outgoing_fty); // The 'llretptr' that will arrive in the thunk we're creating also needs // to be the correct size. Cast it to the size of f's return type, if // necessary. auto llretptr = fcx.llretptr; if (ty::type_has_dynamic_size(cx.ccx.tcx, outgoing_ret_ty)) { llretptr = bcx.build.PointerCast(llretptr, T_typaram_ptr(cx.ccx.tn)); } // Set up the three implicit arguments to the thunk. let ValueRef[] llargs = ~[llretptr, fcx.lltaskptr, lltargetclosure]; // Copy in the type parameters. let uint i = 0u; while (i < ty_param_count) { auto lltyparam_ptr = GEP_tup_like(copy_args_bcx, closure_ty, llclosure, ~[0, abi::box_rc_field_body, abi::closure_elt_ty_params, i as int]); copy_args_bcx = lltyparam_ptr.bcx; auto td = copy_args_bcx.build.Load(lltyparam_ptr.val); llargs += ~[td]; fcx.lltydescs += ~[td]; i += 1u; } let uint a = 3u; // retptr, task ptr, env come first let int b = 0; let uint outgoing_arg_index = 0u; let TypeRef[] llout_arg_tys = type_of_explicit_args(cx.ccx, sp, outgoing_args); for (option::t[@ast::expr] arg in args) { auto out_arg = outgoing_args.(outgoing_arg_index); auto llout_arg_ty = llout_arg_tys.(outgoing_arg_index); alt (arg) { // Arg provided at binding time; thunk copies it from // closure. case (some(?e)) { auto e_ty = ty::expr_ty(cx.ccx.tcx, e); auto bound_arg = GEP_tup_like(bcx, closure_ty, llclosure, ~[0, abi::box_rc_field_body, abi::closure_elt_bindings, b]); bcx = bound_arg.bcx; auto val = bound_arg.val; if (out_arg.mode == ty::mo_val) { if (type_is_immediate(cx.ccx, e_ty)) { val = bcx.build.Load(val); bcx = copy_ty(bcx, val, e_ty).bcx; } else { bcx = copy_ty(bcx, val, e_ty).bcx; val = bcx.build.Load(val); } } // If the type is parameterized, then we need to cast the // type we actually have to the parameterized out type. if (ty::type_contains_params(cx.ccx.tcx, out_arg.ty)) { // FIXME: (#642) This works for boxes and alias params // but does not work for bare functions. val = bcx.build.PointerCast(val, llout_arg_ty); } llargs += ~[val]; b += 1; } case ( // Arg will be provided when the thunk is invoked. none) { let ValueRef passed_arg = llvm::LLVMGetParam(llthunk, a); if (ty::type_contains_params(cx.ccx.tcx, out_arg.ty)) { assert (out_arg.mode != ty::mo_val); passed_arg = bcx.build.PointerCast(passed_arg, llout_arg_ty); } llargs += ~[passed_arg]; a += 1u; } } outgoing_arg_index += 1u; } // FIXME: turn this call + ret into a tail call. auto lltargetfn = bcx.build.GEP(lltarget.val, ~[C_int(0), C_int(abi::fn_field_code)]); // Cast the outgoing function to the appropriate type (see the comments in // trans_bind below for why this is necessary). auto lltargetty = type_of_fn(bcx.fcx.lcx.ccx, sp, ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, outgoing_fty), outgoing_args, outgoing_ret_ty, ty_param_count); lltargetfn = bcx.build.PointerCast(lltargetfn, T_ptr(T_ptr(lltargetty))); lltargetfn = bcx.build.Load(lltargetfn); bcx.build.FastCall(lltargetfn, llargs); bcx.build.RetVoid(); finish_fn(fcx, lltop); ret llthunk; } fn trans_bind(&@block_ctxt cx, &@ast::expr f, &(option::t[@ast::expr])[] args, ast::node_id id) -> result { auto f_res = trans_lval_gen(cx, f); ret trans_bind_1(cx, f, f_res, args, id); } fn trans_bind_1(&@block_ctxt cx, &@ast::expr f, &lval_result f_res, &(option::t[@ast::expr])[] args, ast::node_id id) -> result { if (f_res.is_mem) { cx.fcx.lcx.ccx.sess.unimpl("re-binding existing function"); } else { let (@ast::expr)[] bound = ~[]; for (option::t[@ast::expr] argopt in args) { alt (argopt) { case (none) { } case (some(?e)) { bound += ~[e]; } } } // Figure out which tydescs we need to pass, if any. let ty::t outgoing_fty; let ValueRef[] lltydescs; alt (f_res.generic) { case (none) { outgoing_fty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, f); lltydescs = ~[]; } case (some(?ginfo)) { lazily_emit_all_generic_info_tydesc_glues(cx, ginfo); outgoing_fty = ginfo.item_type; lltydescs = ginfo.tydescs; } } auto ty_param_count = std::ivec::len[ValueRef](lltydescs); if (std::ivec::len[@ast::expr](bound) == 0u && ty_param_count == 0u) { // Trivial 'binding': just return the static pair-ptr. ret f_res.res; } else { auto bcx = f_res.res.bcx; auto pair_t = node_type(cx.fcx.lcx.ccx, cx.sp, id); auto pair_v = alloca(bcx, pair_t); // Translate the bound expressions. let ty::t[] bound_tys = ~[]; let lval_result[] bound_vals = ~[]; for (@ast::expr e in bound) { auto lv = trans_lval(bcx, e); bcx = lv.res.bcx; bound_vals += ~[lv]; bound_tys += ~[ty::expr_ty(cx.fcx.lcx.ccx.tcx, e)]; } // Synthesize a closure type. // First, synthesize a tuple type containing the types of all the // bound expressions. // bindings_ty = ~[bound_ty1, bound_ty2, ...] let ty::t bindings_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, bound_tys); // NB: keep this in sync with T_closure_ptr; we're making // a ty::t structure that has the same "shape" as the LLVM type // it constructs. // Make a vector that contains ty_param_count copies of tydesc_ty. // (We'll need room for that many tydescs in the closure.) let ty::t tydesc_ty = ty::mk_type(cx.fcx.lcx.ccx.tcx); let ty::t[] captured_tys = std::ivec::init_elt[ty::t](tydesc_ty, ty_param_count); // Get all the types we've got (some of which we synthesized // ourselves) into a vector. The whole things ends up looking // like: // closure_tys = [tydesc_ty, outgoing_fty, [bound_ty1, bound_ty2, // ...], [tydesc_ty, tydesc_ty, ...]] let ty::t[] closure_tys = ~[tydesc_ty, outgoing_fty, bindings_ty, ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, captured_tys)]; // Finally, synthesize a type for that whole vector. let ty::t closure_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, closure_tys); // Allocate a box that can hold something closure-sized, including // space for a refcount. auto r = trans_malloc_boxed(bcx, closure_ty); auto box = r.val; bcx = r.bcx; // Grab onto the refcount and body parts of the box we allocated. auto rc = bcx.build.GEP(box, ~[C_int(0), C_int(abi::box_rc_field_refcnt)]); auto closure = bcx.build.GEP(box, ~[C_int(0), C_int(abi::box_rc_field_body)]); bcx.build.Store(C_int(1), rc); // Store bindings tydesc. auto bound_tydesc = bcx.build.GEP(closure, ~[C_int(0), C_int(abi::closure_elt_tydesc)]); auto ti = none[@tydesc_info]; auto bindings_tydesc = get_tydesc(bcx, bindings_ty, true, ti); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti); bcx = bindings_tydesc.bcx; bcx.build.Store(bindings_tydesc.val, bound_tydesc); // Determine the LLVM type for the outgoing function type. This // may be different from the type returned by trans_malloc_boxed() // since we have more information than that function does; // specifically, we know how many type descriptors the outgoing // function has, which type_of() doesn't, as only we know which // item the function refers to. auto llfnty = type_of_fn(bcx.fcx.lcx.ccx, cx.sp, ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, outgoing_fty), ty::ty_fn_args(bcx.fcx.lcx.ccx.tcx, outgoing_fty), ty::ty_fn_ret(bcx.fcx.lcx.ccx.tcx, outgoing_fty), ty_param_count); auto llclosurety = T_ptr(T_fn_pair(*bcx.fcx.lcx.ccx, llfnty)); // Store thunk-target. auto bound_target = bcx.build.GEP(closure, ~[C_int(0), C_int(abi::closure_elt_target)]); auto src = bcx.build.Load(f_res.res.val); bound_target = bcx.build.PointerCast(bound_target, llclosurety); bcx.build.Store(src, bound_target); // Copy expr values into boxed bindings. auto i = 0u; auto bindings = bcx.build.GEP(closure, ~[C_int(0), C_int(abi::closure_elt_bindings)]); for (lval_result lv in bound_vals) { auto bound = bcx.build.GEP(bindings, ~[C_int(0), C_int(i as int)]); bcx = move_val_if_temp(bcx, INIT, bound, lv, bound_tys.(i)).bcx; i += 1u; } // If necessary, copy tydescs describing type parameters into the // appropriate slot in the closure. alt (f_res.generic) { case (none) {/* nothing to do */ } case (some(?ginfo)) { lazily_emit_all_generic_info_tydesc_glues(cx, ginfo); auto ty_params_slot = bcx.build.GEP(closure, ~[C_int(0), C_int(abi::closure_elt_ty_params)]); auto i = 0; for (ValueRef td in ginfo.tydescs) { auto ty_param_slot = bcx.build.GEP(ty_params_slot, ~[C_int(0), C_int(i)]); bcx.build.Store(td, ty_param_slot); i += 1; } outgoing_fty = ginfo.item_type; } } // Make thunk and store thunk-ptr in outer pair's code slot. auto pair_code = bcx.build.GEP(pair_v, ~[C_int(0), C_int(abi::fn_field_code)]); // The type of the entire bind expression. let ty::t pair_ty = node_id_type(cx.fcx.lcx.ccx, id); let ValueRef llthunk = trans_bind_thunk(cx.fcx.lcx, cx.sp, pair_ty, outgoing_fty, args, closure_ty, bound_tys, ty_param_count); bcx.build.Store(llthunk, pair_code); // Store box ptr in outer pair's box slot. auto ccx = *bcx.fcx.lcx.ccx; auto pair_box = bcx.build.GEP(pair_v, ~[C_int(0), C_int(abi::fn_field_box)]); bcx.build.Store(bcx.build.PointerCast(box, T_opaque_closure_ptr(ccx)), pair_box); add_clean_temp(cx, pair_v, pair_ty); ret rslt(bcx, pair_v); } } } fn trans_arg_expr(&@block_ctxt cx, &ty::arg arg, TypeRef lldestty0, &@ast::expr e) -> result { auto ccx = cx.fcx.lcx.ccx; auto e_ty = ty::expr_ty(ccx.tcx, e); auto is_bot = ty::type_is_bot(ccx.tcx, e_ty); auto lv = trans_lval(cx, e); auto bcx = lv.res.bcx; auto val = lv.res.val; if (is_bot) { // For values of type _|_, we generate an // "undef" value, as such a value should never // be inspected. It's important for the value // to have type lldestty0 (the callee's expected type). val = llvm::LLVMGetUndef(lldestty0); } else if (arg.mode == ty::mo_val) { if (ty::type_owns_heap_mem(ccx.tcx, e_ty)) { auto dst = alloc_ty(bcx, e_ty); val = dst.val; bcx = move_val_if_temp(dst.bcx, INIT, val, lv, e_ty).bcx; } else if (lv.is_mem) { val = load_if_immediate(bcx, val, e_ty); bcx = copy_ty(bcx, val, e_ty).bcx; } else { // Eliding take/drop for appending of external vectors currently // corrupts memory. I can't figure out why, and external vectors // are on the way out anyway, so this simply turns off the // optimization for that case. auto is_ext_vec_plus = alt (e.node) { case (ast::expr_binary(_, _, _)) { ty::type_is_sequence(ccx.tcx, e_ty) && !ty::sequence_is_interior(ccx.tcx, e_ty) } case (_) { false } }; if (is_ext_vec_plus) { bcx = copy_ty(bcx, val, e_ty).bcx; } else { revoke_clean(bcx, val); } } } else if (type_is_immediate(ccx, e_ty) && !lv.is_mem) { val = do_spill(bcx, val); } if (!is_bot && ty::type_contains_params(ccx.tcx, arg.ty)) { auto lldestty = lldestty0; if (arg.mode == ty::mo_val && ty::type_is_structural(ccx.tcx, e_ty)) { lldestty = T_ptr(lldestty); } val = bcx.build.PointerCast(val, lldestty); } if (arg.mode == ty::mo_val && ty::type_is_structural(ccx.tcx, e_ty)) { // Until here we've been treating structures by pointer; // we are now passing it as an arg, so need to load it. val = bcx.build.Load(val); } ret rslt(bcx, val); } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn trans_args(&@block_ctxt cx, ValueRef llenv, &option::t[ValueRef] llobj, &option::t[generic_info] gen, &option::t[ValueRef] lliterbody, &(@ast::expr)[] es, &ty::t fn_ty) -> tup(@block_ctxt, ValueRef[], ValueRef) { let ty::arg[] args = ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, fn_ty); let ValueRef[] llargs = ~[]; let ValueRef[] lltydescs = ~[]; let @block_ctxt bcx = cx; // Arg 0: Output pointer. // FIXME: test case looks like // f(1, fail, @42); if (bcx.build.is_terminated()) { // This means an earlier arg was divergent. // So this arg can't be evaluated. ret tup(bcx, ~[], C_nil()); } auto retty = ty::ty_fn_ret(cx.fcx.lcx.ccx.tcx, fn_ty); auto llretslot_res = alloc_ty(bcx, retty); bcx = llretslot_res.bcx; auto llretslot = llretslot_res.val; alt (gen) { case (some(?g)) { lazily_emit_all_generic_info_tydesc_glues(cx, g); lltydescs = g.tydescs; args = ty::ty_fn_args(cx.fcx.lcx.ccx.tcx, g.item_type); retty = ty::ty_fn_ret(cx.fcx.lcx.ccx.tcx, g.item_type); } case (_) { } } if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, retty)) { llargs += ~[bcx.build.PointerCast(llretslot, T_typaram_ptr(cx.fcx.lcx.ccx.tn))]; } else if (ty::type_contains_params(cx.fcx.lcx.ccx.tcx, retty)) { // It's possible that the callee has some generic-ness somewhere in // its return value -- say a method signature within an obj or a fn // type deep in a structure -- which the caller has a concrete view // of. If so, cast the caller's view of the restlot to the callee's // view, for the sake of making a type-compatible call. llargs += ~[cx.build.PointerCast(llretslot, T_ptr(type_of(bcx.fcx.lcx.ccx, bcx.sp, retty)))]; } else { llargs += ~[llretslot]; } // Arg 1: task pointer. llargs += ~[bcx.fcx.lltaskptr]; // Arg 2: Env (closure-bindings / self-obj) alt (llobj) { case (some(?ob)) { // Every object is always found in memory, // and not-yet-loaded (as part of an lval x.y // doted method-call). llargs += ~[bcx.build.Load(ob)]; } case (_) { llargs += ~[llenv]; } } // Args >3: ty_params ... llargs += lltydescs; // ... then possibly an lliterbody argument. alt (lliterbody) { case (none) { } case (some(?lli)) { llargs += ~[lli]; } } // ... then explicit args. // First we figure out the caller's view of the types of the arguments. // This will be needed if this is a generic call, because the callee has // to cast her view of the arguments to the caller's view. auto arg_tys = type_of_explicit_args(cx.fcx.lcx.ccx, cx.sp, args); auto i = 0u; for (@ast::expr e in es) { if (bcx.build.is_terminated()) { // This means an earlier arg was divergent. // So this arg can't be evaluated. break; } auto r = trans_arg_expr(bcx, args.(i), arg_tys.(i), e); bcx = r.bcx; llargs += ~[r.val]; i += 1u; } ret tup(bcx, llargs, llretslot); } fn trans_call(&@block_ctxt cx, &@ast::expr f, &option::t[ValueRef] lliterbody, &(@ast::expr)[] args, ast::node_id id) -> result { // NB: 'f' isn't necessarily a function; it might be an entire self-call // expression because of the hack that allows us to process self-calls // with trans_call. auto f_res = trans_lval_gen(cx, f); let ty::t fn_ty; alt (f_res.method_ty) { case (some(?meth)) { // self-call fn_ty = meth; } case (_) { fn_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, f); } } auto bcx = f_res.res.bcx; auto faddr = f_res.res.val; auto llenv = C_null(T_opaque_closure_ptr(*cx.fcx.lcx.ccx)); alt (f_res.llobj) { case (some(_)) { // It's a vtbl entry. faddr = bcx.build.Load(faddr); } case (none) { // It's a closure. We have to autoderef. if (f_res.is_mem) { faddr = load_if_immediate(bcx, faddr, fn_ty);} auto res = autoderef(bcx, faddr, fn_ty); bcx = res.bcx; fn_ty = res.ty; auto pair = res.val; faddr = bcx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_code)]); faddr = bcx.build.Load(faddr); auto llclosure = bcx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_box)]); llenv = bcx.build.Load(llclosure); } } auto ret_ty = ty::node_id_to_type(cx.fcx.lcx.ccx.tcx, id); auto args_res = trans_args(bcx, llenv, f_res.llobj, f_res.generic, lliterbody, args, fn_ty); bcx = args_res._0; auto llargs = args_res._1; auto llretslot = args_res._2; /* log "calling: " + val_str(cx.fcx.lcx.ccx.tn, faddr); for (ValueRef arg in llargs) { log "arg: " + val_str(cx.fcx.lcx.ccx.tn, arg); } */ /* If the block is terminated, then one or more of the args has type _|_. Since that means it diverges, the code for the call itself is unreachable. */ auto retval = C_nil(); if (!bcx.build.is_terminated()) { bcx.build.FastCall(faddr, llargs); alt (lliterbody) { case (none) { if (!ty::type_is_nil(cx.fcx.lcx.ccx.tcx, ret_ty)) { retval = load_if_immediate(bcx, llretslot, ret_ty); // Retval doesn't correspond to anything really tangible // in the frame, but it's a ref all the same, so we put a // note here to drop it when we're done in this scope. add_clean_temp(cx, retval, ret_ty); } } case (some(_)) { // If there was an lliterbody, it means we were calling an // iter, and we are *not* the party using its 'output' value, // we should ignore llretslot. } } } ret rslt(bcx, retval); } fn trans_tup(&@block_ctxt cx, &ast::elt[] elts, ast::node_id id) -> result { auto bcx = cx; auto t = node_id_type(bcx.fcx.lcx.ccx, id); auto tup_res = alloc_ty(bcx, t); auto tup_val = tup_res.val; bcx = tup_res.bcx; add_clean_temp(cx, tup_val, t); let int i = 0; for (ast::elt e in elts) { auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e.expr); auto src = trans_lval(bcx, e.expr); bcx = src.res.bcx; auto dst_res = GEP_tup_like(bcx, t, tup_val, ~[0, i]); bcx = move_val_if_temp(dst_res.bcx, INIT, dst_res.val, src, e_ty).bcx; i += 1; } ret rslt(bcx, tup_val); } fn trans_vec(&@block_ctxt cx, &(@ast::expr)[] args, ast::node_id id) -> result { auto t = node_id_type(cx.fcx.lcx.ccx, id); auto unit_ty = t; alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_vec(?mt)) { unit_ty = mt.ty; } case (_) { cx.fcx.lcx.ccx.sess.bug("non-vec type in trans_vec"); } } auto bcx = cx; auto unit_sz = size_of(bcx, unit_ty); bcx = unit_sz.bcx; auto data_sz = bcx.build.Mul(C_uint(std::ivec::len[@ast::expr](args)), unit_sz.val); // FIXME: pass tydesc properly. auto vec_val = bcx.build.Call(bcx.fcx.lcx.ccx.upcalls.new_vec, ~[bcx.fcx.lltaskptr, data_sz, C_null(T_ptr(bcx.fcx.lcx.ccx.tydesc_type))]); auto llty = type_of(bcx.fcx.lcx.ccx, bcx.sp, t); vec_val = bcx.build.PointerCast(vec_val, llty); add_clean_temp(bcx, vec_val, t); auto body = bcx.build.GEP(vec_val, ~[C_int(0), C_int(abi::vec_elt_data)]); auto pseudo_tup_ty = ty::mk_imm_tup(cx.fcx.lcx.ccx.tcx, std::ivec::init_elt[ty::t](unit_ty, std::ivec::len(args))); let int i = 0; for (@ast::expr e in args) { auto src = trans_lval(bcx, e); bcx = src.res.bcx; auto dst_res = GEP_tup_like(bcx, pseudo_tup_ty, body, ~[0, i]); bcx = dst_res.bcx; // Cast the destination type to the source type. This is needed to // make tags work, for a subtle combination of reasons: // // (1) "dst_res" above is derived from "body", which is in turn // derived from "vec_val". // (2) "vec_val" has the LLVM type "llty". // (3) "llty" is the result of calling type_of() on a vector type. // (4) For tags, type_of() returns a different type depending on // on whether the tag is behind a box or not. Vector types are // considered boxes. // (5) "src_res" is derived from "unit_ty", which is not behind a box. auto dst_val; if (!ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, unit_ty)) { auto llunit_ty = type_of(cx.fcx.lcx.ccx, bcx.sp, unit_ty); dst_val = bcx.build.PointerCast(dst_res.val, T_ptr(llunit_ty)); } else { dst_val = dst_res.val; } bcx = move_val_if_temp(bcx, INIT, dst_val, src, unit_ty).bcx; i += 1; } auto fill = bcx.build.GEP(vec_val, ~[C_int(0), C_int(abi::vec_elt_fill)]); bcx.build.Store(data_sz, fill); ret rslt(bcx, vec_val); } // TODO: Move me to ivec:: fn trans_ivec(@block_ctxt bcx, &(@ast::expr)[] args, ast::node_id id) -> result { auto typ = node_id_type(bcx.fcx.lcx.ccx, id); auto unit_ty; alt (ty::struct(bcx.fcx.lcx.ccx.tcx, typ)) { case (ty::ty_ivec(?mt)) { unit_ty = mt.ty; } case (_) { bcx.fcx.lcx.ccx.sess.bug("non-ivec type in trans_ivec"); } } auto llunitty = type_of_or_i8(bcx, unit_ty); auto ares = ivec::alloc(bcx, unit_ty); bcx = ares.bcx; auto llvecptr = ares.llptr; auto unit_sz = ares.llunitsz; auto llalen = ares.llalen; add_clean_temp(bcx, llvecptr, typ); auto lllen = bcx.build.Mul(C_uint(std::ivec::len(args)), unit_sz); // Allocate the vector pieces and store length and allocated length. auto llfirsteltptr; if (std::ivec::len(args) > 0u && std::ivec::len(args) <= abi::ivec_default_length) { // Interior case. bcx.build.Store(lllen, bcx.build.InBoundsGEP(llvecptr, ~[C_int(0), C_uint(abi::ivec_elt_len)])); bcx.build.Store(llalen, bcx.build.InBoundsGEP(llvecptr, ~[C_int(0), C_uint(abi::ivec_elt_alen)])); llfirsteltptr = bcx.build.InBoundsGEP(llvecptr, ~[C_int(0), C_uint(abi::ivec_elt_elems), C_int(0)]); } else { // Heap case. auto stub_z = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_zero)]; auto stub_a = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_alen)]; auto stub_p = ~[C_int(0), C_uint(abi::ivec_heap_stub_elt_ptr)]; auto llstubty = T_ivec_heap(llunitty); auto llstubptr = bcx.build.PointerCast(llvecptr, T_ptr(llstubty)); bcx.build.Store(C_int(0), bcx.build.InBoundsGEP(llstubptr, stub_z)); auto llheapty = T_ivec_heap_part(llunitty); if (std::ivec::len(args) == 0u) { // Null heap pointer indicates a zero-length vector. bcx.build.Store(llalen, bcx.build.InBoundsGEP(llstubptr, stub_a)); bcx.build.Store(C_null(T_ptr(llheapty)), bcx.build.InBoundsGEP(llstubptr, stub_p)); llfirsteltptr = C_null(T_ptr(llunitty)); } else { bcx.build.Store(lllen, bcx.build.InBoundsGEP(llstubptr, stub_a)); auto llheapsz = bcx.build.Add(llsize_of(llheapty), lllen); auto rslt = trans_shared_malloc(bcx, T_ptr(llheapty), llheapsz); bcx = rslt.bcx; auto llheapptr = rslt.val; bcx.build.Store(llheapptr, bcx.build.InBoundsGEP(llstubptr, stub_p)); auto heap_l = ~[C_int(0), C_uint(abi::ivec_heap_elt_len)]; bcx.build.Store(lllen, bcx.build.InBoundsGEP(llheapptr, heap_l)); llfirsteltptr = bcx.build.InBoundsGEP(llheapptr, ~[C_int(0), C_uint(abi::ivec_heap_elt_elems), C_int(0)]); } } // Store the individual elements. auto i = 0u; for (@ast::expr e in args) { auto lv = trans_lval(bcx, e); bcx = lv.res.bcx; auto lleltptr; if (ty::type_has_dynamic_size(bcx.fcx.lcx.ccx.tcx, unit_ty)) { lleltptr = bcx.build.InBoundsGEP(llfirsteltptr, ~[bcx.build.Mul(C_uint(i), unit_sz)]); } else { lleltptr = bcx.build.InBoundsGEP(llfirsteltptr, ~[C_uint(i)]); } bcx = move_val_if_temp(bcx, INIT, lleltptr, lv, unit_ty).bcx; i += 1u; } ret rslt(bcx, llvecptr); } fn trans_rec(&@block_ctxt cx, &ast::field[] fields, &option::t[@ast::expr] base, ast::node_id id) -> result { auto bcx = cx; auto t = node_id_type(bcx.fcx.lcx.ccx, id); auto rec_res = alloc_ty(bcx, t); auto rec_val = rec_res.val; bcx = rec_res.bcx; add_clean_temp(cx, rec_val, t); let int i = 0; auto base_val = C_nil(); alt (base) { case (none) { } case (some(?bexp)) { auto base_res = trans_expr(bcx, bexp); bcx = base_res.bcx; base_val = base_res.val; } } let ty::field[] ty_fields = ~[]; alt (ty::struct(cx.fcx.lcx.ccx.tcx, t)) { case (ty::ty_rec(?flds)) { ty_fields = flds; } } for (ty::field tf in ty_fields) { auto e_ty = tf.mt.ty; auto dst_res = GEP_tup_like(bcx, t, rec_val, ~[0, i]); bcx = dst_res.bcx; auto expr_provided = false; for (ast::field f in fields) { if (str::eq(f.node.ident, tf.ident)) { expr_provided = true; auto lv = trans_lval(bcx, f.node.expr); bcx = move_val_if_temp(lv.res.bcx, INIT, dst_res.val, lv, e_ty).bcx; break; } } if (!expr_provided) { auto src_res = GEP_tup_like(bcx, t, base_val, ~[0, i]); src_res = rslt(src_res.bcx, load_if_immediate(bcx, src_res.val, e_ty)); bcx = copy_val(src_res.bcx, INIT, dst_res.val, src_res.val, e_ty).bcx; } i += 1; } ret rslt(bcx, rec_val); } fn trans_expr(&@block_ctxt cx, &@ast::expr e) -> result { ret trans_expr_out(cx, e, return); } fn trans_expr_out(&@block_ctxt cx, &@ast::expr e, out_method output) -> result { // FIXME Fill in cx.sp alt (e.node) { case (ast::expr_lit(?lit)) { ret trans_lit(cx, *lit); } case (ast::expr_unary(?op, ?x)) { if (op != ast::deref) { ret trans_unary(cx, op, x, e.id); } } case (ast::expr_binary(?op, ?x, ?y)) { ret trans_binary(cx, op, x, y); } case (ast::expr_if(?cond, ?thn, ?els)) { ret with_out_method(bind trans_if(cx, cond, thn, els, e.id, _), cx, e.id, output); } case (ast::expr_if_check(?cond, ?thn, ?els)) { ret with_out_method(bind trans_if(cx, cond, thn, els, e.id, _), cx, e.id, output); } case (ast::expr_ternary(_, _, _)) { ret trans_expr_out(cx, ast::ternary_to_if(e), output); } case (ast::expr_for(?decl, ?seq, ?body)) { ret trans_for(cx, decl, seq, body); } case (ast::expr_for_each(?decl, ?seq, ?body)) { ret trans_for_each(cx, decl, seq, body); } case (ast::expr_while(?cond, ?body)) { ret trans_while(cx, cond, body); } case (ast::expr_do_while(?body, ?cond)) { ret trans_do_while(cx, body, cond); } case (ast::expr_alt(?expr, ?arms)) { ret with_out_method(bind trans_alt::trans_alt(cx, expr, arms, e.id, _), cx, e.id, output); } case (ast::expr_fn(?f)) { auto ccx = cx.fcx.lcx.ccx; let TypeRef llfnty = alt (ty::struct(ccx.tcx, node_id_type(ccx, e.id))) { case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) { type_of_fn_full(ccx, e.span, proto, false, inputs, output, 0u) } }; auto sub_cx = extend_path(cx.fcx.lcx, ccx.names.next("anon")); auto s = mangle_internal_name_by_path(ccx, sub_cx.path); auto llfn = decl_internal_fastcall_fn(ccx.llmod, s, llfnty); trans_fn(sub_cx, e.span, f, llfn, none, ~[], e.id); ret rslt(cx, create_fn_pair(ccx, s, llfnty, llfn, false)); } case (ast::expr_block(?blk)) { auto sub_cx = new_scope_block_ctxt(cx, "block-expr body"); auto next_cx = new_sub_block_ctxt(cx, "next"); auto sub = with_out_method(bind trans_block(sub_cx, blk, _), cx, e.id, output); cx.build.Br(sub_cx.llbb); sub.bcx.build.Br(next_cx.llbb); ret rslt(next_cx, sub.val); } case (ast::expr_move(?dst, ?src)) { auto lhs_res = trans_lval(cx, dst); assert (lhs_res.is_mem); // FIXME Fill in lhs_res.res.bcx.sp auto rhs_res = trans_lval(lhs_res.res.bcx, src); auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src); // FIXME: calculate copy init-ness in typestate. auto move_res = move_val(rhs_res.res.bcx, DROP_EXISTING, lhs_res.res.val, rhs_res, t); ret rslt(move_res.bcx, C_nil()); } case (ast::expr_assign(?dst, ?src)) { auto lhs_res = trans_lval(cx, dst); assert (lhs_res.is_mem); // FIXME Fill in lhs_res.res.bcx.sp auto rhs = trans_lval(lhs_res.res.bcx, src); auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src); // FIXME: calculate copy init-ness in typestate. auto copy_res = move_val_if_temp (rhs.res.bcx, DROP_EXISTING, lhs_res.res.val, rhs, t); ret rslt(copy_res.bcx, C_nil()); } case (ast::expr_swap(?dst, ?src)) { auto lhs_res = trans_lval(cx, dst); assert (lhs_res.is_mem); // FIXME Fill in lhs_res.res.bcx.sp auto rhs_res = trans_lval(lhs_res.res.bcx, src); auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src); auto tmp_res = alloc_ty(rhs_res.res.bcx, t); // Swap through a temporary. auto move1_res = memmove_ty(tmp_res.bcx, tmp_res.val, lhs_res.res.val, t); auto move2_res = memmove_ty(move1_res.bcx, lhs_res.res.val, rhs_res.res.val, t); auto move3_res = memmove_ty(move2_res.bcx, rhs_res.res.val, tmp_res.val, t); ret rslt(move3_res.bcx, C_nil()); } case (ast::expr_assign_op(?op, ?dst, ?src)) { auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, src); auto lhs_res = trans_lval(cx, dst); assert (lhs_res.is_mem); // FIXME Fill in lhs_res.res.bcx.sp auto rhs_res = trans_expr(lhs_res.res.bcx, src); if (ty::type_is_sequence(cx.fcx.lcx.ccx.tcx, t)) { alt (op) { case (ast::add) { if (ty::sequence_is_interior(cx.fcx.lcx.ccx.tcx, t)) { ret ivec::trans_append(rhs_res.bcx, t, lhs_res.res.val, rhs_res.val); } ret trans_vec_append(rhs_res.bcx, t, lhs_res.res.val, rhs_res.val); } case (_) { } } } auto lhs_val = load_if_immediate(rhs_res.bcx, lhs_res.res.val, t); auto v = trans_eager_binop(rhs_res.bcx, op, t, lhs_val, rhs_res.val); // FIXME: calculate copy init-ness in typestate. // This is always a temporary, so can always be safely moved auto move_res = move_val(v.bcx, DROP_EXISTING, lhs_res.res.val, lval_val(v.bcx, v.val), t); ret rslt(move_res.bcx, C_nil()); } case (ast::expr_bind(?f, ?args)) { ret trans_bind(cx, f, args, e.id); } case (ast::expr_call(?f, ?args)) { ret trans_call(cx, f, none[ValueRef], args, e.id); } case (ast::expr_cast(?val, _)) { ret trans_cast(cx, val, e.id); } case (ast::expr_vec(?args, _, ast::sk_rc)) { ret trans_vec(cx, args, e.id); } case (ast::expr_vec(?args, _, ast::sk_unique)) { ret trans_ivec(cx, args, e.id); } case (ast::expr_tup(?args)) { ret trans_tup(cx, args, e.id); } case (ast::expr_rec(?args, ?base)) { ret trans_rec(cx, args, base, e.id); } case (ast::expr_mac(_)) { ret cx.fcx.lcx.ccx.sess.bug("unexpanded macro"); } case (ast::expr_fail(?expr)) { ret trans_fail_expr(cx, some(e.span), expr); } case (ast::expr_log(?lvl, ?a)) { ret trans_log(lvl, cx, a); } case (ast::expr_assert(?a)) { ret trans_check_expr(cx, a, "Assertion"); } case (ast::expr_check(ast::checked, ?a)) { ret trans_check_expr(cx, a, "Predicate"); } case (ast::expr_check(ast::unchecked, ?a)) { /* Claims are turned on and off by a global variable that the RTS sets. This case generates code to check the value of that variable, doing nothing if it's set to false and acting like a check otherwise. */ auto c = get_extern_const(cx.fcx.lcx.ccx.externs, cx.fcx.lcx.ccx.llmod, "check_claims", T_bool()); auto cond = cx.build.Load(c); auto then_cx = new_scope_block_ctxt(cx, "claim_then"); auto check_res = trans_check_expr(then_cx, a, "Claim"); auto else_cx = new_scope_block_ctxt(cx, "else"); auto els = rslt(else_cx, C_nil()); cx.build.CondBr(cond, then_cx.llbb, else_cx.llbb); ret rslt(join_branches(cx, ~[check_res, els]), C_nil()); } case (ast::expr_break) { ret trans_break(e.span, cx); } case (ast::expr_cont) { ret trans_cont(e.span, cx); } case (ast::expr_ret(?ex)) { ret trans_ret(cx, ex); } case (ast::expr_put(?ex)) { ret trans_put(cx, ex); } case (ast::expr_be(?ex)) { ret trans_be(cx, ex); } case (ast::expr_port(_)) { ret trans_port(cx, e.id); } case (ast::expr_chan(?ex)) { ret trans_chan(cx, ex, e.id); } case (ast::expr_send(?lhs, ?rhs)) { ret trans_send(cx, lhs, rhs, e.id); } case (ast::expr_recv(?lhs, ?rhs)) { ret trans_recv(cx, lhs, rhs, e.id); } case (ast::expr_spawn(?dom, ?name, ?func, ?args)) { ret trans_spawn(cx, dom, name, func, args, e.id); } case (ast::expr_anon_obj(?anon_obj, ?tps)) { ret trans_anon_obj(cx, e.span, anon_obj, tps, e.id); } case (_) { // The expression is an lvalue. Fall through. assert (ty::is_lval(e)); // make sure it really is and that we // didn't forget to add a case for a new expr! } } // lval cases fall through to trans_lval and then // possibly load the result (if it's non-structural). auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e); auto sub = trans_lval(cx, e); auto v = sub.res.val; if (sub.is_mem) { v = load_if_immediate(sub.res.bcx, v, t); } ret rslt(sub.res.bcx, v); } fn with_out_method(fn(&out_method) -> result work, @block_ctxt cx, ast::node_id id, &out_method outer_output) -> result { auto ccx = cx.fcx.lcx.ccx; if (outer_output != return) { ret work(outer_output); } else { auto tp = node_id_type(ccx, id); if (ty::type_is_nil(ccx.tcx, tp)) { ret work(return); } auto res_alloca = alloc_ty(cx, tp); cx = zero_alloca(res_alloca.bcx, res_alloca.val, tp).bcx; fn drop_hoisted_ty(&@block_ctxt cx, ValueRef target, ty::t t) -> result { auto reg_val = load_if_immediate(cx, target, t); ret drop_ty(cx, reg_val, t); } auto done = work(save_in(res_alloca.val)); auto loaded = load_if_immediate(done.bcx, res_alloca.val, tp); add_clean_temp(cx, loaded, tp); ret rslt(done.bcx, loaded);; } } // We pass structural values around the compiler "by pointer" and // non-structural values (scalars, boxes, pointers) "by value". We call the // latter group "immediates" and, in some circumstances when we know we have a // pointer (or need one), perform load/store operations based on the // immediate-ness of the type. fn type_is_immediate(&@crate_ctxt ccx, &ty::t t) -> bool { ret ty::type_is_scalar(ccx.tcx, t) || ty::type_is_boxed(ccx.tcx, t) || ty::type_is_native(ccx.tcx, t); } fn do_spill(&@block_ctxt cx, ValueRef v) -> ValueRef { // We have a value but we have to spill it to pass by alias. auto llptr = alloca(cx, val_ty(v)); cx.build.Store(v, llptr); ret llptr; } fn spill_if_immediate(&@block_ctxt cx, ValueRef v, &ty::t t) -> ValueRef { if (type_is_immediate(cx.fcx.lcx.ccx, t)) { ret do_spill(cx, v); } ret v; } fn load_if_immediate(&@block_ctxt cx, ValueRef v, &ty::t t) -> ValueRef { if (type_is_immediate(cx.fcx.lcx.ccx, t)) { ret cx.build.Load(v); } ret v; } fn trans_log(int lvl, &@block_ctxt cx, &@ast::expr e) -> result { auto lcx = cx.fcx.lcx; auto modname = str::connect_ivec(lcx.module_path, "::"); auto global; if (lcx.ccx.module_data.contains_key(modname)) { global = lcx.ccx.module_data.get(modname); } else { auto s = link::mangle_internal_name_by_path_and_seq(lcx.ccx, lcx.module_path, "loglevel"); global = llvm::LLVMAddGlobal(lcx.ccx.llmod, T_int(), str::buf(s)); llvm::LLVMSetGlobalConstant(global, False); llvm::LLVMSetInitializer(global, C_null(T_int())); llvm::LLVMSetLinkage(global, lib::llvm::LLVMInternalLinkage as llvm::Linkage); lcx.ccx.module_data.insert(modname, global); } auto log_cx = new_scope_block_ctxt(cx, "log"); auto after_cx = new_sub_block_ctxt(cx, "after"); auto load = cx.build.Load(global); auto test = cx.build.ICmp(lib::llvm::LLVMIntSGE, load, C_int(lvl)); cx.build.CondBr(test, log_cx.llbb, after_cx.llbb); auto sub = trans_expr(log_cx, e); auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, e); auto log_bcx = sub.bcx; if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, e_ty)) { let TypeRef tr; let bool is32bit = false; alt (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty)) { case (ty::ty_machine(ast::ty_f32)) { tr = T_f32(); is32bit = true; } case (ty::ty_machine(ast::ty_f64)) { tr = T_f64(); } case (_) { tr = T_float(); } } if (is32bit) { log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_float, ~[log_bcx.fcx.lltaskptr, C_int(lvl), sub.val]); } else { // FIXME: Eliminate this level of indirection. auto tmp = alloca(log_bcx, tr); sub.bcx.build.Store(sub.val, tmp); log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_double, ~[log_bcx.fcx.lltaskptr, C_int(lvl), tmp]); } } else if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, e_ty) || ty::type_is_bool(cx.fcx.lcx.ccx.tcx, e_ty)) { // FIXME: Handle signedness properly. auto llintval = int_cast(log_bcx, T_int(), val_ty(sub.val), sub.val, false); log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_int, ~[log_bcx.fcx.lltaskptr, C_int(lvl), llintval]); } else { alt (ty::struct(cx.fcx.lcx.ccx.tcx, e_ty)) { case (ty::ty_str) { log_bcx.build.Call(log_bcx.fcx.lcx.ccx.upcalls.log_str, ~[log_bcx.fcx.lltaskptr, C_int(lvl), sub.val]); } case (_) { // FIXME: Support these types. cx.fcx.lcx.ccx.sess.span_fatal(e.span, "log called on unsupported type " + ty_to_str(cx.fcx.lcx.ccx.tcx, e_ty)); } } } log_bcx = trans_block_cleanups(log_bcx, log_cx); log_bcx.build.Br(after_cx.llbb); ret rslt(after_cx, C_nil()); } fn trans_check_expr(&@block_ctxt cx, &@ast::expr e, &str s) -> result { auto cond_res = trans_expr(cx, e); auto expr_str = s + " " + expr_to_str(e) + " failed"; auto fail_cx = new_sub_block_ctxt(cx, "fail"); trans_fail(fail_cx, some[span](e.span), expr_str); auto next_cx = new_sub_block_ctxt(cx, "next"); cond_res.bcx.build.CondBr(cond_res.val, next_cx.llbb, fail_cx.llbb); ret rslt(next_cx, C_nil()); } fn trans_fail_expr(&@block_ctxt cx, &option::t[span] sp_opt, &option::t[@ast::expr] fail_expr) -> result { auto bcx = cx; alt (fail_expr) { case (some(?expr)) { auto tcx = bcx.fcx.lcx.ccx.tcx; auto expr_res = trans_expr(bcx, expr); auto e_ty = ty::expr_ty(tcx, expr); bcx = expr_res.bcx; if (ty::type_is_str(tcx, e_ty)) { auto elt = bcx.build.GEP(expr_res.val, ~[C_int(0), C_int(abi::vec_elt_data)]); ret trans_fail_value(bcx, sp_opt, elt); } else { cx.fcx.lcx.ccx.sess.span_bug(expr.span, "fail called with unsupported \ type " + ty_to_str(tcx, e_ty)); } } case (_) { ret trans_fail(bcx, sp_opt, "explicit failure"); } } } fn trans_fail(&@block_ctxt cx, &option::t[span] sp_opt, &str fail_str) -> result { auto V_fail_str = C_cstr(cx.fcx.lcx.ccx, fail_str); ret trans_fail_value(cx, sp_opt, V_fail_str); } fn trans_fail_value(&@block_ctxt cx, &option::t[span] sp_opt, &ValueRef V_fail_str) -> result { auto V_filename; auto V_line; alt (sp_opt) { case (some(?sp)) { auto loc = cx.fcx.lcx.ccx.sess.lookup_pos(sp.lo); V_filename = C_cstr(cx.fcx.lcx.ccx, loc.filename); V_line = loc.line as int; } case (none) { V_filename = C_cstr(cx.fcx.lcx.ccx, ""); V_line = 0; } } auto V_str = cx.build.PointerCast(V_fail_str, T_ptr(T_i8())); V_filename = cx.build.PointerCast(V_filename, T_ptr(T_i8())); auto args = ~[cx.fcx.lltaskptr, V_str, V_filename, C_int(V_line)]; cx.build.Call(cx.fcx.lcx.ccx.upcalls._fail, args); cx.build.Unreachable(); ret rslt(cx, C_nil()); } fn trans_put(&@block_ctxt cx, &option::t[@ast::expr] e) -> result { auto llcallee = C_nil(); auto llenv = C_nil(); alt ({ cx.fcx.lliterbody }) { case (some(?lli)) { auto slot = alloca(cx, val_ty(lli)); cx.build.Store(lli, slot); llcallee = cx.build.GEP(slot, ~[C_int(0), C_int(abi::fn_field_code)]); llcallee = cx.build.Load(llcallee); llenv = cx.build.GEP(slot, ~[C_int(0), C_int(abi::fn_field_box)]); llenv = cx.build.Load(llenv); } } auto bcx = cx; auto dummy_retslot = alloca(bcx, T_nil()); let ValueRef[] llargs = ~[dummy_retslot, cx.fcx.lltaskptr, llenv]; alt (e) { case (none) { } case (some(?x)) { auto e_ty = ty::expr_ty(cx.fcx.lcx.ccx.tcx, x); auto arg = rec(mode=ty::mo_alias(false), ty=e_ty); auto arg_tys = type_of_explicit_args(cx.fcx.lcx.ccx, x.span, ~[arg]); auto r = trans_arg_expr(bcx, arg, arg_tys.(0), x); bcx = r.bcx; llargs += ~[r.val]; } } ret rslt(bcx, bcx.build.FastCall(llcallee, llargs)); } fn trans_break_cont(&span sp, &@block_ctxt cx, bool to_end) -> result { auto bcx = cx; // Locate closest loop block, outputting cleanup as we go. auto cleanup_cx = cx; while (true) { bcx = trans_block_cleanups(bcx, cleanup_cx); alt ({ cleanup_cx.kind }) { case (LOOP_SCOPE_BLOCK(?_cont, ?_break)) { if (to_end) { bcx.build.Br(_break.llbb); } else { alt (_cont) { case (option::some(?_cont)) { bcx.build.Br(_cont.llbb); } case (_) { bcx.build.Br(cleanup_cx.llbb); } } } ret rslt(new_sub_block_ctxt(bcx, "break_cont.unreachable"), C_nil()); } case (_) { alt ({ cleanup_cx.parent }) { case (parent_some(?cx)) { cleanup_cx = cx; } case (parent_none) { cx.fcx.lcx.ccx.sess.span_fatal(sp, if (to_end) { "Break" } else { "Cont" } + " outside a loop"); } } } } } // If we get here without returning, it's a bug cx.fcx.lcx.ccx.sess.bug("in trans::trans_break_cont()"); } fn trans_break(&span sp, &@block_ctxt cx) -> result { ret trans_break_cont(sp, cx, true); } fn trans_cont(&span sp, &@block_ctxt cx) -> result { ret trans_break_cont(sp, cx, false); } fn trans_ret(&@block_ctxt cx, &option::t[@ast::expr] e) -> result { auto bcx = cx; alt (e) { case (some(?x)) { auto t = ty::expr_ty(cx.fcx.lcx.ccx.tcx, x); auto lv = trans_lval(cx, x); bcx = lv.res.bcx; bcx = move_val_if_temp(bcx, INIT, cx.fcx.llretptr, lv, t).bcx; } case (_) { auto t = llvm::LLVMGetElementType(val_ty(cx.fcx.llretptr)); bcx.build.Store(C_null(t), cx.fcx.llretptr); } } // run all cleanups and back out. let bool more_cleanups = true; auto cleanup_cx = cx; while (more_cleanups) { bcx = trans_block_cleanups(bcx, cleanup_cx); alt ({ cleanup_cx.parent }) { case (parent_some(?b)) { cleanup_cx = b; } case (parent_none) { more_cleanups = false; } } } bcx.build.RetVoid(); ret rslt(new_sub_block_ctxt(bcx, "ret.unreachable"), C_nil()); } fn trans_be(&@block_ctxt cx, &@ast::expr e) -> result { // FIXME: This should be a typestate precondition assert (ast::is_call_expr(e)); // FIXME: Turn this into a real tail call once // calling convention issues are settled ret trans_ret(cx, some(e)); } /* Suppose we create an anonymous object my_b from a regular object a: obj a() { fn foo() -> int { ret 2; } fn bar() -> int { ret self.foo(); } } auto my_a = a(); auto my_b = obj { fn baz() -> int { ret self.foo() } with my_a }; Here we're extending the my_a object with an additional method baz, creating an object my_b. Since it's an object, my_b is a pair of a vtable pointer and a body pointer: my_b: [vtbl* | body*] my_b's vtable has entries for foo, bar, and baz, whereas my_a's vtable has only foo and bar. my_b's 3-entry vtable consists of two forwarding functions and one real method. my_b's body just contains the pair a: [ a_vtable | a_body ], wrapped up with any additional fields that my_b added. None were added, so my_b is just the wrapped inner object. */ // trans_anon_obj: create and return a pointer to an object. This code // differs from trans_obj in that, rather than creating an object constructor // function and putting it in the generated code as an object item, we are // instead "inlining" the construction of the object and returning the object // itself. fn trans_anon_obj(@block_ctxt bcx, &span sp, &ast::anon_obj anon_obj, &ast::ty_param[] ty_params, ast::node_id id) -> result { // Right now, we're assuming that anon objs don't take ty params, even // though the AST supports it. It's nonsensical to write an expression // like "obj[T](){ ... with ... }", since T is never instantiated; // nevertheless, such an expression will parse. Idea for the future: // support typarams. assert (std::ivec::len(ty_params) == 0u); auto ccx = bcx.fcx.lcx.ccx; // Fields. // FIXME (part of issue #538): Where do we fill in the field *values* from // the outer object? let ast::anon_obj_field[] additional_fields = ~[]; let result[] additional_field_vals = ~[]; let ty::t[] additional_field_tys = ~[]; alt (anon_obj.fields) { case (none) { } case (some(?fields)) { additional_fields = fields; for (ast::anon_obj_field f in fields) { additional_field_tys += ~[node_id_type(ccx, f.id)]; additional_field_vals += ~[trans_expr(bcx, f.expr)]; } } } // Get the type of the eventual entire anonymous object, possibly with // extensions. NB: This type includes both inner and outer methods. auto outer_obj_ty = ty::node_id_to_type(ccx.tcx, id); // Create a vtable for the anonymous object. // create_vtbl() wants an ast::_obj and all we have is an ast::anon_obj, // so we need to roll our own. fn anon_obj_field_to_obj_field(&ast::anon_obj_field f) -> ast::obj_field { ret rec(mut=f.mut, ty=f.ty, ident=f.ident, id=f.id); } let ast::_obj wrapper_obj = rec( fields = std::ivec::map(anon_obj_field_to_obj_field, additional_fields), methods = anon_obj.methods, dtor = none[@ast::method]); let ty::t with_obj_ty; auto vtbl; alt (anon_obj.with_obj) { case (none) { // If there's no with_obj -- that is, if we're just adding new // fields rather than extending an existing object -- then we just // pass the outer object to create_vtbl(). Our vtable won't need // to have any forwarding slots. // We need a dummy with_obj_ty for setting up the object body // later. with_obj_ty = ty::mk_type(ccx.tcx); // This seems a little strange, because it'll come into // create_vtbl() with no "additional methods". What's happening // is that, since *all* of the methods are "additional", we can // get away with acting like none of them are. vtbl = create_vtbl(bcx.fcx.lcx, sp, outer_obj_ty, wrapper_obj, ty_params, none, additional_field_tys); } case (some(?e)) { // TODO: What makes more sense to get the type of an expr -- // calling ty::expr_ty(ccx.tcx, e) on it or calling // ty::node_id_to_type(ccx.tcx, id) on its id? with_obj_ty = ty::expr_ty(ccx.tcx, e); //with_obj_ty = ty::node_id_to_type(ccx.tcx, e.id); // If there's a with_obj, we pass its type along to create_vtbl(). // Part of what create_vtbl() will do is take the set difference // of methods defined on the original and methods being added. // For every method defined on the original that does *not* have // one with a matching name and type being added, we'll need to // create a forwarding slot. And, of course, we need to create a // normal vtable entry for every method being added. vtbl = create_vtbl(bcx.fcx.lcx, sp, outer_obj_ty, wrapper_obj, ty_params, some(with_obj_ty), additional_field_tys); } } // Allocate the object that we're going to return. auto pair = alloca(bcx, ccx.rust_object_type); // Take care of cleanups. auto t = node_id_type(ccx, id); add_clean_temp(bcx, pair, t); // Grab onto the first and second elements of the pair. // abi::obj_field_vtbl and abi::obj_field_box simply specify words 0 and 1 // of 'pair'. auto pair_vtbl = bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_vtbl)]); auto pair_box = bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_box)]); vtbl = bcx.build.PointerCast(vtbl, T_ptr(T_empty_struct())); bcx.build.Store(vtbl, pair_vtbl); // Next we have to take care of the other half of the pair we're // returning: a boxed (reference-counted) tuple containing a tydesc, // typarams, fields, and a pointer to our with_obj. let TypeRef llbox_ty = T_ptr(T_empty_struct()); if (std::ivec::len[ast::ty_param](ty_params) == 0u && std::ivec::len[ast::anon_obj_field](additional_fields) == 0u && anon_obj.with_obj == none) { // If the object we're translating has no fields or type parameters // and no with_obj, there's not much to do. bcx.build.Store(C_null(llbox_ty), pair_box); } else { // Synthesize a tuple type for fields: [field, ...] let ty::t fields_ty = ty::mk_imm_tup(ccx.tcx, additional_field_tys); // Tydescs are run-time instantiations of typarams. We're not // actually supporting typarams for anon objs yet, but let's // create space for them in case we ever want them. let ty::t tydesc_ty = ty::mk_type(ccx.tcx); let ty::t[] tps = ~[]; for (ast::ty_param tp in ty_params) { tps += ~[tydesc_ty]; } // Synthesize a tuple type for typarams: [typaram, ...] let ty::t typarams_ty = ty::mk_imm_tup(ccx.tcx, tps); // Tuple type for body: // [tydesc_ty, [typaram, ...], [field, ...], with_obj] let ty::t body_ty = ty::mk_imm_tup(ccx.tcx, ~[tydesc_ty, typarams_ty, fields_ty, with_obj_ty]); // Hand this type we've synthesized off to trans_malloc_boxed, which // allocates a box, including space for a refcount. auto box = trans_malloc_boxed(bcx, body_ty); bcx = box.bcx; // mk_imm_box throws a refcount into the type we're synthesizing, // so that it looks like: // [rc, [tydesc_ty, [typaram, ...], [field, ...], with_obj]] let ty::t boxed_body_ty = ty::mk_imm_box(ccx.tcx, body_ty); // Grab onto the refcount and body parts of the box we allocated. auto rc = GEP_tup_like(bcx, boxed_body_ty, box.val, ~[0, abi::box_rc_field_refcnt]); bcx = rc.bcx; auto body = GEP_tup_like(bcx, boxed_body_ty, box.val, ~[0, abi::box_rc_field_body]); bcx = body.bcx; bcx.build.Store(C_int(1), rc.val); // Put together a tydesc for the body, so that the object can later be // freed by calling through its tydesc. // Every object (not just those with type parameters) needs to have a // tydesc to describe its body, since all objects have unknown type to // the user of the object. So the tydesc is needed to keep track of // the types of the object's fields, so that the fields can be freed // later. auto body_tydesc = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_tydesc]); bcx = body_tydesc.bcx; auto ti = none[@tydesc_info]; auto body_td = get_tydesc(bcx, body_ty, true, ti); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti); bcx = body_td.bcx; bcx.build.Store(body_td.val, body_tydesc.val); // Copy the object's type parameters and fields into the space we // allocated for the object body. (This is something like saving the // lexical environment of a function in its closure: the "captured // typarams" are any type parameters that are passed to the object // constructor and are then available to the object's methods. // Likewise for the object's fields.) // Copy typarams into captured typarams. auto body_typarams = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_typarams]); bcx = body_typarams.bcx; let int i = 0; for (ast::ty_param tp in ty_params) { auto typaram = bcx.fcx.lltydescs.(i); auto capture = GEP_tup_like(bcx, typarams_ty, body_typarams.val, ~[0, i]); bcx = capture.bcx; bcx = copy_val(bcx, INIT, capture.val, typaram, tydesc_ty).bcx; i += 1; } // Copy additional fields into the object's body. auto body_fields = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_fields]); bcx = body_fields.bcx; i = 0; for (ast::anon_obj_field f in additional_fields) { // FIXME (part of issue #538): make this work eventually, when we // have additional field exprs in the AST. load_if_immediate( bcx, additional_field_vals.(i).val, additional_field_tys.(i)); auto field = GEP_tup_like(bcx, fields_ty, body_fields.val, ~[0, i]); bcx = field.bcx; bcx = copy_val(bcx, INIT, field.val, additional_field_vals.(i).val, additional_field_tys.(i)).bcx; i += 1; } // If there's a with_obj, copy a pointer to it into the object's body. alt (anon_obj.with_obj) { case (none) { } case (some(?e)) { // If with_obj (the object being extended) exists, translate // it. Translating with_obj returns a ValueRef (pointer to a // 2-word value) wrapped in a result. let result with_obj_val = trans_expr(bcx, e); auto body_with_obj = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_with_obj]); bcx = body_with_obj.bcx; bcx = copy_val(bcx, INIT, body_with_obj.val, with_obj_val.val, with_obj_ty).bcx; } } // Store box ptr in outer pair. auto p = bcx.build.PointerCast(box.val, llbox_ty); bcx.build.Store(p, pair_box); } // Cast the final object to how we want its type to appear. pair = bcx.build.PointerCast(pair, T_ptr(ccx.rust_object_type)); // return the object we built. ret rslt(bcx, pair); } fn init_local(&@block_ctxt cx, &@ast::local local) -> result { // Make a note to drop this slot on the way out. assert (cx.fcx.lllocals.contains_key(local.node.id)); auto llptr = cx.fcx.lllocals.get(local.node.id); auto ty = node_id_type(cx.fcx.lcx.ccx, local.node.id); auto bcx = cx; add_clean(cx, llptr, ty); alt (local.node.init) { case (some(?init)) { alt (init.op) { case (ast::init_assign) { // Use the type of the RHS because if it's _|_, the LHS // type might be something else, but we don't want to copy // the value. ty = node_id_type(cx.fcx.lcx.ccx, init.expr.id); auto sub = trans_lval(bcx, init.expr); bcx = move_val_if_temp(sub.res.bcx, INIT, llptr, sub, ty).bcx; } case (ast::init_move) { auto sub = trans_lval(bcx, init.expr); bcx = move_val(sub.res.bcx, INIT, llptr, sub, ty).bcx; } } } case (_) { bcx = zero_alloca(bcx, llptr, ty).bcx; } } ret rslt(bcx, llptr); } fn zero_alloca(&@block_ctxt cx, ValueRef llptr, ty::t t) -> result { auto bcx = cx; if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { auto llsz = size_of(bcx, t); auto llalign = align_of(llsz.bcx, t); bcx = call_bzero(llalign.bcx, llptr, llsz.val, llalign.val).bcx; } else { auto llty = type_of(bcx.fcx.lcx.ccx, cx.sp, t); bcx.build.Store(C_null(llty), llptr); } ret rslt(bcx, llptr); } fn trans_stmt(&@block_ctxt cx, &ast::stmt s) -> result { // FIXME Fill in cx.sp auto bcx = cx; alt (s.node) { case (ast::stmt_expr(?e, _)) { bcx = trans_expr(cx, e).bcx; } case (ast::stmt_decl(?d, _)) { alt (d.node) { case (ast::decl_local(?local)) { bcx = init_local(bcx, local).bcx; } case (ast::decl_item(?i)) { trans_item(cx.fcx.lcx, *i); } } } case (_) { cx.fcx.lcx.ccx.sess.unimpl("stmt variant"); } } ret rslt(bcx, C_nil()); } fn new_builder(BasicBlockRef llbb) -> builder { let BuilderRef llbuild = llvm::LLVMCreateBuilder(); llvm::LLVMPositionBuilderAtEnd(llbuild, llbb); ret builder(llbuild, @mutable false); } // You probably don't want to use this one. See the // next three functions instead. fn new_block_ctxt(&@fn_ctxt cx, &block_parent parent, block_kind kind, &str name) -> @block_ctxt { let cleanup[] cleanups = ~[]; auto s = str::buf(""); if (cx.lcx.ccx.sess.get_opts().save_temps || cx.lcx.ccx.sess.get_opts().debuginfo) { s = str::buf(cx.lcx.ccx.names.next(name)); } let BasicBlockRef llbb = llvm::LLVMAppendBasicBlock(cx.llfn, s); ret @rec(llbb=llbb, build=new_builder(llbb), parent=parent, kind=kind, mutable cleanups=cleanups, sp=cx.sp, fcx=cx); } // Use this when you're at the top block of a function or the like. fn new_top_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt { ret new_block_ctxt(fcx, parent_none, SCOPE_BLOCK, "function top level"); } // Use this when you're at a curly-brace or similar lexical scope. fn new_scope_block_ctxt(&@block_ctxt bcx, &str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), SCOPE_BLOCK, n); } fn new_loop_scope_block_ctxt(&@block_ctxt bcx, &option::t[@block_ctxt] _cont, &@block_ctxt _break, &str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), LOOP_SCOPE_BLOCK(_cont, _break), n); } // Use this when you're making a general CFG BB within a scope. fn new_sub_block_ctxt(&@block_ctxt bcx, &str n) -> @block_ctxt { ret new_block_ctxt(bcx.fcx, parent_some(bcx), NON_SCOPE_BLOCK, n); } fn new_raw_block_ctxt(&@fn_ctxt fcx, BasicBlockRef llbb) -> @block_ctxt { let cleanup[] cleanups = ~[]; ret @rec(llbb=llbb, build=new_builder(llbb), parent=parent_none, kind=NON_SCOPE_BLOCK, mutable cleanups=cleanups, sp=fcx.sp, fcx=fcx); } // trans_block_cleanups: Go through all the cleanups attached to this // block_ctxt and execute them. // // When translating a block that introdces new variables during its scope, we // need to make sure those variables go out of scope when the block ends. We // do that by running a 'cleanup' function for each variable. // trans_block_cleanups runs all the cleanup functions for the block. fn trans_block_cleanups(&@block_ctxt cx, &@block_ctxt cleanup_cx) -> @block_ctxt { auto bcx = cx; if (cleanup_cx.kind == NON_SCOPE_BLOCK) { assert (std::ivec::len[cleanup](cleanup_cx.cleanups) == 0u); } auto i = std::ivec::len[cleanup](cleanup_cx.cleanups); while (i > 0u) { i -= 1u; auto c = cleanup_cx.cleanups.(i); alt (c) { case (clean(?cfn)) { bcx = cfn(bcx).bcx; } case (clean_temp(_, ?cfn)) { bcx = cfn(bcx).bcx; } } } ret bcx; } iter block_locals(&ast::block b) -> @ast::local { // FIXME: putting from inside an iter block doesn't work, so we can't // use the index here. for (@ast::stmt s in b.node.stmts) { alt (s.node) { case (ast::stmt_decl(?d, _)) { alt (d.node) { case (ast::decl_local(?local)) { put local; } case (_) {/* fall through */ } } } case (_) {/* fall through */ } } } } fn llstaticallocas_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt { let cleanup[] cleanups = ~[]; ret @rec(llbb=fcx.llstaticallocas, build=new_builder(fcx.llstaticallocas), parent=parent_none, kind=SCOPE_BLOCK, mutable cleanups=cleanups, sp=fcx.sp, fcx=fcx); } fn llderivedtydescs_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt { let cleanup[] cleanups = ~[]; ret @rec(llbb=fcx.llderivedtydescs, build=new_builder(fcx.llderivedtydescs), parent=parent_none, kind=SCOPE_BLOCK, mutable cleanups=cleanups, sp=fcx.sp, fcx=fcx); } fn lldynamicallocas_block_ctxt(&@fn_ctxt fcx) -> @block_ctxt { let cleanup[] cleanups = ~[]; ret @rec(llbb=fcx.lldynamicallocas, build=new_builder(fcx.lldynamicallocas), parent=parent_none, kind=SCOPE_BLOCK, mutable cleanups=cleanups, sp=fcx.sp, fcx=fcx); } fn alloc_ty(&@block_ctxt cx, &ty::t t) -> result { auto val = C_int(0); if (ty::type_has_dynamic_size(cx.fcx.lcx.ccx.tcx, t)) { // NB: we have to run this particular 'size_of' in a // block_ctxt built on the llderivedtydescs block for the fn, // so that the size dominates the array_alloca that // comes next. auto n = size_of(llderivedtydescs_block_ctxt(cx.fcx), t); cx.fcx.llderivedtydescs = n.bcx.llbb; val = array_alloca(cx, T_i8(), n.val); } else { val = alloca(cx, type_of(cx.fcx.lcx.ccx, cx.sp, t)); } // NB: since we've pushed all size calculations in this // function up to the alloca block, we actually return the // block passed into us unmodified; it doesn't really // have to be passed-and-returned here, but it fits // past caller conventions and may well make sense again, // so we leave it as-is. ret rslt(cx, val); } fn alloc_local(&@block_ctxt cx, &@ast::local local) -> result { auto t = node_id_type(cx.fcx.lcx.ccx, local.node.id); auto r = alloc_ty(cx, t); r.bcx.fcx.lllocals.insert(local.node.id, r.val); ret r; } fn trans_block(&@block_ctxt cx, &ast::block b, &out_method output) -> result { auto bcx = cx; for each (@ast::local local in block_locals(b)) { // FIXME Update bcx.sp bcx = alloc_local(bcx, local).bcx; } auto r = rslt(bcx, C_nil()); for (@ast::stmt s in b.node.stmts) { r = trans_stmt(bcx, *s); bcx = r.bcx; // If we hit a terminator, control won't go any further so // we're in dead-code land. Stop here. if (is_terminated(bcx)) { ret r; } } fn accept_out_method(&@ast::expr expr) -> bool { ret alt (expr.node) { case (ast::expr_if(_, _, _)) { true } case (ast::expr_alt(_, _)) { true } case (ast::expr_block(_)) { true } case (_) { false } }; } alt (b.node.expr) { case (some(?e)) { auto ccx = cx.fcx.lcx.ccx; auto r_ty = ty::expr_ty(ccx.tcx, e); auto pass = output != return && accept_out_method(e); if (pass) { r = trans_expr_out(bcx, e, output); bcx = r.bcx; if (is_terminated(bcx) || ty::type_is_bot(ccx.tcx, r_ty)) { ret r; } } else { auto lv = trans_lval(bcx, e); r = lv.res; bcx = r.bcx; if (is_terminated(bcx) || ty::type_is_bot(ccx.tcx, r_ty)) { ret r; } alt (output) { case (save_in(?target)) { // The output method is to save the value at target, // and we didn't pass it to the recursive trans_expr // call. bcx = move_val_if_temp(bcx, INIT, target, lv, r_ty).bcx; r = rslt(bcx, C_nil()); } case (return) { } } } } case (none) { r = rslt(bcx, C_nil()); } } bcx = trans_block_cleanups(bcx, find_scope_cx(bcx)); ret rslt(bcx, r.val); } fn new_local_ctxt(&@crate_ctxt ccx) -> @local_ctxt { let str[] pth = ~[]; ret @rec(path=pth, module_path=~[ccx.link_meta.name], obj_typarams=~[], obj_fields=~[], ccx=ccx); } // Creates the standard quartet of basic blocks: static allocas, copy args, // derived tydescs, and dynamic allocas. fn mk_standard_basic_blocks(ValueRef llfn) -> tup(BasicBlockRef, BasicBlockRef, BasicBlockRef, BasicBlockRef) { ret tup(llvm::LLVMAppendBasicBlock(llfn, str::buf("static_allocas")), llvm::LLVMAppendBasicBlock(llfn, str::buf("copy_args")), llvm::LLVMAppendBasicBlock(llfn, str::buf("derived_tydescs")), llvm::LLVMAppendBasicBlock(llfn, str::buf("dynamic_allocas"))); } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn new_fn_ctxt(@local_ctxt cx, &span sp, ValueRef llfndecl) -> @fn_ctxt { let ValueRef llretptr = llvm::LLVMGetParam(llfndecl, 0u); let ValueRef lltaskptr = llvm::LLVMGetParam(llfndecl, 1u); let ValueRef llenv = llvm::LLVMGetParam(llfndecl, 2u); let hashmap[ast::node_id, ValueRef] llargs = new_int_hash[ValueRef](); let hashmap[ast::node_id, ValueRef] llobjfields = new_int_hash[ValueRef](); let hashmap[ast::node_id, ValueRef] lllocals = new_int_hash[ValueRef](); let hashmap[ast::node_id, ValueRef] llupvars = new_int_hash[ValueRef](); auto derived_tydescs = map::mk_hashmap[ty::t, derived_tydesc_info](ty::hash_ty, ty::eq_ty); auto llbbs = mk_standard_basic_blocks(llfndecl); ret @rec(llfn=llfndecl, lltaskptr=lltaskptr, llenv=llenv, llretptr=llretptr, mutable llstaticallocas=llbbs._0, mutable llcopyargs=llbbs._1, mutable llderivedtydescs_first=llbbs._2, mutable llderivedtydescs=llbbs._2, mutable lldynamicallocas=llbbs._3, mutable llself=none[val_self_pair], mutable lliterbody=none[ValueRef], llargs=llargs, llobjfields=llobjfields, lllocals=lllocals, llupvars=llupvars, mutable lltydescs=~[], derived_tydescs=derived_tydescs, sp=sp, lcx=cx); } // NB: must keep 4 fns in sync: // // - type_of_fn_full // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args // create_llargs_for_fn_args: Creates a mapping from incoming arguments to // allocas created for them. // // When we translate a function, we need to map its incoming arguments to the // spaces that have been created for them (by code in the llallocas field of // the function's fn_ctxt). create_llargs_for_fn_args populates the llargs // field of the fn_ctxt with fn create_llargs_for_fn_args(&@fn_ctxt cx, ast::proto proto, option::t[ty::t] ty_self, ty::t ret_ty, &ast::arg[] args, &ast::ty_param[] ty_params) { // Skip the implicit arguments 0, 1, and 2. TODO: Pull out 3u and define // it as a constant, since we're using it in several places in trans this // way. auto arg_n = 3u; alt (ty_self) { case (some(?tt)) { cx.llself = some[val_self_pair](rec(v=cx.llenv, t=tt)); } case (none) { auto i = 0u; for (ast::ty_param tp in ty_params) { auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n); assert (llarg as int != 0); cx.lltydescs += ~[llarg]; arg_n += 1u; i += 1u; } } } // If the function is actually an iter, populate the lliterbody field of // the function context with the ValueRef that we get from // llvm::LLVMGetParam for the iter's body. if (proto == ast::proto_iter) { auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n); assert (llarg as int != 0); cx.lliterbody = some[ValueRef](llarg); arg_n += 1u; } // Populate the llargs field of the function context with the ValueRefs // that we get from llvm::LLVMGetParam for each argument. for (ast::arg arg in args) { auto llarg = llvm::LLVMGetParam(cx.llfn, arg_n); assert (llarg as int != 0); cx.llargs.insert(arg.id, llarg); arg_n += 1u; } } // Recommended LLVM style, strange though this is, is to copy from args to // allocas immediately upon entry; this permits us to GEP into structures we // were passed and whatnot. Apparently mem2reg will mop up. fn copy_any_self_to_alloca(@fn_ctxt fcx) { auto bcx = llstaticallocas_block_ctxt(fcx); alt ({ fcx.llself }) { case (some(?pair)) { auto a = alloca(bcx, fcx.lcx.ccx.rust_object_type); bcx.build.Store(pair.v, a); fcx.llself = some[val_self_pair](rec(v=a, t=pair.t)); } case (_) { } } } fn copy_args_to_allocas(@fn_ctxt fcx, &ast::arg[] args, &ty::arg[] arg_tys) { auto bcx = new_raw_block_ctxt(fcx, fcx.llcopyargs); let uint arg_n = 0u; for (ast::arg aarg in args) { if (aarg.mode == ast::val) { auto arg_t = type_of_arg(bcx.fcx.lcx, fcx.sp, arg_tys.(arg_n)); auto a = alloca(bcx, arg_t); auto argval; alt (bcx.fcx.llargs.find(aarg.id)) { case (some(?x)) { argval = x; } case (_) { bcx.fcx.lcx.ccx.sess.span_fatal(aarg.ty.span, "unbound arg ID in copy_args_to_allocas"); } } bcx.build.Store(argval, a); // Overwrite the llargs entry for this arg with its alloca. bcx.fcx.llargs.insert(aarg.id, a); } arg_n += 1u; } } fn add_cleanups_for_args(&@block_ctxt bcx, &ast::arg[] args, &ty::arg[] arg_tys) { let uint arg_n = 0u; for (ast::arg aarg in args) { if (aarg.mode == ast::val) { auto argval; alt (bcx.fcx.llargs.find(aarg.id)) { case (some(?x)) { argval = x; } case (_) { bcx.fcx.lcx.ccx.sess.span_fatal(aarg.ty.span, "unbound arg ID in copy_args_to_allocas"); } } add_clean(bcx, argval, arg_tys.(arg_n).ty); } arg_n += 1u; } } fn is_terminated(&@block_ctxt cx) -> bool { auto inst = llvm::LLVMGetLastInstruction(cx.llbb); ret llvm::LLVMIsATerminatorInst(inst) as int != 0; } fn arg_tys_of_fn(&@crate_ctxt ccx,ast::node_id id) -> ty::arg[] { alt (ty::struct(ccx.tcx, ty::node_id_to_type(ccx.tcx, id))) { case (ty::ty_fn(_, ?arg_tys, _, _, _)) { ret arg_tys; } } } fn populate_fn_ctxt_from_llself(@fn_ctxt fcx, val_self_pair llself) { auto bcx = llstaticallocas_block_ctxt(fcx); let ty::t[] field_tys = ~[]; for (ast::obj_field f in bcx.fcx.lcx.obj_fields) { field_tys += ~[node_id_type(bcx.fcx.lcx.ccx, f.id)]; } // Synthesize a tuple type for the fields so that GEP_tup_like() can work // its magic. auto fields_tup_ty = ty::mk_imm_tup(fcx.lcx.ccx.tcx, field_tys); auto n_typarams = std::ivec::len[ast::ty_param](bcx.fcx.lcx.obj_typarams); let TypeRef llobj_box_ty = T_obj_ptr(*bcx.fcx.lcx.ccx, n_typarams); auto box_cell = bcx.build.GEP(llself.v, ~[C_int(0), C_int(abi::obj_field_box)]); auto box_ptr = bcx.build.Load(box_cell); box_ptr = bcx.build.PointerCast(box_ptr, llobj_box_ty); auto obj_typarams = bcx.build.GEP(box_ptr, ~[C_int(0), C_int(abi::box_rc_field_body), C_int(abi::obj_body_elt_typarams)]); // The object fields immediately follow the type parameters, so we skip // over them to get the pointer. auto et = llvm::LLVMGetElementType(val_ty(obj_typarams)); auto obj_fields = bcx.build.Add(vp2i(bcx, obj_typarams), llsize_of(et)); // If we can (i.e. the type is statically sized), then cast the resulting // fields pointer to the appropriate LLVM type. If not, just leave it as // i8 *. if (!ty::type_has_dynamic_size(fcx.lcx.ccx.tcx, fields_tup_ty)) { auto llfields_ty = type_of(fcx.lcx.ccx, fcx.sp, fields_tup_ty); obj_fields = vi2p(bcx, obj_fields, T_ptr(llfields_ty)); } else { obj_fields = vi2p(bcx, obj_fields, T_ptr(T_i8())); } let int i = 0; for (ast::ty_param p in fcx.lcx.obj_typarams) { let ValueRef lltyparam = bcx.build.GEP(obj_typarams, ~[C_int(0), C_int(i)]); lltyparam = bcx.build.Load(lltyparam); fcx.lltydescs += ~[lltyparam]; i += 1; } i = 0; for (ast::obj_field f in fcx.lcx.obj_fields) { auto rslt = GEP_tup_like(bcx, fields_tup_ty, obj_fields, ~[0, i]); bcx = llstaticallocas_block_ctxt(fcx); auto llfield = rslt.val; fcx.llobjfields.insert(f.id, llfield); i += 1; } fcx.llstaticallocas = bcx.llbb; } // Ties up the llstaticallocas -> llcopyargs -> llderivedtydescs -> // lldynamicallocas -> lltop edges. fn finish_fn(&@fn_ctxt fcx, BasicBlockRef lltop) { new_builder(fcx.llstaticallocas).Br(fcx.llcopyargs); new_builder(fcx.llcopyargs).Br(fcx.llderivedtydescs_first); new_builder(fcx.llderivedtydescs).Br(fcx.lldynamicallocas); new_builder(fcx.lldynamicallocas).Br(lltop); } // trans_fn: creates an LLVM function corresponding to a source language // function. fn trans_fn(@local_ctxt cx, &span sp, &ast::_fn f, ValueRef llfndecl, option::t[ty::t] ty_self, &ast::ty_param[] ty_params, ast::node_id id) { set_uwtable(llfndecl); // Set up arguments to the function. auto fcx = new_fn_ctxt(cx, sp, llfndecl); create_llargs_for_fn_args(fcx, f.proto, ty_self, ty::ret_ty_of_fn(cx.ccx.tcx, id), f.decl.inputs, ty_params); copy_any_self_to_alloca(fcx); alt ({ fcx.llself }) { case (some(?llself)) { populate_fn_ctxt_from_llself(fcx, llself); } case (_) { } } auto arg_tys = arg_tys_of_fn(fcx.lcx.ccx, id); copy_args_to_allocas(fcx, f.decl.inputs, arg_tys); // Create the first basic block in the function and keep a handle on it to // pass to finish_fn later. auto bcx = new_top_block_ctxt(fcx); add_cleanups_for_args(bcx, f.decl.inputs, arg_tys); auto lltop = bcx.llbb; auto block_ty = node_id_type(cx.ccx, f.body.node.id); // This call to trans_block is the place where we bridge between // translation calls that don't have a return value (trans_crate, // trans_mod, trans_item, trans_obj, et cetera) and those that do // (trans_block, trans_expr, et cetera). auto rslt = if (!ty::type_is_nil(cx.ccx.tcx, block_ty) && !ty::type_is_bot(cx.ccx.tcx, block_ty)) { trans_block(bcx, f.body, save_in(fcx.llretptr)) } else { trans_block(bcx, f.body, return) }; if (!is_terminated(rslt.bcx)) { // FIXME: until LLVM has a unit type, we are moving around // C_nil values rather than their void type. rslt.bcx.build.RetVoid(); } // Insert the mandatory first few basic blocks before lltop. finish_fn(fcx, lltop); } // process_fwding_mthd: Create the forwarding function that appears in a // vtable slot for method calls that "fall through" to an inner object. A // helper function for create_vtbl. fn process_fwding_mthd(@local_ctxt cx, &span sp, @ty::method m, ty::t self_ty, &ast::ty_param[] ty_params, ty::t with_obj_ty, &ty::t[] additional_field_tys) -> ValueRef { // NB: self_ty (and llself_ty) is the type of the outer object; // with_obj_ty is the type of the inner object. // The method m is being called on the outer object, but the outer object // doesn't have that method; only the inner object does. So what we have // to do is synthesize that method on the outer object. It has to take // all the same arguments as the method on the inner object does, then // call m with those arguments on the inner object, and then return the // value returned from that call. It's like an eta-expansion around m, // except we also have to pass the inner object that m should be called // on. That object won't exist until run-time, but we know its type // statically. // Create a local context that's aware of the name of the method we're // creating. let @local_ctxt mcx = @rec(path=cx.path + ~["method", m.ident] with *cx); // Make up a name for the forwarding function. let str s = mangle_internal_name_by_path_and_seq(mcx.ccx, mcx.path, "forwarding_fn"); // Get the forwarding function's type and declare it. let TypeRef llforwarding_fn_ty = type_of_fn_full( cx.ccx, sp, m.proto, true, m.inputs, m.output, std::ivec::len[ast::ty_param](ty_params)); let ValueRef llforwarding_fn = decl_internal_fastcall_fn(cx.ccx.llmod, s, llforwarding_fn_ty); // Create a new function context and block context for the forwarding // function, holding onto a pointer to the first block. auto fcx = new_fn_ctxt(cx, sp, llforwarding_fn); auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; // The outer object will arrive in the forwarding function via the llenv // argument. Put it in an alloca so that we can GEP into it later. auto llself_obj_ptr = alloca(bcx, fcx.lcx.ccx.rust_object_type); bcx.build.Store(fcx.llenv, llself_obj_ptr); // Grab hold of the outer object so we can pass it into the inner object, // in case that inner object needs to make any self-calls. (Such calls // will need to dispatch back through the outer object.) auto llself_obj = bcx.build.Load(llself_obj_ptr); // The 'llretptr' that will arrive in the forwarding function we're // creating also needs to be the correct size. Cast it to the size of the // method's return type, if necessary. auto llretptr = fcx.llretptr; if (ty::type_has_dynamic_size(cx.ccx.tcx, m.output)) { llretptr = bcx.build.PointerCast(llretptr, T_typaram_ptr(cx.ccx.tn)); } // Now, we have to get the the with_obj's vtbl out of the self_obj. This // is a multi-step process: // First, grab the box out of the self_obj. It contains a refcount and a // body. auto llself_obj_box = bcx.build.GEP(llself_obj_ptr, ~[C_int(0), C_int(abi::obj_field_box)]); llself_obj_box = bcx.build.Load(llself_obj_box); auto ccx = bcx.fcx.lcx.ccx; auto llbox_ty = T_opaque_obj_ptr(*ccx); llself_obj_box = bcx.build.PointerCast(llself_obj_box, llbox_ty); // Now, reach into the box and grab the body. auto llself_obj_body = bcx.build.GEP(llself_obj_box, ~[C_int(0), C_int(abi::box_rc_field_body)]); // Now, we need to figure out exactly what type the body is supposed to be // cast to. // NB: This next part is almost flat-out copypasta from trans_anon_obj. // It would be great to factor this out. // Synthesize a tuple type for fields: [field, ...] let ty::t fields_ty = ty::mk_imm_tup(cx.ccx.tcx, additional_field_tys); // Tydescs are run-time instantiations of typarams. We're not // actually supporting typarams for anon objs yet, but let's // create space for them in case we ever want them. let ty::t tydesc_ty = ty::mk_type(cx.ccx.tcx); let ty::t[] tps = ~[]; for (ast::ty_param tp in ty_params) { tps += ~[tydesc_ty]; } // Synthesize a tuple type for typarams: [typaram, ...] let ty::t typarams_ty = ty::mk_imm_tup(cx.ccx.tcx, tps); // Tuple type for body: // [tydesc_ty, [typaram, ...], [field, ...], with_obj] let ty::t body_ty = ty::mk_imm_tup(cx.ccx.tcx, ~[tydesc_ty, typarams_ty, fields_ty, with_obj_ty]); // And cast to that type. llself_obj_body = bcx.build.PointerCast(llself_obj_body, T_ptr(type_of(cx.ccx, sp, body_ty))); // Now, reach into the body and grab the with_obj. auto llwith_obj = GEP_tup_like(bcx, body_ty, llself_obj_body, ~[0, abi::obj_body_elt_with_obj]); bcx = llwith_obj.bcx; // And, now, somewhere in with_obj is a vtable with an entry for the // method we want. First, pick out the vtable, and then pluck that // method's entry out of the vtable so that the forwarding function can // call it. auto llwith_obj_vtbl = bcx.build.GEP(llwith_obj.val, ~[C_int(0), C_int(abi::obj_field_vtbl)]); llwith_obj_vtbl = bcx.build.Load(llwith_obj_vtbl); // Get the index of the method we want. let uint ix = 0u; alt (ty::struct(bcx.fcx.lcx.ccx.tcx, with_obj_ty)) { case (ty::ty_obj(?methods)) { ix = ty::method_idx(cx.ccx.sess, sp, m.ident, methods); } case (_) { // Shouldn't happen. cx.ccx.sess.bug("process_fwding_mthd(): non-object type passed " + "as with_obj_ty"); } } // Pick out the original method from the vtable. The +1 is because slot // #0 contains the destructor. auto vtbl_type = T_ptr(T_array(T_ptr(T_nil()), ix + 2u)); llwith_obj_vtbl = bcx.build.PointerCast(llwith_obj_vtbl, vtbl_type); auto llorig_mthd = bcx.build.GEP(llwith_obj_vtbl, ~[C_int(0), C_int(ix + 1u as int)]); // Set up the original method to be called. auto orig_mthd_ty = ty::method_ty_to_fn_ty(cx.ccx.tcx, *m); auto llorig_mthd_ty = type_of_fn_full(bcx.fcx.lcx.ccx, sp, ty::ty_fn_proto(bcx.fcx.lcx.ccx.tcx, orig_mthd_ty), true, m.inputs, m.output, std::ivec::len[ast::ty_param](ty_params)); llorig_mthd = bcx.build.PointerCast(llorig_mthd, T_ptr(T_ptr(llorig_mthd_ty))); llorig_mthd = bcx.build.Load(llorig_mthd); // Set up the three implicit arguments to the original method we'll need // to call. let ValueRef[] llorig_mthd_args = ~[llretptr, fcx.lltaskptr, llself_obj]; // Copy the explicit arguments that are being passed into the forwarding // function (they're in fcx.llargs) to llorig_mthd_args. let uint a = 3u; // retptr, task ptr, env come first let ValueRef passed_arg = llvm::LLVMGetParam(llforwarding_fn, a); for (ty::arg arg in m.inputs) { if (arg.mode == ty::mo_val) { passed_arg = load_if_immediate(bcx, passed_arg, arg.ty); } llorig_mthd_args += ~[passed_arg]; a += 1u; } // And, finally, call the original method. bcx.build.FastCall(llorig_mthd, llorig_mthd_args); bcx.build.RetVoid(); finish_fn(fcx, lltop); ret llforwarding_fn; } // process_normal_mthd: Create the contents of a normal vtable slot. A helper // function for create_vtbl. fn process_normal_mthd(@local_ctxt cx, @ast::method m, ty::t self_ty, &ast::ty_param[] ty_params) -> ValueRef { auto llfnty = T_nil(); alt (ty::struct(cx.ccx.tcx, node_id_type(cx.ccx, m.node.id))){ case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) { llfnty = type_of_fn_full( cx.ccx, m.span, proto, true, inputs, output, std::ivec::len[ast::ty_param](ty_params)); } } let @local_ctxt mcx = @rec(path=cx.path + ~["method", m.node.ident] with *cx); let str s = mangle_internal_name_by_path(mcx.ccx, mcx.path); let ValueRef llfn = decl_internal_fastcall_fn(cx.ccx.llmod, s, llfnty); // Every method on an object gets its node_id inserted into the // crate-wide item_ids map, together with the ValueRef that points to // where that method's definition will be in the executable. cx.ccx.item_ids.insert(m.node.id, llfn); cx.ccx.item_symbols.insert(m.node.id, s); trans_fn(mcx, m.span, m.node.meth, llfn, some(self_ty), ty_params, m.node.id); ret llfn; } // Create a vtable for an object being translated. Returns a pointer into // read-only memory. fn create_vtbl(@local_ctxt cx, &span sp, ty::t self_ty, &ast::_obj ob, &ast::ty_param[] ty_params, option::t[ty::t] with_obj_ty, &ty::t[] additional_field_tys) -> ValueRef { // Used only inside create_vtbl to distinguish different kinds of slots // we'll have to create. tag vtbl_mthd { // Normal methods are complete AST nodes, but for forwarding methods, // the only information we'll have about them is their type. normal_mthd(@ast::method); fwding_mthd(@ty::method); } auto dtor = C_null(T_ptr(T_i8())); alt (ob.dtor) { case (some(?d)) { auto dtor_1 = trans_dtor(cx, self_ty, ty_params, d); dtor = llvm::LLVMConstBitCast(dtor_1, val_ty(dtor)); } case (none) { } } let ValueRef[] llmethods = ~[dtor]; let vtbl_mthd[] meths = ~[]; alt (with_obj_ty) { case (none) { // If there's no with_obj, then we don't need any forwarding // slots. Just use the object's regular methods. for (@ast::method m in ob.methods) { meths += ~[normal_mthd(m)]; } } case (some(?with_obj_ty)) { // Handle forwarding slots. // If this vtable is being created for an extended object, then // the vtable needs to contain 'forwarding slots' for methods that // were on the original object and are not being overloaded by the // extended one. So, to find the set of methods that we need // forwarding slots for, we need to take the set difference of // with_obj_methods (methods on the original object) and // ob.methods (methods on the object being added). // If we're here, then with_obj_ty and llwith_obj_ty are the type // of the inner object, and "ob" is the wrapper object. We need // to take apart with_obj_ty (it had better have an object type // with methods!) and put those original methods onto the list of // methods we need forwarding methods for. // Gather up methods on the original object in 'meths'. alt (ty::struct(cx.ccx.tcx, with_obj_ty)) { case (ty::ty_obj(?with_obj_methods)) { for (ty::method m in with_obj_methods) { meths += ~[fwding_mthd(@m)]; } } case (_) { // Shouldn't happen. cx.ccx.sess.bug("create_vtbl(): trying to extend a " + "non-object"); } } // Now, filter out any methods that we don't need forwarding slots // for, because they're being replaced. fn filtering_fn(@local_ctxt cx, &vtbl_mthd m, (@ast::method)[] addtl_meths) -> option::t[vtbl_mthd] { alt (m) { case (fwding_mthd(?fm)) { // Since fm is a fwding_mthd, and we're checking to // see if it's in addtl_meths (which only contains // normal_mthds), we can't just check if fm is a // member of addtl_meths. Instead, we have to go // through addtl_meths and see if there's some method // in it that has the same name as fm. // FIXME (part of #543): We're only checking names // here. If a method is replacing another, it also // needs to have the same type, but this should // probably be enforced in typechecking. for (@ast::method am in addtl_meths) { if (str::eq(am.node.ident, fm.ident)) { ret none; } } ret some(fwding_mthd(fm)); } case (normal_mthd(_)) { // Should never happen. cx.ccx.sess.bug("create_vtbl(): shouldn't be any" + " normal_mthds in meths here"); } } } auto f = bind filtering_fn(cx, _, ob.methods); meths = std::ivec::filter_map[vtbl_mthd, vtbl_mthd](f, meths); // And now add the additional ones (both replacements and entirely // new ones). These'll just be normal methods. for (@ast::method m in ob.methods) { meths += ~[normal_mthd(m)]; } } } // Sort all the methods. fn vtbl_mthd_lteq(&vtbl_mthd a, &vtbl_mthd b) -> bool { alt (a) { case (normal_mthd(?ma)) { alt (b) { case (normal_mthd(?mb)) { ret str::lteq(ma.node.ident, mb.node.ident); } case (fwding_mthd(?mb)) { ret str::lteq(ma.node.ident, mb.ident); } } } case (fwding_mthd(?ma)) { alt (b) { case (normal_mthd(?mb)) { ret str::lteq(ma.ident, mb.node.ident); } case (fwding_mthd(?mb)) { ret str::lteq(ma.ident, mb.ident); } } } } } meths = std::sort::ivector::merge_sort[vtbl_mthd] (bind vtbl_mthd_lteq(_, _), meths); // Now that we have our list of methods, we can process them in order. for (vtbl_mthd m in meths) { alt (m) { case (normal_mthd(?nm)) { llmethods += ~[process_normal_mthd(cx, nm, self_ty, ty_params)]; } // If we have to process a forwarding method, then we need to know // about the with_obj's type as well as the outer object's type. case (fwding_mthd(?fm)) { alt (with_obj_ty) { case (none) { // This shouldn't happen; if we're trying to process a // forwarding method, then we should always have a // with_obj_ty. cx.ccx.sess.bug("create_vtbl(): trying to create " + "forwarding method without a type " + "of object to forward to"); } case (some(?t)) { llmethods += ~[process_fwding_mthd( cx, sp, fm, self_ty, ty_params, t, additional_field_tys)]; } } } } } auto vtbl = C_struct(llmethods); auto vtbl_name = mangle_internal_name_by_path(cx.ccx, cx.path + ~["vtbl"]); auto gvar = llvm::LLVMAddGlobal(cx.ccx.llmod, val_ty(vtbl), str::buf(vtbl_name)); llvm::LLVMSetInitializer(gvar, vtbl); llvm::LLVMSetGlobalConstant(gvar, True); llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMInternalLinkage as llvm::Linkage); ret gvar; } fn trans_dtor(@local_ctxt cx, ty::t self_ty, &ast::ty_param[] ty_params, &@ast::method dtor) -> ValueRef { auto llfnty = T_dtor(cx.ccx, dtor.span); let str s = mangle_internal_name_by_path(cx.ccx, cx.path + ~["drop"]); let ValueRef llfn = decl_internal_fastcall_fn(cx.ccx.llmod, s, llfnty); cx.ccx.item_ids.insert(dtor.node.id, llfn); cx.ccx.item_symbols.insert(dtor.node.id, s); trans_fn(cx, dtor.span, dtor.node.meth, llfn, some(self_ty), ty_params, dtor.node.id); ret llfn; } // trans_obj: creates an LLVM function that is the object constructor for the // object being translated. fn trans_obj(@local_ctxt cx, &span sp, &ast::_obj ob, ast::node_id ctor_id, &ast::ty_param[] ty_params) { // To make a function, we have to create a function context and, inside // that, a number of block contexts for which code is generated. auto ccx = cx.ccx; auto llctor_decl; alt (ccx.item_ids.find(ctor_id)) { case (some(?x)) { llctor_decl = x; } case (_) { cx.ccx.sess.span_fatal(sp, "unbound llctor_decl in trans_obj"); } } // Much like trans_fn, we must create an LLVM function, but since we're // starting with an ast::_obj rather than an ast::_fn, we have some setup // work to do. // The fields of our object will become the arguments to the function // we're creating. let ast::arg[] fn_args = ~[]; for (ast::obj_field f in ob.fields) { fn_args += ~[rec(mode=ast::alias(false), ty=f.ty, ident=f.ident, id=f.id)]; } auto fcx = new_fn_ctxt(cx, sp, llctor_decl); // Both regular arguments and type parameters are handled here. create_llargs_for_fn_args(fcx, ast::proto_fn, none[ty::t], ty::ret_ty_of_fn(ccx.tcx, ctor_id), fn_args, ty_params); let ty::arg[] arg_tys = arg_tys_of_fn(ccx, ctor_id); copy_args_to_allocas(fcx, fn_args, arg_tys); // Create the first block context in the function and keep a handle on it // to pass to finish_fn later. auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; // Pick up the type of this object by looking at our own output type, that // is, the output type of the object constructor we're building. auto self_ty = ty::ret_ty_of_fn(ccx.tcx, ctor_id); // Set up the two-word pair that we're going to return from the object // constructor we're building. The two elements of this pair will be a // vtable pointer and a body pointer. (llretptr already points to the // place where this two-word pair should go; it was pre-allocated by the // caller of the function.) auto pair = bcx.fcx.llretptr; // Grab onto the first and second elements of the pair. // abi::obj_field_vtbl and abi::obj_field_box simply specify words 0 and 1 // of 'pair'. auto pair_vtbl = bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_vtbl)]); auto pair_box = bcx.build.GEP(pair, ~[C_int(0), C_int(abi::obj_field_box)]); // Make a vtable for this object: a static array of pointers to functions. // It will be located in the read-only memory of the executable we're // creating and will contain ValueRefs for all of this object's methods. // create_vtbl returns a pointer to the vtable, which we store. auto vtbl = create_vtbl(cx, sp, self_ty, ob, ty_params, none, ~[]); vtbl = bcx.build.PointerCast(vtbl, T_ptr(T_empty_struct())); bcx.build.Store(vtbl, pair_vtbl); // Next we have to take care of the other half of the pair we're // returning: a boxed (reference-counted) tuple containing a tydesc, // typarams, and fields. // FIXME: What about with_obj? Do we have to think about it here? // (Pertains to issues #538/#539/#540/#543.) let TypeRef llbox_ty = T_ptr(T_empty_struct()); // FIXME: we should probably also allocate a box for empty objs that have // a dtor, since otherwise they are never dropped, and the dtor never // runs. if (std::ivec::len[ast::ty_param](ty_params) == 0u && std::ivec::len[ty::arg](arg_tys) == 0u) { // If the object we're translating has no fields or type parameters, // there's not much to do. // Store null into pair, if no args or typarams. bcx.build.Store(C_null(llbox_ty), pair_box); } else { // Otherwise, we have to synthesize a big structural type for the // object body. let ty::t[] obj_fields = ~[]; for (ty::arg a in arg_tys) { obj_fields += ~[a.ty]; } // Tuple type for fields: [field, ...] let ty::t fields_ty = ty::mk_imm_tup(ccx.tcx, obj_fields); auto tydesc_ty = ty::mk_type(ccx.tcx); let ty::t[] tps = ~[]; for (ast::ty_param tp in ty_params) { tps += ~[tydesc_ty]; } // Tuple type for typarams: [typaram, ...] let ty::t typarams_ty = ty::mk_imm_tup(ccx.tcx, tps); // Tuple type for body: [tydesc_ty, [typaram, ...], [field, ...]] let ty::t body_ty = ty::mk_imm_tup(ccx.tcx, ~[tydesc_ty, typarams_ty, fields_ty]); // Hand this type we've synthesized off to trans_malloc_boxed, which // allocates a box, including space for a refcount. auto box = trans_malloc_boxed(bcx, body_ty); bcx = box.bcx; // mk_imm_box throws a refcount into the type we're synthesizing, so // that it looks like: [rc, [tydesc_ty, [typaram, ...], [field, ...]]] let ty::t boxed_body_ty = ty::mk_imm_box(ccx.tcx, body_ty); // Grab onto the refcount and body parts of the box we allocated. auto rc = GEP_tup_like(bcx, boxed_body_ty, box.val, ~[0, abi::box_rc_field_refcnt]); bcx = rc.bcx; auto body = GEP_tup_like(bcx, boxed_body_ty, box.val, ~[0, abi::box_rc_field_body]); bcx = body.bcx; bcx.build.Store(C_int(1), rc.val); // Put together a tydesc for the body, so that the object can later be // freed by calling through its tydesc. // Every object (not just those with type parameters) needs to have a // tydesc to describe its body, since all objects have unknown type to // the user of the object. So the tydesc is needed to keep track of // the types of the object's fields, so that the fields can be freed // later. auto body_tydesc = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_tydesc]); bcx = body_tydesc.bcx; auto ti = none[@tydesc_info]; auto body_td = get_tydesc(bcx, body_ty, true, ti); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_drop_glue, ti); lazily_emit_tydesc_glue(bcx, abi::tydesc_field_free_glue, ti); bcx = body_td.bcx; bcx.build.Store(body_td.val, body_tydesc.val); // Copy the object's type parameters and fields into the space we // allocated for the object body. (This is something like saving the // lexical environment of a function in its closure: the "captured // typarams" are any type parameters that are passed to the object // constructor and are then available to the object's methods. // Likewise for the object's fields.) // Copy typarams into captured typarams. auto body_typarams = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_typarams]); bcx = body_typarams.bcx; let int i = 0; for (ast::ty_param tp in ty_params) { auto typaram = bcx.fcx.lltydescs.(i); auto capture = GEP_tup_like(bcx, typarams_ty, body_typarams.val, ~[0, i]); bcx = capture.bcx; bcx = copy_val(bcx, INIT, capture.val, typaram, tydesc_ty).bcx; i += 1; } // Copy args into body fields. auto body_fields = GEP_tup_like(bcx, body_ty, body.val, ~[0, abi::obj_body_elt_fields]); bcx = body_fields.bcx; i = 0; for (ast::obj_field f in ob.fields) { alt (bcx.fcx.llargs.find(f.id)) { case (some(?arg1)) { auto arg = load_if_immediate(bcx, arg1, arg_tys.(i).ty); auto field = GEP_tup_like(bcx, fields_ty, body_fields.val, ~[0, i]); bcx = field.bcx; bcx = copy_val(bcx, INIT, field.val, arg, arg_tys.(i).ty).bcx; i += 1; } case (none) { bcx.fcx.lcx.ccx.sess.span_fatal(f.ty.span, "internal error in trans_obj"); } } } // Store box ptr in outer pair. auto p = bcx.build.PointerCast(box.val, llbox_ty); bcx.build.Store(p, pair_box); } bcx.build.RetVoid(); // Insert the mandatory first few basic blocks before lltop. finish_fn(fcx, lltop); } fn trans_res_ctor(@local_ctxt cx, &span sp, &ast::_fn dtor, ast::node_id ctor_id, &ast::ty_param[] ty_params) { // Create a function for the constructor auto llctor_decl; alt (cx.ccx.item_ids.find(ctor_id)) { case (some(?x)) { llctor_decl = x; } case (_) { cx.ccx.sess.span_fatal(sp, "unbound ctor_id in trans_res_ctor"); } } auto fcx = new_fn_ctxt(cx, sp, llctor_decl); auto ret_t = ty::ret_ty_of_fn(cx.ccx.tcx, ctor_id); create_llargs_for_fn_args(fcx, ast::proto_fn, none[ty::t], ret_t, dtor.decl.inputs, ty_params); auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; auto arg_t = arg_tys_of_fn(cx.ccx, ctor_id).(0).ty; auto tup_t = ty::mk_imm_tup(cx.ccx.tcx, ~[ty::mk_int(cx.ccx.tcx), arg_t]); auto arg; alt (fcx.llargs.find(dtor.decl.inputs.(0).id)) { case (some(?x)) { arg = load_if_immediate(bcx, x, arg_t); } case (_) { cx.ccx.sess.span_fatal(sp, "unbound dtor decl in trans_res_ctor"); } } auto llretptr = fcx.llretptr; if (ty::type_has_dynamic_size(cx.ccx.tcx, ret_t)) { auto llret_t = T_ptr(T_struct(~[T_i32(), llvm::LLVMTypeOf(arg)])); llretptr = bcx.build.BitCast(llretptr, llret_t); } auto dst = GEP_tup_like(bcx, tup_t, llretptr, ~[0, 1]); bcx = dst.bcx; bcx = copy_val(bcx, INIT, dst.val, arg, arg_t).bcx; auto flag = GEP_tup_like(bcx, tup_t, llretptr, ~[0, 0]); bcx = flag.bcx; bcx.build.Store(C_int(1), flag.val); bcx.build.RetVoid(); finish_fn(fcx, lltop); } fn trans_tag_variant(@local_ctxt cx, ast::node_id tag_id, &ast::variant variant, int index, bool is_degen, &ast::ty_param[] ty_params) { if (std::ivec::len[ast::variant_arg](variant.node.args) == 0u) { ret; // nullary constructors are just constants } // Translate variant arguments to function arguments. let ast::arg[] fn_args = ~[]; auto i = 0u; for (ast::variant_arg varg in variant.node.args) { fn_args += ~[rec(mode=ast::alias(false), ty=varg.ty, ident="arg" + uint::to_str(i, 10u), id=varg.id)]; } assert (cx.ccx.item_ids.contains_key(variant.node.id)); let ValueRef llfndecl; alt (cx.ccx.item_ids.find(variant.node.id)) { case (some(?x)) { llfndecl = x; } case (_) { cx.ccx.sess.span_fatal(variant.span, "unbound variant id in trans_tag_variant"); } } auto fcx = new_fn_ctxt(cx, variant.span, llfndecl); create_llargs_for_fn_args(fcx, ast::proto_fn, none[ty::t], ty::ret_ty_of_fn(cx.ccx.tcx, variant.node.id), fn_args, ty_params); let ty::t[] ty_param_substs = ~[]; i = 0u; for (ast::ty_param tp in ty_params) { ty_param_substs += ~[ty::mk_param(cx.ccx.tcx, i)]; i += 1u; } auto arg_tys = arg_tys_of_fn(cx.ccx, variant.node.id); copy_args_to_allocas(fcx, fn_args, arg_tys); auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; auto llblobptr = if (is_degen) { fcx.llretptr } else { // Cast the tag to a type we can GEP into. auto lltagptr = bcx.build.PointerCast (fcx.llretptr, T_opaque_tag_ptr(fcx.lcx.ccx.tn)); auto lldiscrimptr = bcx.build.GEP(lltagptr, ~[C_int(0), C_int(0)]); bcx.build.Store(C_int(index), lldiscrimptr); bcx.build.GEP(lltagptr, ~[C_int(0), C_int(1)]) }; i = 0u; for (ast::variant_arg va in variant.node.args) { auto rslt = GEP_tag(bcx, llblobptr, ast::local_def(tag_id), ast::local_def(variant.node.id), ty_param_substs, i as int); bcx = rslt.bcx; auto lldestptr = rslt.val; // If this argument to this function is a tag, it'll have come in to // this function as an opaque blob due to the way that type_of() // works. So we have to cast to the destination's view of the type. auto llargptr; alt (fcx.llargs.find(va.id)) { case (some(?x)) { llargptr = bcx.build.PointerCast(x, val_ty(lldestptr)); } case (none) { bcx.fcx.lcx.ccx.sess.bug("unbound argptr in \ trans_tag_variant"); } } auto arg_ty = arg_tys.(i).ty; auto llargval; if (ty::type_is_structural(cx.ccx.tcx, arg_ty) || ty::type_has_dynamic_size(cx.ccx.tcx, arg_ty)) { llargval = llargptr; } else { llargval = bcx.build.Load(llargptr); } rslt = copy_val(bcx, INIT, lldestptr, llargval, arg_ty); bcx = rslt.bcx; i += 1u; } bcx = trans_block_cleanups(bcx, find_scope_cx(bcx)); bcx.build.RetVoid(); finish_fn(fcx, lltop); } // FIXME: this should do some structural hash-consing to avoid // duplicate constants. I think. Maybe LLVM has a magical mode // that does so later on? fn trans_const_expr(&@crate_ctxt cx, @ast::expr e) -> ValueRef { alt (e.node) { case (ast::expr_lit(?lit)) { ret trans_crate_lit(cx, *lit); } case (_) { cx.sess.span_unimpl(e.span, "consts that's not a plain literal"); } } } fn trans_const(&@crate_ctxt cx, @ast::expr e, ast::node_id id) { auto v = trans_const_expr(cx, e); // The scalars come back as 1st class LLVM vals // which we have to stick into global constants. alt (cx.consts.find(id)) { case (some(?g)) { llvm::LLVMSetInitializer(g, v); llvm::LLVMSetGlobalConstant(g, True); } case (_) { cx.sess.span_fatal(e.span, "Unbound const in trans_const"); } } } fn trans_item(@local_ctxt cx, &ast::item item) { alt (item.node) { case (ast::item_fn(?f, ?tps)) { auto sub_cx = extend_path(cx, item.ident); alt (cx.ccx.item_ids.find(item.id)) { case (some(?llfndecl)) { trans_fn(sub_cx, item.span, f, llfndecl, none, tps, item.id); } case (_) { cx.ccx.sess.span_fatal(item.span, "unbound function item in trans_item"); } } } case (ast::item_obj(?ob, ?tps, ?ctor_id)) { auto sub_cx = @rec(obj_typarams=tps, obj_fields=ob.fields with *extend_path(cx, item.ident)); trans_obj(sub_cx, item.span, ob, ctor_id, tps); } case (ast::item_res(?dtor, ?dtor_id, ?tps, ?ctor_id)) { trans_res_ctor(cx, item.span, dtor, ctor_id, tps); // Create a function for the destructor alt (cx.ccx.item_ids.find(item.id)) { case (some(?lldtor_decl)) { trans_fn(cx, item.span, dtor, lldtor_decl, none, tps, dtor_id); } case (_) { cx.ccx.sess.span_fatal(item.span, "unbound dtor in trans_item"); } } } case (ast::item_mod(?m)) { auto sub_cx = @rec(path=cx.path + ~[item.ident], module_path=cx.module_path + ~[item.ident] with *cx); trans_mod(sub_cx, m); } case (ast::item_tag(?variants, ?tps)) { auto sub_cx = extend_path(cx, item.ident); auto degen = std::ivec::len(variants) == 1u; auto i = 0; for (ast::variant variant in variants) { trans_tag_variant(sub_cx, item.id, variant, i, degen, tps); i += 1; } } case (ast::item_const(_, ?expr)) { trans_const(cx.ccx, expr, item.id); } case (_) {/* fall through */ } } } // Translate a module. Doing this amounts to translating the items in the // module; there ends up being no artifact (aside from linkage names) of // separate modules in the compiled program. That's because modules exist // only as a convenience for humans working with the code, to organize names // and control visibility. fn trans_mod(@local_ctxt cx, &ast::_mod m) { for (@ast::item item in m.items) { trans_item(cx, *item); } } fn get_pair_fn_ty(TypeRef llpairty) -> TypeRef { // Bit of a kludge: pick the fn typeref out of the pair. ret struct_elt(llpairty, 0u); } fn decl_fn_and_pair(&@crate_ctxt ccx, &span sp, &str[] path, str flav, &ast::ty_param[] ty_params, ast::node_id node_id) { decl_fn_and_pair_full(ccx, sp, path, flav, ty_params, node_id, node_id_type(ccx, node_id)); } fn decl_fn_and_pair_full(&@crate_ctxt ccx, &span sp, &str[] path, str flav, &ast::ty_param[] ty_params, ast::node_id node_id, ty::t node_type) { auto llfty; alt (ty::struct(ccx.tcx, node_type)) { case (ty::ty_fn(?proto, ?inputs, ?output, _, _)) { llfty = type_of_fn(ccx, sp, proto, inputs, output, std::ivec::len[ast::ty_param](ty_params)); } case (_) { ccx.sess.bug("decl_fn_and_pair(): fn item doesn't have fn type!"); } } let bool is_main = is_main_name(path) && !ccx.sess.get_opts().library; // Declare the function itself. let str s = if (is_main) { "_rust_main" } else { mangle_internal_name_by_path(ccx, path) }; let ValueRef llfn = decl_internal_fastcall_fn(ccx.llmod, s, llfty); // Declare the global constant pair that points to it. let str ps = mangle_exported_name(ccx, path, node_type); register_fn_pair(ccx, ps, llfty, llfn, node_id); if (is_main) { if (ccx.main_fn != none[ValueRef]) { ccx.sess.span_fatal(sp, "multiple 'main' functions"); } llvm::LLVMSetLinkage(llfn, lib::llvm::LLVMExternalLinkage as llvm::Linkage); ccx.main_fn = some(llfn); } } // Create a closure: a pair containing (1) a ValueRef, pointing to where the // fn's definition is in the executable we're creating, and (2) a pointer to // space for the function's environment. fn create_fn_pair(&@crate_ctxt cx, str ps, TypeRef llfnty, ValueRef llfn, bool external) -> ValueRef { auto gvar = llvm::LLVMAddGlobal(cx.llmod, T_fn_pair(*cx, llfnty), str::buf(ps)); auto pair = C_struct(~[llfn, C_null(T_opaque_closure_ptr(*cx))]); llvm::LLVMSetInitializer(gvar, pair); llvm::LLVMSetGlobalConstant(gvar, True); if (!external) { llvm::LLVMSetLinkage(gvar, lib::llvm::LLVMInternalLinkage as llvm::Linkage); } ret gvar; } // Create a /real/ closure: this is like create_fn_pair, but creates a // a fn value on the stack with a specified environment (which need not be // on the stack). fn create_real_fn_pair(&@block_ctxt cx, TypeRef llfnty, ValueRef llfn, ValueRef llenvptr) -> ValueRef { auto lcx = cx.fcx.lcx; auto pair = alloca(cx, T_fn_pair(*lcx.ccx, llfnty)); auto code_cell = cx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_code)]); cx.build.Store(llfn, code_cell); auto env_cell = cx.build.GEP(pair, ~[C_int(0), C_int(abi::fn_field_box)]); auto llenvblobptr = cx.build.PointerCast(llenvptr, T_opaque_closure_ptr(*lcx.ccx)); cx.build.Store(llenvblobptr, env_cell); ret pair; } fn register_fn_pair(&@crate_ctxt cx, str ps, TypeRef llfnty, ValueRef llfn, ast::node_id id) { // FIXME: We should also hide the unexported pairs in crates. auto gvar = create_fn_pair(cx, ps, llfnty, llfn, cx.sess.get_opts().library); cx.item_ids.insert(id, llfn); cx.item_symbols.insert(id, ps); cx.fn_pairs.insert(id, gvar); } // Returns the number of type parameters that the given native function has. fn native_fn_ty_param_count(&@crate_ctxt cx, ast::node_id id) -> uint { auto count; auto native_item = alt (cx.ast_map.find(id)) { case (some(ast_map::node_native_item(?i))) { i } }; alt (native_item.node) { case (ast::native_item_ty) { cx.sess.bug("decl_native_fn_and_pair(): native fn isn't " + "actually a fn"); } case (ast::native_item_fn(_, _, ?tps)) { count = std::ivec::len[ast::ty_param](tps); } } ret count; } fn native_fn_wrapper_type(&@crate_ctxt cx, &span sp, uint ty_param_count, ty::t x) -> TypeRef { alt (ty::struct(cx.tcx, x)) { case (ty::ty_native_fn(?abi, ?args, ?out)) { ret type_of_fn(cx, sp, ast::proto_fn, args, out, ty_param_count); } } } fn decl_native_fn_and_pair(&@crate_ctxt ccx, &span sp, &str[] path, str name, ast::node_id id) { auto num_ty_param = native_fn_ty_param_count(ccx, id); // Declare the wrapper. auto t = node_id_type(ccx, id); auto wrapper_type = native_fn_wrapper_type(ccx, sp, num_ty_param, t); let str s = mangle_internal_name_by_path(ccx, path); let ValueRef wrapper_fn = decl_internal_fastcall_fn(ccx.llmod, s, wrapper_type); // Declare the global constant pair that points to it. let str ps = mangle_exported_name(ccx, path, node_id_type(ccx, id)); register_fn_pair(ccx, ps, wrapper_type, wrapper_fn, id); // Build the wrapper. auto fcx = new_fn_ctxt(new_local_ctxt(ccx), sp, wrapper_fn); auto bcx = new_top_block_ctxt(fcx); auto lltop = bcx.llbb; // Declare the function itself. auto fn_type = node_id_type(ccx, id); // NB: has no type params auto abi = ty::ty_fn_abi(ccx.tcx, fn_type); // FIXME: If the returned type is not nil, then we assume it's 32 bits // wide. This is obviously wildly unsafe. We should have a better FFI // that allows types of different sizes to be returned. auto rty = ty::ty_fn_ret(ccx.tcx, fn_type); auto rty_is_nil = ty::type_is_nil(ccx.tcx, rty); auto pass_task; auto uses_retptr; auto cast_to_i32; alt (abi) { case (ast::native_abi_rust) { pass_task = true; uses_retptr = false; cast_to_i32 = true; } case (ast::native_abi_rust_intrinsic) { pass_task = true; uses_retptr = true; cast_to_i32 = false; } case (ast::native_abi_cdecl) { pass_task = false; uses_retptr = false; cast_to_i32 = true; } case (ast::native_abi_llvm) { pass_task = false; uses_retptr = false; cast_to_i32 = false; } } auto lltaskptr; if (cast_to_i32) { lltaskptr = vp2i(bcx, fcx.lltaskptr); } else { lltaskptr = fcx.lltaskptr; } let ValueRef[] call_args = ~[]; if (pass_task) { call_args += ~[lltaskptr]; } if (uses_retptr) { call_args += ~[bcx.fcx.llretptr]; } auto arg_n = 3u; for each (uint i in uint::range(0u, num_ty_param)) { auto llarg = llvm::LLVMGetParam(fcx.llfn, arg_n); fcx.lltydescs += ~[llarg]; assert (llarg as int != 0); if (cast_to_i32) { call_args += ~[vp2i(bcx, llarg)]; } else { call_args += ~[llarg]; } arg_n += 1u; } fn convert_arg_to_i32(&@block_ctxt cx, ValueRef v, ty::t t, ty::mode mode) -> ValueRef { if (mode == ty::mo_val) { if (ty::type_is_integral(cx.fcx.lcx.ccx.tcx, t)) { auto lldsttype = T_int(); auto llsrctype = type_of(cx.fcx.lcx.ccx, cx.sp, t); if (llvm::LLVMGetIntTypeWidth(lldsttype) > llvm::LLVMGetIntTypeWidth(llsrctype)) { ret cx.build.ZExtOrBitCast(v, T_int()); } ret cx.build.TruncOrBitCast(v, T_int()); } if (ty::type_is_fp(cx.fcx.lcx.ccx.tcx, t)) { ret cx.build.FPToSI(v, T_int()); } } ret vp2i(cx, v); } fn trans_simple_native_abi(&@block_ctxt bcx, str name, &mutable ValueRef[] call_args, ty::t fn_type, uint first_arg_n, bool uses_retptr) -> tup(ValueRef, ValueRef) { let TypeRef[] call_arg_tys = ~[]; for (ValueRef arg in call_args) { call_arg_tys += ~[val_ty(arg)]; } auto llnativefnty; if (uses_retptr) { llnativefnty = T_fn(call_arg_tys, T_void()); } else { llnativefnty = T_fn(call_arg_tys, type_of(bcx.fcx.lcx.ccx, bcx.sp, ty::ty_fn_ret(bcx.fcx.lcx.ccx.tcx, fn_type))); } auto llnativefn = get_extern_fn(bcx.fcx.lcx.ccx.externs, bcx.fcx.lcx.ccx.llmod, name, lib::llvm::LLVMCCallConv, llnativefnty); auto r = bcx.build.Call(llnativefn, call_args); auto rptr = bcx.fcx.llretptr; ret tup(r, rptr); } auto args = ty::ty_fn_args(ccx.tcx, fn_type); // Build up the list of arguments. let (tup(ValueRef, ty::t))[] drop_args = ~[]; auto i = arg_n; for (ty::arg arg in args) { auto llarg = llvm::LLVMGetParam(fcx.llfn, i); assert (llarg as int != 0); if (cast_to_i32) { auto llarg_i32 = convert_arg_to_i32(bcx, llarg, arg.ty, arg.mode); call_args += ~[llarg_i32]; } else { call_args += ~[llarg]; } if (arg.mode == ty::mo_val) { drop_args += ~[tup(llarg, arg.ty)]; } i += 1u; } auto r; auto rptr; alt (abi) { case (ast::native_abi_llvm) { auto result = trans_simple_native_abi(bcx, name, call_args, fn_type, arg_n, uses_retptr); r = result._0; rptr = result._1; } case (ast::native_abi_rust_intrinsic) { auto external_name = "rust_intrinsic_" + name; auto result = trans_simple_native_abi(bcx, external_name, call_args, fn_type, arg_n, uses_retptr); r = result._0; rptr = result._1; } case (_) { r = trans_native_call(bcx.build, ccx.glues, lltaskptr, ccx.externs, ccx.tn, ccx.llmod, name, pass_task, call_args); rptr = bcx.build.BitCast(fcx.llretptr, T_ptr(T_i32())); } } // We don't store the return value if it's nil, to avoid stomping on a nil // pointer. This is the only concession made to non-i32 return values. See // the FIXME above. if (!rty_is_nil && !uses_retptr) { bcx.build.Store(r, rptr); } for (tup(ValueRef, ty::t) d in drop_args) { bcx = drop_ty(bcx, d._0, d._1).bcx; } bcx.build.RetVoid(); finish_fn(fcx, lltop); } fn item_path(&@ast::item item) -> str[] { ret ~[item.ident]; } fn collect_native_item(@crate_ctxt ccx, &@ast::native_item i, &str[] pt, &vt[str[]] v) { alt (i.node) { case (ast::native_item_fn(_, _, _)) { if (!ccx.obj_methods.contains_key(i.id)) { decl_native_fn_and_pair(ccx, i.span, pt, i.ident, i.id); } } case (_) {} } } fn collect_item_1(@crate_ctxt ccx, &@ast::item i, &str[] pt, &vt[str[]] v) { visit::visit_item(i, pt + item_path(i), v); alt (i.node) { case (ast::item_const(_, _)) { auto typ = node_id_type(ccx, i.id); auto g = llvm::LLVMAddGlobal(ccx.llmod, type_of(ccx, i.span, typ), str::buf(ccx.names.next(i.ident))); llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage as llvm::Linkage); ccx.consts.insert(i.id, g); } case (_) { } } } fn collect_item_2(&@crate_ctxt ccx, &@ast::item i, &str[] pt, &vt[str[]] v) { auto new_pt = pt + item_path(i); visit::visit_item(i, new_pt, v); alt (i.node) { case (ast::item_fn(?f, ?tps)) { if (!ccx.obj_methods.contains_key(i.id)) { decl_fn_and_pair(ccx, i.span, new_pt, "fn", tps, i.id); } } case (ast::item_obj(?ob, ?tps, ?ctor_id)) { decl_fn_and_pair(ccx, i.span, new_pt, "obj_ctor", tps, ctor_id); for (@ast::method m in ob.methods) { ccx.obj_methods.insert(m.node.id, ()); } } case (ast::item_res(_, ?dtor_id, ?tps, ?ctor_id)) { decl_fn_and_pair(ccx, i.span, new_pt, "res_ctor", tps, ctor_id); // Note that the destructor is associated with the item's id, not // the dtor_id. This is a bit counter-intuitive, but simplifies // ty_res, which would have to carry around two def_ids otherwise // -- one to identify the type, and one to find the dtor symbol. decl_fn_and_pair_full(ccx, i.span, new_pt, "res_dtor", tps, i.id, node_id_type(ccx, dtor_id)); } case (_) { } } } fn collect_items(&@crate_ctxt ccx, @ast::crate crate) { auto visitor0 = visit::default_visitor(); auto visitor1 = @rec(visit_native_item=bind collect_native_item(ccx, _, _, _), visit_item=bind collect_item_1(ccx, _, _, _) with *visitor0); auto visitor2 = @rec(visit_item=bind collect_item_2(ccx, _, _, _) with *visitor0); visit::visit_crate(*crate, ~[], visit::mk_vt(visitor1)); visit::visit_crate(*crate, ~[], visit::mk_vt(visitor2)); } fn collect_tag_ctor(@crate_ctxt ccx, &@ast::item i, &str[] pt, &vt[str[]] v) { auto new_pt = pt + item_path(i); visit::visit_item(i, new_pt, v); alt (i.node) { case (ast::item_tag(?variants, ?tps)) { for (ast::variant variant in variants) { if (std::ivec::len(variant.node.args) != 0u) { decl_fn_and_pair(ccx, i.span, new_pt + ~[variant.node.name], "tag", tps, variant.node.id); } } } case (_) {/* fall through */ } } } fn collect_tag_ctors(&@crate_ctxt ccx, @ast::crate crate) { auto visitor = @rec(visit_item=bind collect_tag_ctor(ccx, _, _, _) with *visit::default_visitor()); visit::visit_crate(*crate, ~[], visit::mk_vt(visitor)); } // The constant translation pass. fn trans_constant(@crate_ctxt ccx, &@ast::item it, &str[] pt, &vt[str[]] v) { auto new_pt = pt + item_path(it); visit::visit_item(it, new_pt, v); alt (it.node) { case (ast::item_tag(?variants, _)) { auto i = 0u; auto n_variants = std::ivec::len[ast::variant](variants); while (i < n_variants) { auto variant = variants.(i); auto p = new_pt + ~[it.ident, variant.node.name, "discrim"]; auto s = mangle_exported_name(ccx, p, ty::mk_int(ccx.tcx)); auto discrim_gvar = llvm::LLVMAddGlobal(ccx.llmod, T_int(), str::buf(s)); if (n_variants != 1u) { llvm::LLVMSetInitializer(discrim_gvar, C_int(i as int)); llvm::LLVMSetGlobalConstant(discrim_gvar, True); } ccx.discrims.insert(variant.node.id, discrim_gvar); ccx.discrim_symbols.insert(variant.node.id, s); i += 1u; } } case (ast::item_const(_, ?expr)) { // FIXME: The whole expr-translation system needs cloning to deal // with consts. auto v = C_int(1); ccx.item_ids.insert(it.id, v); auto s = mangle_exported_name(ccx, new_pt + ~[it.ident], node_id_type(ccx, it.id)); ccx.item_symbols.insert(it.id, s); } case (_) { } } } fn trans_constants(&@crate_ctxt ccx, @ast::crate crate) { auto visitor = @rec(visit_item=bind trans_constant(ccx, _, _, _) with *visit::default_visitor()); visit::visit_crate(*crate, ~[], visit::mk_vt(visitor)); } fn vp2i(&@block_ctxt cx, ValueRef v) -> ValueRef { ret cx.build.PtrToInt(v, T_int()); } fn vi2p(&@block_ctxt cx, ValueRef v, TypeRef t) -> ValueRef { ret cx.build.IntToPtr(v, t); } fn p2i(ValueRef v) -> ValueRef { ret llvm::LLVMConstPtrToInt(v, T_int()); } fn i2p(ValueRef v, TypeRef t) -> ValueRef { ret llvm::LLVMConstIntToPtr(v, t); } fn declare_intrinsics(ModuleRef llmod) -> hashmap[str, ValueRef] { let TypeRef[] T_memmove32_args = ~[T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()]; let TypeRef[] T_memmove64_args = ~[T_ptr(T_i8()), T_ptr(T_i8()), T_i64(), T_i32(), T_i1()]; let TypeRef[] T_memset32_args = ~[T_ptr(T_i8()), T_i8(), T_i32(), T_i32(), T_i1()]; let TypeRef[] T_memset64_args = ~[T_ptr(T_i8()), T_i8(), T_i64(), T_i32(), T_i1()]; let TypeRef[] T_trap_args = ~[]; auto memmove32 = decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i32", T_fn(T_memmove32_args, T_void())); auto memmove64 = decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i64", T_fn(T_memmove64_args, T_void())); auto memset32 = decl_cdecl_fn(llmod, "llvm.memset.p0i8.i32", T_fn(T_memset32_args, T_void())); auto memset64 = decl_cdecl_fn(llmod, "llvm.memset.p0i8.i64", T_fn(T_memset64_args, T_void())); auto trap = decl_cdecl_fn(llmod, "llvm.trap", T_fn(T_trap_args, T_void())); auto intrinsics = new_str_hash[ValueRef](); intrinsics.insert("llvm.memmove.p0i8.p0i8.i32", memmove32); intrinsics.insert("llvm.memmove.p0i8.p0i8.i64", memmove64); intrinsics.insert("llvm.memset.p0i8.i32", memset32); intrinsics.insert("llvm.memset.p0i8.i64", memset64); intrinsics.insert("llvm.trap", trap); ret intrinsics; } fn trace_str(&@block_ctxt cx, str s) { cx.build.Call(cx.fcx.lcx.ccx.upcalls.trace_str, ~[cx.fcx.lltaskptr, C_cstr(cx.fcx.lcx.ccx, s)]); } fn trace_word(&@block_ctxt cx, ValueRef v) { cx.build.Call(cx.fcx.lcx.ccx.upcalls.trace_word, ~[cx.fcx.lltaskptr, v]); } fn trace_ptr(&@block_ctxt cx, ValueRef v) { trace_word(cx, cx.build.PtrToInt(v, T_int())); } fn trap(&@block_ctxt bcx) { let ValueRef[] v = ~[]; alt (bcx.fcx.lcx.ccx.intrinsics.find("llvm.trap")) { case (some(?x)) { bcx.build.Call(x, v); } case (_) { bcx.fcx.lcx.ccx.sess.bug("unbound llvm.trap in trap"); } } } fn decl_no_op_type_glue(ModuleRef llmod, TypeRef taskptr_type) -> ValueRef { auto ty = T_fn(~[taskptr_type, T_ptr(T_i8())], T_void()); ret decl_fastcall_fn(llmod, abi::no_op_type_glue_name(), ty); } fn make_no_op_type_glue(ValueRef fun) { auto bb_name = str::buf("_rust_no_op_type_glue_bb"); auto llbb = llvm::LLVMAppendBasicBlock(fun, bb_name); new_builder(llbb).RetVoid(); } fn vec_fill(&@block_ctxt bcx, ValueRef v) -> ValueRef { ret bcx.build.Load(bcx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_fill)])); } fn vec_p0(&@block_ctxt bcx, ValueRef v) -> ValueRef { auto p = bcx.build.GEP(v, ~[C_int(0), C_int(abi::vec_elt_data)]); ret bcx.build.PointerCast(p, T_ptr(T_i8())); } fn make_glues(ModuleRef llmod, TypeRef taskptr_type) -> @glue_fns { ret @rec(no_op_type_glue=decl_no_op_type_glue(llmod, taskptr_type)); } fn make_common_glue(&session::session sess, &str output) { // FIXME: part of this is repetitive and is probably a good idea // to autogen it. auto task_type = T_task(); auto taskptr_type = T_ptr(task_type); auto llmod = llvm::LLVMModuleCreateWithNameInContext(str::buf("rust_out"), llvm::LLVMGetGlobalContext()); llvm::LLVMSetDataLayout(llmod, str::buf(x86::get_data_layout())); llvm::LLVMSetTarget(llmod, str::buf(x86::get_target_triple())); mk_target_data(x86::get_data_layout()); declare_intrinsics(llmod); llvm::LLVMSetModuleInlineAsm(llmod, str::buf(x86::get_module_asm())); make_glues(llmod, taskptr_type); link::write::run_passes(sess, llmod, output); } fn create_module_map(&@crate_ctxt ccx) -> ValueRef { auto elttype = T_struct(~[T_int(), T_int()]); auto maptype = T_array(elttype, ccx.module_data.size() + 1u); auto map = llvm::LLVMAddGlobal(ccx.llmod, maptype, str::buf("_rust_mod_map")); llvm::LLVMSetLinkage(map, lib::llvm::LLVMInternalLinkage as llvm::Linkage); let ValueRef[] elts = ~[]; for each (@tup(str, ValueRef) item in ccx.module_data.items()) { auto elt = C_struct(~[p2i(C_cstr(ccx, item._0)), p2i(item._1)]); elts += ~[elt]; } auto term = C_struct(~[C_int(0), C_int(0)]); elts += ~[term]; llvm::LLVMSetInitializer(map, C_array(elttype, elts)); ret map; } // FIXME use hashed metadata instead of crate names once we have that fn create_crate_map(&@crate_ctxt ccx) -> ValueRef { let ValueRef[] subcrates = ~[]; auto i = 1; auto cstore = ccx.sess.get_cstore(); while (cstore::have_crate_data(cstore, i)) { auto name = cstore::get_crate_data(cstore, i).name; auto cr = llvm::LLVMAddGlobal(ccx.llmod, T_int(), str::buf("_rust_crate_map_" + name)); subcrates += ~[p2i(cr)]; i += 1; } subcrates += ~[C_int(0)]; auto mapname; if (ccx.sess.get_opts().library) { mapname = ccx.link_meta.name; } else { mapname = "toplevel"; } auto sym_name = "_rust_crate_map_" + mapname; auto arrtype = T_array(T_int(), std::ivec::len[ValueRef](subcrates)); auto maptype = T_struct(~[T_int(), arrtype]); auto map = llvm::LLVMAddGlobal(ccx.llmod, maptype, str::buf(sym_name)); llvm::LLVMSetLinkage(map, lib::llvm::LLVMExternalLinkage as llvm::Linkage); llvm::LLVMSetInitializer(map, C_struct(~[p2i(create_module_map(ccx)), C_array(T_int(), subcrates)])); ret map; } fn write_metadata(&@trans::crate_ctxt cx, &@ast::crate crate) { if (!cx.sess.get_opts().library) { ret; } auto llmeta = C_postr(metadata::encoder::encode_metadata(cx, crate)); auto llconst = trans_common::C_struct(~[llmeta]); auto llglobal = llvm::LLVMAddGlobal(cx.llmod, trans::val_ty(llconst), str::buf("rust_metadata")); llvm::LLVMSetInitializer(llglobal, llconst); llvm::LLVMSetSection(llglobal, str::buf(x86::get_meta_sect_name())); } fn trans_crate(&session::session sess, &@ast::crate crate, &ty::ctxt tcx, &str output, &ast_map::map amap) -> ModuleRef { auto llmod = llvm::LLVMModuleCreateWithNameInContext(str::buf("rust_out"), llvm::LLVMGetGlobalContext()); llvm::LLVMSetDataLayout(llmod, str::buf(x86::get_data_layout())); llvm::LLVMSetTarget(llmod, str::buf(x86::get_target_triple())); auto td = mk_target_data(x86::get_data_layout()); auto tn = mk_type_names(); auto intrinsics = declare_intrinsics(llmod); auto task_type = T_task(); auto taskptr_type = T_ptr(task_type); auto tydesc_type = T_tydesc(taskptr_type); auto glues = make_glues(llmod, taskptr_type); auto hasher = ty::hash_ty; auto eqer = ty::eq_ty; auto tag_sizes = map::mk_hashmap[ty::t, uint](hasher, eqer); auto tydescs = map::mk_hashmap[ty::t, @tydesc_info](hasher, eqer); auto lltypes = map::mk_hashmap[ty::t, TypeRef](hasher, eqer); auto sha1s = map::mk_hashmap[ty::t, str](hasher, eqer); auto short_names = map::mk_hashmap[ty::t, str](hasher, eqer); auto sha = std::sha1::mk_sha1(); auto ccx = @rec(sess=sess, llmod=llmod, td=td, tn=tn, externs=new_str_hash[ValueRef](), intrinsics=intrinsics, item_ids=new_int_hash[ValueRef](), ast_map=amap, item_symbols=new_int_hash[str](), mutable main_fn=none[ValueRef], link_meta=link::build_link_meta(sess, *crate, output, sha), tag_sizes=tag_sizes, discrims=new_int_hash[ValueRef](), discrim_symbols=new_int_hash[str](), fn_pairs=new_int_hash[ValueRef](), consts=new_int_hash[ValueRef](), obj_methods=new_int_hash[()](), tydescs=tydescs, module_data=new_str_hash[ValueRef](), lltypes=lltypes, glues=glues, names=namegen(0), sha=sha, type_sha1s=sha1s, type_short_names=short_names, tcx=tcx, stats=rec(mutable n_static_tydescs=0u, mutable n_derived_tydescs=0u, mutable n_glues_created=0u, mutable n_null_glues=0u, mutable n_real_glues=0u), upcalls=upcall::declare_upcalls(tn, tydesc_type, taskptr_type, llmod), rust_object_type=T_rust_object(), tydesc_type=tydesc_type, task_type=task_type); auto cx = new_local_ctxt(ccx); collect_items(ccx, crate); collect_tag_ctors(ccx, crate); trans_constants(ccx, crate); trans_mod(cx, crate.node.module); create_crate_map(ccx); emit_tydescs(ccx); // Translate the metadata: write_metadata(cx.ccx, crate); if (ccx.sess.get_opts().stats) { log_err "--- trans stats ---"; log_err #fmt("n_static_tydescs: %u", ccx.stats.n_static_tydescs); log_err #fmt("n_derived_tydescs: %u", ccx.stats.n_derived_tydescs); log_err #fmt("n_glues_created: %u", ccx.stats.n_glues_created); log_err #fmt("n_null_glues: %u", ccx.stats.n_null_glues); log_err #fmt("n_real_glues: %u", ccx.stats.n_real_glues); } ret llmod; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //