rust/src/libstd/sync/rwlock.rs
Alex Crichton 71d4e77db8 std: Rewrite the sync module
This commit is a reimplementation of `std::sync` to be based on the
system-provided primitives wherever possible. The previous implementation was
fundamentally built on top of channels, and as part of the runtime reform it has
become clear that this is not the level of abstraction that the standard level
should be providing. This rewrite aims to provide as thin of a shim as possible
on top of the system primitives in order to make them safe.

The overall interface of the `std::sync` module has in general not changed, but
there are a few important distinctions, highlighted below:

* The condition variable type, `Condvar`, has been separated out of a `Mutex`.
  A condition variable is now an entirely separate type. This separation
  benefits users who only use one mutex, and provides a clearer distinction of
  who's responsible for managing condition variables (the application).

* All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of
  system primitives rather than using a custom implementation. The `Once`,
  `Barrier`, and `Semaphore` types are still built upon these abstractions of
  the system primitives.

* The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and
  constant initializer corresponding to them. These are provided primarily for C
  FFI interoperation, but are often useful to otherwise simply have a global
  lock. The types, however, will leak memory unless `destroy()` is called on
  them, which is clearly documented.

* The `Condvar` implementation for an `RWLock` write lock has been removed. This
  may be added back in the future with a userspace implementation, but this
  commit is focused on exposing the system primitives first.

* The fundamental architecture of this design is to provide two separate layers.
  The first layer is that exposed by `sys_common` which is a cross-platform
  bare-metal abstraction of the system synchronization primitives. No attempt is
  made at making this layer safe, and it is quite unsafe to use! It is currently
  not exported as part of the API of the standard library, but the stabilization
  of the `sys` module will ensure that these will be exposed in time. The
  purpose of this layer is to provide the core cross-platform abstractions if
  necessary to implementors.

  The second layer is the layer provided by `std::sync` which is intended to be
  the thinnest possible layer on top of `sys_common` which is entirely safe to
  use. There are a few concerns which need to be addressed when making these
  system primitives safe:

    * Once used, the OS primitives can never be **moved**. This means that they
      essentially need to have a stable address. The static primitives use
      `&'static self` to enforce this, and the non-static primitives all use a
      `Box` to provide this guarantee.

    * Poisoning is leveraged to ensure that invalid data is not accessible from
      other tasks after one has panicked.

  In addition to these overall blanket safety limitations, each primitive has a
  few restrictions of its own:

    * Mutexes and rwlocks can only be unlocked from the same thread that they
      were locked by. This is achieved through RAII lock guards which cannot be
      sent across threads.

    * Mutexes and rwlocks can only be unlocked if they were previously locked.
      This is achieved by not exposing an unlocking method.

    * A condition variable can only be waited on with a locked mutex. This is
      achieved by requiring a `MutexGuard` in the `wait()` method.

    * A condition variable cannot be used concurrently with more than one mutex.
      This is guaranteed by dynamically binding a condition variable to
      precisely one mutex for its entire lifecycle. This restriction may be able
      to be relaxed in the future (a mutex is unbound when no threads are
      waiting on the condvar), but for now it is sufficient to guarantee safety.

* Condvars now support timeouts for their blocking operations. The
  implementation for these operations is provided by the system.

Due to the modification of the `Condvar` API, removal of the `std::sync::mutex`
API, and reimplementation, this is a breaking change. Most code should be fairly
easy to port using the examples in the documentation of these primitives.

[breaking-change]

Closes #17094
Closes #18003
2014-12-05 00:53:22 -08:00

515 lines
15 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::*;
use kinds::marker;
use cell::UnsafeCell;
use sys_common::rwlock as sys;
use sync::poison;
/// A reader-writer lock
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// RWLocks, like Mutexes, will become poisoned on panics. Note, however, that
/// an RWLock may only be poisoned if a panic occurs while it is locked
/// exclusively (write mode). If a panic occurs in any reader, then the lock
/// will not be poisoned.
///
/// # Example
///
/// ```
/// use std::sync::RWLock;
///
/// let lock = RWLock::new(5i);
///
/// // many reader locks can be held at once
/// {
/// let r1 = lock.read();
/// let r2 = lock.read();
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
/// let mut w = lock.write();
/// *w += 1;
/// assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub struct RWLock<T> {
inner: Box<StaticRWLock>,
data: UnsafeCell<T>,
}
/// Structure representing a staticaly allocated RWLock.
///
/// This structure is intended to be used inside of a `static` and will provide
/// automatic global access as well as lazy initialization. The internal
/// resources of this RWLock, however, must be manually deallocated.
///
/// # Example
///
/// ```
/// use std::sync::{StaticRWLock, RWLOCK_INIT};
///
/// static LOCK: StaticRWLock = RWLOCK_INIT;
///
/// {
/// let _g = LOCK.read();
/// // ... shared read access
/// }
/// {
/// let _g = LOCK.write();
/// // ... exclusive write access
/// }
/// unsafe { LOCK.destroy() } // free all resources
/// ```
pub struct StaticRWLock {
inner: sys::RWLock,
poison: UnsafeCell<poison::Flag>,
}
/// Constant initialization for a statically-initialized rwlock.
pub const RWLOCK_INIT: StaticRWLock = StaticRWLock {
inner: sys::RWLOCK_INIT,
poison: UnsafeCell { value: poison::Flag { failed: false } },
};
/// RAII structure used to release the shared read access of a lock when
/// dropped.
#[must_use]
pub struct RWLockReadGuard<'a, T: 'a> {
__lock: &'a RWLock<T>,
__guard: StaticRWLockReadGuard,
}
/// RAII structure used to release the exclusive write access of a lock when
/// dropped.
#[must_use]
pub struct RWLockWriteGuard<'a, T: 'a> {
__lock: &'a RWLock<T>,
__guard: StaticRWLockWriteGuard,
}
/// RAII structure used to release the shared read access of a lock when
/// dropped.
#[must_use]
pub struct StaticRWLockReadGuard {
lock: &'static sys::RWLock,
marker: marker::NoSend,
}
/// RAII structure used to release the exclusive write access of a lock when
/// dropped.
#[must_use]
pub struct StaticRWLockWriteGuard {
lock: &'static sys::RWLock,
marker: marker::NoSend,
poison: poison::Guard<'static>,
}
impl<T: Send + Sync> RWLock<T> {
/// Creates a new instance of an RWLock which is unlocked and read to go.
pub fn new(t: T) -> RWLock<T> {
RWLock { inner: box RWLOCK_INIT, data: UnsafeCell::new(t) }
}
/// Locks this rwlock with shared read access, blocking the current thread
/// until it can be acquired.
///
/// The calling thread will be blocked until there are no more writers which
/// hold the lock. There may be other readers currently inside the lock when
/// this method returns. This method does not provide any guarantees with
/// respect to the ordering of whether contentious readers or writers will
/// acquire the lock first.
///
/// Returns an RAII guard which will release this thread's shared access
/// once it is dropped.
///
/// # Panics
///
/// This function will panic if the RWLock is poisoned. An RWLock is
/// poisoned whenever a writer panics while holding an exclusive lock. The
/// panic will occur immediately after the lock has been acquired.
#[inline]
pub fn read(&self) -> RWLockReadGuard<T> {
unsafe {
let lock: &'static StaticRWLock = &*(&*self.inner as *const _);
RWLockReadGuard::new(self, lock.read())
}
}
/// Attempt to acquire this lock with shared read access.
///
/// This function will never block and will return immediately if `read`
/// would otherwise succeed. Returns `Some` of an RAII guard which will
/// release the shared access of this thread when dropped, or `None` if the
/// access could not be granted. This method does not provide any
/// guarantees with respect to the ordering of whether contentious readers
/// or writers will acquire the lock first.
///
/// # Panics
///
/// This function will panic if the RWLock is poisoned. An RWLock is
/// poisoned whenever a writer panics while holding an exclusive lock. A
/// panic will only occur if the lock is acquired.
#[inline]
pub fn try_read(&self) -> Option<RWLockReadGuard<T>> {
unsafe {
let lock: &'static StaticRWLock = &*(&*self.inner as *const _);
lock.try_read().map(|guard| {
RWLockReadGuard::new(self, guard)
})
}
}
/// Lock this rwlock with exclusive write access, blocking the current
/// thread until it can be acquired.
///
/// This function will not return while other writers or other readers
/// currently have access to the lock.
///
/// Returns an RAII guard which will drop the write access of this rwlock
/// when dropped.
///
/// # Panics
///
/// This function will panic if the RWLock is poisoned. An RWLock is
/// poisoned whenever a writer panics while holding an exclusive lock. The
/// panic will occur when the lock is acquired.
#[inline]
pub fn write(&self) -> RWLockWriteGuard<T> {
unsafe {
let lock: &'static StaticRWLock = &*(&*self.inner as *const _);
RWLockWriteGuard::new(self, lock.write())
}
}
/// Attempt to lock this rwlock with exclusive write access.
///
/// This function does not ever block, and it will return `None` if a call
/// to `write` would otherwise block. If successful, an RAII guard is
/// returned.
///
/// # Panics
///
/// This function will panic if the RWLock is poisoned. An RWLock is
/// poisoned whenever a writer panics while holding an exclusive lock. A
/// panic will only occur if the lock is acquired.
#[inline]
pub fn try_write(&self) -> Option<RWLockWriteGuard<T>> {
unsafe {
let lock: &'static StaticRWLock = &*(&*self.inner as *const _);
lock.try_write().map(|guard| {
RWLockWriteGuard::new(self, guard)
})
}
}
}
#[unsafe_destructor]
impl<T> Drop for RWLock<T> {
fn drop(&mut self) {
unsafe { self.inner.inner.destroy() }
}
}
impl StaticRWLock {
/// Locks this rwlock with shared read access, blocking the current thread
/// until it can be acquired.
///
/// See `RWLock::read`.
#[inline]
pub fn read(&'static self) -> StaticRWLockReadGuard {
unsafe { self.inner.read() }
StaticRWLockReadGuard::new(self)
}
/// Attempt to acquire this lock with shared read access.
///
/// See `RWLock::try_read`.
#[inline]
pub fn try_read(&'static self) -> Option<StaticRWLockReadGuard> {
if unsafe { self.inner.try_read() } {
Some(StaticRWLockReadGuard::new(self))
} else {
None
}
}
/// Lock this rwlock with exclusive write access, blocking the current
/// thread until it can be acquired.
///
/// See `RWLock::write`.
#[inline]
pub fn write(&'static self) -> StaticRWLockWriteGuard {
unsafe { self.inner.write() }
StaticRWLockWriteGuard::new(self)
}
/// Attempt to lock this rwlock with exclusive write access.
///
/// See `RWLock::try_write`.
#[inline]
pub fn try_write(&'static self) -> Option<StaticRWLockWriteGuard> {
if unsafe { self.inner.try_write() } {
Some(StaticRWLockWriteGuard::new(self))
} else {
None
}
}
/// Deallocate all resources associated with this static lock.
///
/// This method is unsafe to call as there is no guarantee that there are no
/// active users of the lock, and this also doesn't prevent any future users
/// of this lock. This method is required to be called to not leak memory on
/// all platforms.
pub unsafe fn destroy(&'static self) {
self.inner.destroy()
}
}
impl<'rwlock, T> RWLockReadGuard<'rwlock, T> {
fn new(lock: &RWLock<T>, guard: StaticRWLockReadGuard)
-> RWLockReadGuard<T> {
RWLockReadGuard { __lock: lock, __guard: guard }
}
}
impl<'rwlock, T> RWLockWriteGuard<'rwlock, T> {
fn new(lock: &RWLock<T>, guard: StaticRWLockWriteGuard)
-> RWLockWriteGuard<T> {
RWLockWriteGuard { __lock: lock, __guard: guard }
}
}
impl<'rwlock, T> Deref<T> for RWLockReadGuard<'rwlock, T> {
fn deref(&self) -> &T { unsafe { &*self.__lock.data.get() } }
}
impl<'rwlock, T> Deref<T> for RWLockWriteGuard<'rwlock, T> {
fn deref(&self) -> &T { unsafe { &*self.__lock.data.get() } }
}
impl<'rwlock, T> DerefMut<T> for RWLockWriteGuard<'rwlock, T> {
fn deref_mut(&mut self) -> &mut T { unsafe { &mut *self.__lock.data.get() } }
}
impl StaticRWLockReadGuard {
fn new(lock: &'static StaticRWLock) -> StaticRWLockReadGuard {
let guard = StaticRWLockReadGuard {
lock: &lock.inner,
marker: marker::NoSend,
};
unsafe { (*lock.poison.get()).borrow().check("rwlock"); }
return guard;
}
}
impl StaticRWLockWriteGuard {
fn new(lock: &'static StaticRWLock) -> StaticRWLockWriteGuard {
unsafe {
let guard = StaticRWLockWriteGuard {
lock: &lock.inner,
marker: marker::NoSend,
poison: (*lock.poison.get()).borrow(),
};
guard.poison.check("rwlock");
return guard;
}
}
}
#[unsafe_destructor]
impl Drop for StaticRWLockReadGuard {
fn drop(&mut self) {
unsafe { self.lock.read_unlock(); }
}
}
#[unsafe_destructor]
impl Drop for StaticRWLockWriteGuard {
fn drop(&mut self) {
self.poison.done();
unsafe { self.lock.write_unlock(); }
}
}
#[cfg(test)]
mod tests {
use prelude::*;
use rand::{mod, Rng};
use task;
use sync::{Arc, RWLock, StaticRWLock, RWLOCK_INIT};
#[test]
fn smoke() {
let l = RWLock::new(());
drop(l.read());
drop(l.write());
drop((l.read(), l.read()));
drop(l.write());
}
#[test]
fn static_smoke() {
static R: StaticRWLock = RWLOCK_INIT;
drop(R.read());
drop(R.write());
drop((R.read(), R.read()));
drop(R.write());
unsafe { R.destroy(); }
}
#[test]
fn frob() {
static R: StaticRWLock = RWLOCK_INIT;
static N: uint = 10;
static M: uint = 1000;
let (tx, rx) = channel::<()>();
for _ in range(0, N) {
let tx = tx.clone();
spawn(proc() {
let mut rng = rand::task_rng();
for _ in range(0, M) {
if rng.gen_weighted_bool(N) {
drop(R.write());
} else {
drop(R.read());
}
}
drop(tx);
});
}
drop(tx);
let _ = rx.recv_opt();
unsafe { R.destroy(); }
}
#[test]
#[should_fail]
fn test_rw_arc_poison_wr() {
let arc = Arc::new(RWLock::new(1i));
let arc2 = arc.clone();
let _ = task::try(proc() {
let lock = arc2.write();
assert_eq!(*lock, 2);
});
let lock = arc.read();
assert_eq!(*lock, 1);
}
#[test]
#[should_fail]
fn test_rw_arc_poison_ww() {
let arc = Arc::new(RWLock::new(1i));
let arc2 = arc.clone();
let _ = task::try(proc() {
let lock = arc2.write();
assert_eq!(*lock, 2);
});
let lock = arc.write();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc_no_poison_rr() {
let arc = Arc::new(RWLock::new(1i));
let arc2 = arc.clone();
let _ = task::try(proc() {
let lock = arc2.read();
assert_eq!(*lock, 2);
});
let lock = arc.read();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc_no_poison_rw() {
let arc = Arc::new(RWLock::new(1i));
let arc2 = arc.clone();
let _ = task::try(proc() {
let lock = arc2.read();
assert_eq!(*lock, 2);
});
let lock = arc.write();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc() {
let arc = Arc::new(RWLock::new(0i));
let arc2 = arc.clone();
let (tx, rx) = channel();
task::spawn(proc() {
let mut lock = arc2.write();
for _ in range(0u, 10) {
let tmp = *lock;
*lock = -1;
task::deschedule();
*lock = tmp + 1;
}
tx.send(());
});
// Readers try to catch the writer in the act
let mut children = Vec::new();
for _ in range(0u, 5) {
let arc3 = arc.clone();
children.push(task::try_future(proc() {
let lock = arc3.read();
assert!(*lock >= 0);
}));
}
// Wait for children to pass their asserts
for r in children.iter_mut() {
assert!(r.get_ref().is_ok());
}
// Wait for writer to finish
rx.recv();
let lock = arc.read();
assert_eq!(*lock, 10);
}
#[test]
fn test_rw_arc_access_in_unwind() {
let arc = Arc::new(RWLock::new(1i));
let arc2 = arc.clone();
let _ = task::try::<()>(proc() {
struct Unwinder {
i: Arc<RWLock<int>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
let mut lock = self.i.write();
*lock += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
});
let lock = arc.read();
assert_eq!(*lock, 2);
}
}