d4f7dd6702
This resolves all the problems we had around "normalizing" the representation of a Scalar in case it carries a Pointer value: we can just use Pointer if we want to have a value taht we are sure is already normalized.
279 lines
10 KiB
Rust
279 lines
10 KiB
Rust
//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
|
|
//! types until we arrive at the leaves, with custom handling for primitive types.
|
|
|
|
use rustc_middle::mir::interpret::InterpResult;
|
|
use rustc_middle::ty;
|
|
use rustc_middle::ty::layout::TyAndLayout;
|
|
use rustc_target::abi::{FieldsShape, VariantIdx, Variants};
|
|
|
|
use std::num::NonZeroUsize;
|
|
|
|
use super::{InterpCx, MPlaceTy, Machine, OpTy};
|
|
|
|
// A thing that we can project into, and that has a layout.
|
|
// This wouldn't have to depend on `Machine` but with the current type inference,
|
|
// that's just more convenient to work with (avoids repeating all the `Machine` bounds).
|
|
pub trait Value<'mir, 'tcx, M: Machine<'mir, 'tcx>>: Copy {
|
|
/// Gets this value's layout.
|
|
fn layout(&self) -> TyAndLayout<'tcx>;
|
|
|
|
/// Makes this into an `OpTy`.
|
|
fn to_op(&self, ecx: &InterpCx<'mir, 'tcx, M>)
|
|
-> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>;
|
|
|
|
/// Creates this from an `MPlaceTy`.
|
|
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self;
|
|
|
|
/// Projects to the given enum variant.
|
|
fn project_downcast(
|
|
&self,
|
|
ecx: &InterpCx<'mir, 'tcx, M>,
|
|
variant: VariantIdx,
|
|
) -> InterpResult<'tcx, Self>;
|
|
|
|
/// Projects to the n-th field.
|
|
fn project_field(
|
|
&self,
|
|
ecx: &InterpCx<'mir, 'tcx, M>,
|
|
field: usize,
|
|
) -> InterpResult<'tcx, Self>;
|
|
}
|
|
|
|
// Operands and memory-places are both values.
|
|
// Places in general are not due to `place_field` having to do `force_allocation`.
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M> for OpTy<'tcx, M::PointerTag> {
|
|
#[inline(always)]
|
|
fn layout(&self) -> TyAndLayout<'tcx> {
|
|
self.layout
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn to_op(
|
|
&self,
|
|
_ecx: &InterpCx<'mir, 'tcx, M>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
Ok(*self)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self {
|
|
mplace.into()
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn project_downcast(
|
|
&self,
|
|
ecx: &InterpCx<'mir, 'tcx, M>,
|
|
variant: VariantIdx,
|
|
) -> InterpResult<'tcx, Self> {
|
|
ecx.operand_downcast(self, variant)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn project_field(
|
|
&self,
|
|
ecx: &InterpCx<'mir, 'tcx, M>,
|
|
field: usize,
|
|
) -> InterpResult<'tcx, Self> {
|
|
ecx.operand_field(self, field)
|
|
}
|
|
}
|
|
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M>
|
|
for MPlaceTy<'tcx, M::PointerTag>
|
|
{
|
|
#[inline(always)]
|
|
fn layout(&self) -> TyAndLayout<'tcx> {
|
|
self.layout
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn to_op(
|
|
&self,
|
|
_ecx: &InterpCx<'mir, 'tcx, M>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
Ok((*self).into())
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self {
|
|
mplace
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn project_downcast(
|
|
&self,
|
|
ecx: &InterpCx<'mir, 'tcx, M>,
|
|
variant: VariantIdx,
|
|
) -> InterpResult<'tcx, Self> {
|
|
ecx.mplace_downcast(self, variant)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn project_field(
|
|
&self,
|
|
ecx: &InterpCx<'mir, 'tcx, M>,
|
|
field: usize,
|
|
) -> InterpResult<'tcx, Self> {
|
|
ecx.mplace_field(self, field)
|
|
}
|
|
}
|
|
|
|
macro_rules! make_value_visitor {
|
|
($visitor_trait_name:ident, $($mutability:ident)?) => {
|
|
// How to traverse a value and what to do when we are at the leaves.
|
|
pub trait $visitor_trait_name<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>>: Sized {
|
|
type V: Value<'mir, 'tcx, M>;
|
|
|
|
/// The visitor must have an `InterpCx` in it.
|
|
fn ecx(&$($mutability)? self)
|
|
-> &$($mutability)? InterpCx<'mir, 'tcx, M>;
|
|
|
|
/// `read_discriminant` can be hooked for better error messages.
|
|
#[inline(always)]
|
|
fn read_discriminant(
|
|
&mut self,
|
|
op: &OpTy<'tcx, M::PointerTag>,
|
|
) -> InterpResult<'tcx, VariantIdx> {
|
|
Ok(self.ecx().read_discriminant(op)?.1)
|
|
}
|
|
|
|
// Recursive actions, ready to be overloaded.
|
|
/// Visits the given value, dispatching as appropriate to more specialized visitors.
|
|
#[inline(always)]
|
|
fn visit_value(&mut self, v: &Self::V) -> InterpResult<'tcx>
|
|
{
|
|
self.walk_value(v)
|
|
}
|
|
/// Visits the given value as a union. No automatic recursion can happen here.
|
|
#[inline(always)]
|
|
fn visit_union(&mut self, _v: &Self::V, _fields: NonZeroUsize) -> InterpResult<'tcx>
|
|
{
|
|
Ok(())
|
|
}
|
|
/// Visits this value as an aggregate, you are getting an iterator yielding
|
|
/// all the fields (still in an `InterpResult`, you have to do error handling yourself).
|
|
/// Recurses into the fields.
|
|
#[inline(always)]
|
|
fn visit_aggregate(
|
|
&mut self,
|
|
v: &Self::V,
|
|
fields: impl Iterator<Item=InterpResult<'tcx, Self::V>>,
|
|
) -> InterpResult<'tcx> {
|
|
self.walk_aggregate(v, fields)
|
|
}
|
|
|
|
/// Called each time we recurse down to a field of a "product-like" aggregate
|
|
/// (structs, tuples, arrays and the like, but not enums), passing in old (outer)
|
|
/// and new (inner) value.
|
|
/// This gives the visitor the chance to track the stack of nested fields that
|
|
/// we are descending through.
|
|
#[inline(always)]
|
|
fn visit_field(
|
|
&mut self,
|
|
_old_val: &Self::V,
|
|
_field: usize,
|
|
new_val: &Self::V,
|
|
) -> InterpResult<'tcx> {
|
|
self.visit_value(new_val)
|
|
}
|
|
/// Called when recursing into an enum variant.
|
|
/// This gives the visitor the chance to track the stack of nested fields that
|
|
/// we are descending through.
|
|
#[inline(always)]
|
|
fn visit_variant(
|
|
&mut self,
|
|
_old_val: &Self::V,
|
|
_variant: VariantIdx,
|
|
new_val: &Self::V,
|
|
) -> InterpResult<'tcx> {
|
|
self.visit_value(new_val)
|
|
}
|
|
|
|
// Default recursors. Not meant to be overloaded.
|
|
fn walk_aggregate(
|
|
&mut self,
|
|
v: &Self::V,
|
|
fields: impl Iterator<Item=InterpResult<'tcx, Self::V>>,
|
|
) -> InterpResult<'tcx> {
|
|
// Now iterate over it.
|
|
for (idx, field_val) in fields.enumerate() {
|
|
self.visit_field(v, idx, &field_val?)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx>
|
|
{
|
|
trace!("walk_value: type: {}", v.layout().ty);
|
|
|
|
// Special treatment for special types, where the (static) layout is not sufficient.
|
|
match *v.layout().ty.kind() {
|
|
// If it is a trait object, switch to the real type that was used to create it.
|
|
ty::Dynamic(..) => {
|
|
// immediate trait objects are not a thing
|
|
let op = v.to_op(self.ecx())?;
|
|
let dest = op.assert_mem_place();
|
|
let inner = self.ecx().unpack_dyn_trait(&dest)?.1;
|
|
trace!("walk_value: dyn object layout: {:#?}", inner.layout);
|
|
// recurse with the inner type
|
|
return self.visit_field(&v, 0, &Value::from_mem_place(inner));
|
|
},
|
|
// Slices do not need special handling here: they have `Array` field
|
|
// placement with length 0, so we enter the `Array` case below which
|
|
// indirectly uses the metadata to determine the actual length.
|
|
_ => {},
|
|
};
|
|
|
|
// Visit the fields of this value.
|
|
match v.layout().fields {
|
|
FieldsShape::Primitive => {},
|
|
FieldsShape::Union(fields) => {
|
|
self.visit_union(v, fields)?;
|
|
},
|
|
FieldsShape::Arbitrary { ref offsets, .. } => {
|
|
// FIXME: We collect in a vec because otherwise there are lifetime
|
|
// errors: Projecting to a field needs access to `ecx`.
|
|
let fields: Vec<InterpResult<'tcx, Self::V>> =
|
|
(0..offsets.len()).map(|i| {
|
|
v.project_field(self.ecx(), i)
|
|
})
|
|
.collect();
|
|
self.visit_aggregate(v, fields.into_iter())?;
|
|
},
|
|
FieldsShape::Array { .. } => {
|
|
// Let's get an mplace first.
|
|
let op = v.to_op(self.ecx())?;
|
|
let mplace = op.assert_mem_place();
|
|
// Now we can go over all the fields.
|
|
// This uses the *run-time length*, i.e., if we are a slice,
|
|
// the dynamic info from the metadata is used.
|
|
let iter = self.ecx().mplace_array_fields(&mplace)?
|
|
.map(|f| f.and_then(|f| {
|
|
Ok(Value::from_mem_place(f))
|
|
}));
|
|
self.visit_aggregate(v, iter)?;
|
|
}
|
|
}
|
|
|
|
match v.layout().variants {
|
|
// If this is a multi-variant layout, find the right variant and proceed
|
|
// with *its* fields.
|
|
Variants::Multiple { .. } => {
|
|
let op = v.to_op(self.ecx())?;
|
|
let idx = self.read_discriminant(&op)?;
|
|
let inner = v.project_downcast(self.ecx(), idx)?;
|
|
trace!("walk_value: variant layout: {:#?}", inner.layout());
|
|
// recurse with the inner type
|
|
self.visit_variant(v, idx, &inner)
|
|
}
|
|
// For single-variant layouts, we already did anything there is to do.
|
|
Variants::Single { .. } => Ok(())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
make_value_visitor!(ValueVisitor,);
|
|
make_value_visitor!(MutValueVisitor, mut);
|