//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound //! types until we arrive at the leaves, with custom handling for primitive types. use rustc_middle::mir::interpret::InterpResult; use rustc_middle::ty; use rustc_middle::ty::layout::TyAndLayout; use rustc_target::abi::{FieldsShape, VariantIdx, Variants}; use std::num::NonZeroUsize; use super::{InterpCx, MPlaceTy, Machine, OpTy}; // A thing that we can project into, and that has a layout. // This wouldn't have to depend on `Machine` but with the current type inference, // that's just more convenient to work with (avoids repeating all the `Machine` bounds). pub trait Value<'mir, 'tcx, M: Machine<'mir, 'tcx>>: Copy { /// Gets this value's layout. fn layout(&self) -> TyAndLayout<'tcx>; /// Makes this into an `OpTy`. fn to_op(&self, ecx: &InterpCx<'mir, 'tcx, M>) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>; /// Creates this from an `MPlaceTy`. fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self; /// Projects to the given enum variant. fn project_downcast( &self, ecx: &InterpCx<'mir, 'tcx, M>, variant: VariantIdx, ) -> InterpResult<'tcx, Self>; /// Projects to the n-th field. fn project_field( &self, ecx: &InterpCx<'mir, 'tcx, M>, field: usize, ) -> InterpResult<'tcx, Self>; } // Operands and memory-places are both values. // Places in general are not due to `place_field` having to do `force_allocation`. impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M> for OpTy<'tcx, M::PointerTag> { #[inline(always)] fn layout(&self) -> TyAndLayout<'tcx> { self.layout } #[inline(always)] fn to_op( &self, _ecx: &InterpCx<'mir, 'tcx, M>, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { Ok(*self) } #[inline(always)] fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self { mplace.into() } #[inline(always)] fn project_downcast( &self, ecx: &InterpCx<'mir, 'tcx, M>, variant: VariantIdx, ) -> InterpResult<'tcx, Self> { ecx.operand_downcast(self, variant) } #[inline(always)] fn project_field( &self, ecx: &InterpCx<'mir, 'tcx, M>, field: usize, ) -> InterpResult<'tcx, Self> { ecx.operand_field(self, field) } } impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M> for MPlaceTy<'tcx, M::PointerTag> { #[inline(always)] fn layout(&self) -> TyAndLayout<'tcx> { self.layout } #[inline(always)] fn to_op( &self, _ecx: &InterpCx<'mir, 'tcx, M>, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { Ok((*self).into()) } #[inline(always)] fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self { mplace } #[inline(always)] fn project_downcast( &self, ecx: &InterpCx<'mir, 'tcx, M>, variant: VariantIdx, ) -> InterpResult<'tcx, Self> { ecx.mplace_downcast(self, variant) } #[inline(always)] fn project_field( &self, ecx: &InterpCx<'mir, 'tcx, M>, field: usize, ) -> InterpResult<'tcx, Self> { ecx.mplace_field(self, field) } } macro_rules! make_value_visitor { ($visitor_trait_name:ident, $($mutability:ident)?) => { // How to traverse a value and what to do when we are at the leaves. pub trait $visitor_trait_name<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>>: Sized { type V: Value<'mir, 'tcx, M>; /// The visitor must have an `InterpCx` in it. fn ecx(&$($mutability)? self) -> &$($mutability)? InterpCx<'mir, 'tcx, M>; /// `read_discriminant` can be hooked for better error messages. #[inline(always)] fn read_discriminant( &mut self, op: &OpTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, VariantIdx> { Ok(self.ecx().read_discriminant(op)?.1) } // Recursive actions, ready to be overloaded. /// Visits the given value, dispatching as appropriate to more specialized visitors. #[inline(always)] fn visit_value(&mut self, v: &Self::V) -> InterpResult<'tcx> { self.walk_value(v) } /// Visits the given value as a union. No automatic recursion can happen here. #[inline(always)] fn visit_union(&mut self, _v: &Self::V, _fields: NonZeroUsize) -> InterpResult<'tcx> { Ok(()) } /// Visits this value as an aggregate, you are getting an iterator yielding /// all the fields (still in an `InterpResult`, you have to do error handling yourself). /// Recurses into the fields. #[inline(always)] fn visit_aggregate( &mut self, v: &Self::V, fields: impl Iterator>, ) -> InterpResult<'tcx> { self.walk_aggregate(v, fields) } /// Called each time we recurse down to a field of a "product-like" aggregate /// (structs, tuples, arrays and the like, but not enums), passing in old (outer) /// and new (inner) value. /// This gives the visitor the chance to track the stack of nested fields that /// we are descending through. #[inline(always)] fn visit_field( &mut self, _old_val: &Self::V, _field: usize, new_val: &Self::V, ) -> InterpResult<'tcx> { self.visit_value(new_val) } /// Called when recursing into an enum variant. /// This gives the visitor the chance to track the stack of nested fields that /// we are descending through. #[inline(always)] fn visit_variant( &mut self, _old_val: &Self::V, _variant: VariantIdx, new_val: &Self::V, ) -> InterpResult<'tcx> { self.visit_value(new_val) } // Default recursors. Not meant to be overloaded. fn walk_aggregate( &mut self, v: &Self::V, fields: impl Iterator>, ) -> InterpResult<'tcx> { // Now iterate over it. for (idx, field_val) in fields.enumerate() { self.visit_field(v, idx, &field_val?)?; } Ok(()) } fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx> { trace!("walk_value: type: {}", v.layout().ty); // Special treatment for special types, where the (static) layout is not sufficient. match *v.layout().ty.kind() { // If it is a trait object, switch to the real type that was used to create it. ty::Dynamic(..) => { // immediate trait objects are not a thing let op = v.to_op(self.ecx())?; let dest = op.assert_mem_place(); let inner = self.ecx().unpack_dyn_trait(&dest)?.1; trace!("walk_value: dyn object layout: {:#?}", inner.layout); // recurse with the inner type return self.visit_field(&v, 0, &Value::from_mem_place(inner)); }, // Slices do not need special handling here: they have `Array` field // placement with length 0, so we enter the `Array` case below which // indirectly uses the metadata to determine the actual length. _ => {}, }; // Visit the fields of this value. match v.layout().fields { FieldsShape::Primitive => {}, FieldsShape::Union(fields) => { self.visit_union(v, fields)?; }, FieldsShape::Arbitrary { ref offsets, .. } => { // FIXME: We collect in a vec because otherwise there are lifetime // errors: Projecting to a field needs access to `ecx`. let fields: Vec> = (0..offsets.len()).map(|i| { v.project_field(self.ecx(), i) }) .collect(); self.visit_aggregate(v, fields.into_iter())?; }, FieldsShape::Array { .. } => { // Let's get an mplace first. let op = v.to_op(self.ecx())?; let mplace = op.assert_mem_place(); // Now we can go over all the fields. // This uses the *run-time length*, i.e., if we are a slice, // the dynamic info from the metadata is used. let iter = self.ecx().mplace_array_fields(&mplace)? .map(|f| f.and_then(|f| { Ok(Value::from_mem_place(f)) })); self.visit_aggregate(v, iter)?; } } match v.layout().variants { // If this is a multi-variant layout, find the right variant and proceed // with *its* fields. Variants::Multiple { .. } => { let op = v.to_op(self.ecx())?; let idx = self.read_discriminant(&op)?; let inner = v.project_downcast(self.ecx(), idx)?; trace!("walk_value: variant layout: {:#?}", inner.layout()); // recurse with the inner type self.visit_variant(v, idx, &inner) } // For single-variant layouts, we already did anything there is to do. Variants::Single { .. } => Ok(()) } } } } } make_value_visitor!(ValueVisitor,); make_value_visitor!(MutValueVisitor, mut);