491 lines
18 KiB
Rust
491 lines
18 KiB
Rust
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use super::metadata::file_metadata;
|
|
use super::utils::DIB;
|
|
|
|
use llvm;
|
|
use llvm::debuginfo::{DIScope, DISubprogram};
|
|
use trans::common::CrateContext;
|
|
use middle::pat_util;
|
|
use rustc::util::nodemap::NodeMap;
|
|
|
|
use libc::c_uint;
|
|
use syntax::codemap::{Span, Pos};
|
|
use syntax::{ast, codemap};
|
|
|
|
use rustc_front;
|
|
use rustc_front::hir;
|
|
|
|
// This procedure builds the *scope map* for a given function, which maps any
|
|
// given ast::NodeId in the function's AST to the correct DIScope metadata instance.
|
|
//
|
|
// This builder procedure walks the AST in execution order and keeps track of
|
|
// what belongs to which scope, creating DIScope DIEs along the way, and
|
|
// introducing *artificial* lexical scope descriptors where necessary. These
|
|
// artificial scopes allow GDB to correctly handle name shadowing.
|
|
pub fn create_scope_map(cx: &CrateContext,
|
|
args: &[hir::Arg],
|
|
fn_entry_block: &hir::Block,
|
|
fn_metadata: DISubprogram,
|
|
fn_ast_id: ast::NodeId)
|
|
-> NodeMap<DIScope> {
|
|
let mut scope_map = NodeMap();
|
|
|
|
let def_map = &cx.tcx().def_map;
|
|
|
|
let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, name: None });
|
|
scope_map.insert(fn_ast_id, fn_metadata);
|
|
|
|
// Push argument identifiers onto the stack so arguments integrate nicely
|
|
// with variable shadowing.
|
|
for arg in args {
|
|
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| {
|
|
scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata,
|
|
name: Some(path1.node.name) });
|
|
scope_map.insert(node_id, fn_metadata);
|
|
})
|
|
}
|
|
|
|
// Clang creates a separate scope for function bodies, so let's do this too.
|
|
with_new_scope(cx,
|
|
fn_entry_block.span,
|
|
&mut scope_stack,
|
|
&mut scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, fn_entry_block, scope_stack, scope_map);
|
|
});
|
|
|
|
return scope_map;
|
|
}
|
|
|
|
// local helper functions for walking the AST.
|
|
fn with_new_scope<F>(cx: &CrateContext,
|
|
scope_span: Span,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>,
|
|
inner_walk: F) where
|
|
F: FnOnce(&CrateContext, &mut Vec<ScopeStackEntry>, &mut NodeMap<DIScope>),
|
|
{
|
|
// Create a new lexical scope and push it onto the stack
|
|
let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo);
|
|
let file_metadata = file_metadata(cx, &loc.file.name);
|
|
let parent_scope = scope_stack.last().unwrap().scope_metadata;
|
|
|
|
let scope_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateLexicalBlock(
|
|
DIB(cx),
|
|
parent_scope,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
loc.col.to_usize() as c_uint)
|
|
};
|
|
|
|
scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: None });
|
|
|
|
inner_walk(cx, scope_stack, scope_map);
|
|
|
|
// pop artificial scopes
|
|
while scope_stack.last().unwrap().name.is_some() {
|
|
scope_stack.pop();
|
|
}
|
|
|
|
if scope_stack.last().unwrap().scope_metadata != scope_metadata {
|
|
cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management.");
|
|
}
|
|
|
|
scope_stack.pop();
|
|
}
|
|
|
|
struct ScopeStackEntry {
|
|
scope_metadata: DIScope,
|
|
name: Option<ast::Name>
|
|
}
|
|
|
|
fn walk_block(cx: &CrateContext,
|
|
block: &hir::Block,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
// The interesting things here are statements and the concluding expression.
|
|
for statement in &block.stmts {
|
|
scope_map.insert(rustc_front::util::stmt_id(&**statement),
|
|
scope_stack.last().unwrap().scope_metadata);
|
|
|
|
match statement.node {
|
|
hir::StmtDecl(ref decl, _) =>
|
|
walk_decl(cx, &**decl, scope_stack, scope_map),
|
|
hir::StmtExpr(ref exp, _) |
|
|
hir::StmtSemi(ref exp, _) =>
|
|
walk_expr(cx, &**exp, scope_stack, scope_map),
|
|
}
|
|
}
|
|
|
|
if let Some(ref exp) = block.expr {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
fn walk_decl(cx: &CrateContext,
|
|
decl: &hir::Decl,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
match *decl {
|
|
codemap::Spanned { node: hir::DeclLocal(ref local), .. } => {
|
|
scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
walk_pattern(cx, &*local.pat, scope_stack, scope_map);
|
|
|
|
if let Some(ref exp) = local.init {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
fn walk_pattern(cx: &CrateContext,
|
|
pat: &hir::Pat,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
|
|
let def_map = &cx.tcx().def_map;
|
|
|
|
// Unfortunately, we cannot just use pat_util::pat_bindings() or
|
|
// ast_util::walk_pat() here because we have to visit *all* nodes in
|
|
// order to put them into the scope map. The above functions don't do that.
|
|
match pat.node {
|
|
hir::PatIdent(_, ref path1, ref sub_pat_opt) => {
|
|
|
|
// Check if this is a binding. If so we need to put it on the
|
|
// scope stack and maybe introduce an artificial scope
|
|
if pat_util::pat_is_binding(def_map, &*pat) {
|
|
|
|
let name = path1.node.name;
|
|
|
|
// LLVM does not properly generate 'DW_AT_start_scope' fields
|
|
// for variable DIEs. For this reason we have to introduce
|
|
// an artificial scope at bindings whenever a variable with
|
|
// the same name is declared in *any* parent scope.
|
|
//
|
|
// Otherwise the following error occurs:
|
|
//
|
|
// let x = 10;
|
|
//
|
|
// do_something(); // 'gdb print x' correctly prints 10
|
|
//
|
|
// {
|
|
// do_something(); // 'gdb print x' prints 0, because it
|
|
// // already reads the uninitialized 'x'
|
|
// // from the next line...
|
|
// let x = 100;
|
|
// do_something(); // 'gdb print x' correctly prints 100
|
|
// }
|
|
|
|
// Is there already a binding with that name?
|
|
// N.B.: this comparison must be UNhygienic... because
|
|
// gdb knows nothing about the context, so any two
|
|
// variables with the same name will cause the problem.
|
|
let need_new_scope = scope_stack
|
|
.iter()
|
|
.any(|entry| entry.name == Some(name));
|
|
|
|
if need_new_scope {
|
|
// Create a new lexical scope and push it onto the stack
|
|
let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo);
|
|
let file_metadata = file_metadata(cx, &loc.file.name);
|
|
let parent_scope = scope_stack.last().unwrap().scope_metadata;
|
|
|
|
let scope_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateLexicalBlock(
|
|
DIB(cx),
|
|
parent_scope,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
loc.col.to_usize() as c_uint)
|
|
};
|
|
|
|
scope_stack.push(ScopeStackEntry {
|
|
scope_metadata: scope_metadata,
|
|
name: Some(name)
|
|
});
|
|
|
|
} else {
|
|
// Push a new entry anyway so the name can be found
|
|
let prev_metadata = scope_stack.last().unwrap().scope_metadata;
|
|
scope_stack.push(ScopeStackEntry {
|
|
scope_metadata: prev_metadata,
|
|
name: Some(name)
|
|
});
|
|
}
|
|
}
|
|
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
if let Some(ref sub_pat) = *sub_pat_opt {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
hir::PatWild(_) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
}
|
|
|
|
hir::PatEnum(_, ref sub_pats_opt) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
if let Some(ref sub_pats) = *sub_pats_opt {
|
|
for p in sub_pats {
|
|
walk_pattern(cx, &**p, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
|
|
hir::PatQPath(..) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
}
|
|
|
|
hir::PatStruct(_, ref field_pats, _) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for &codemap::Spanned {
|
|
node: hir::FieldPat { pat: ref sub_pat, .. },
|
|
..
|
|
} in field_pats {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
hir::PatTup(ref sub_pats) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for sub_pat in sub_pats {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
hir::PatBox(ref sub_pat) | hir::PatRegion(ref sub_pat, _) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::PatLit(ref exp) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::PatRange(ref exp1, ref exp2) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_expr(cx, &**exp1, scope_stack, scope_map);
|
|
walk_expr(cx, &**exp2, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for sub_pat in front_sub_pats {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
if let Some(ref sub_pat) = *middle_sub_pats {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for sub_pat in back_sub_pats {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_expr(cx: &CrateContext,
|
|
exp: &hir::Expr,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
|
|
scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
match exp.node {
|
|
hir::ExprLit(_) |
|
|
hir::ExprBreak(_) |
|
|
hir::ExprAgain(_) |
|
|
hir::ExprPath(..) => {}
|
|
|
|
hir::ExprCast(ref sub_exp, _) |
|
|
hir::ExprAddrOf(_, ref sub_exp) |
|
|
hir::ExprField(ref sub_exp, _) |
|
|
hir::ExprTupField(ref sub_exp, _) |
|
|
hir::ExprParen(ref sub_exp) =>
|
|
walk_expr(cx, &**sub_exp, scope_stack, scope_map),
|
|
|
|
hir::ExprBox(ref place, ref sub_expr) => {
|
|
place.as_ref().map(
|
|
|e| walk_expr(cx, &**e, scope_stack, scope_map));
|
|
walk_expr(cx, &**sub_expr, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::ExprRet(ref exp_opt) => match *exp_opt {
|
|
Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map),
|
|
None => ()
|
|
},
|
|
|
|
hir::ExprUnary(_, ref sub_exp) => {
|
|
walk_expr(cx, &**sub_exp, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::ExprAssignOp(_, ref lhs, ref rhs) |
|
|
hir::ExprIndex(ref lhs, ref rhs) |
|
|
hir::ExprBinary(_, ref lhs, ref rhs) => {
|
|
walk_expr(cx, &**lhs, scope_stack, scope_map);
|
|
walk_expr(cx, &**rhs, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::ExprRange(ref start, ref end) => {
|
|
start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
|
|
end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
|
|
}
|
|
|
|
hir::ExprVec(ref init_expressions) |
|
|
hir::ExprTup(ref init_expressions) => {
|
|
for ie in init_expressions {
|
|
walk_expr(cx, &**ie, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
hir::ExprAssign(ref sub_exp1, ref sub_exp2) |
|
|
hir::ExprRepeat(ref sub_exp1, ref sub_exp2) => {
|
|
walk_expr(cx, &**sub_exp1, scope_stack, scope_map);
|
|
walk_expr(cx, &**sub_exp2, scope_stack, scope_map);
|
|
}
|
|
|
|
hir::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => {
|
|
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
then_block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, &**then_block, scope_stack, scope_map);
|
|
});
|
|
|
|
match *opt_else_exp {
|
|
Some(ref else_exp) =>
|
|
walk_expr(cx, &**else_exp, scope_stack, scope_map),
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
hir::ExprWhile(ref cond_exp, ref loop_body, _) => {
|
|
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
loop_body.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, &**loop_body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
hir::ExprLoop(ref block, _) |
|
|
hir::ExprBlock(ref block) => {
|
|
with_new_scope(cx,
|
|
block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, &**block, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
hir::ExprClosure(_, ref decl, ref block) => {
|
|
with_new_scope(cx,
|
|
block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
for &hir::Arg { pat: ref pattern, .. } in &decl.inputs {
|
|
walk_pattern(cx, &**pattern, scope_stack, scope_map);
|
|
}
|
|
|
|
walk_block(cx, &**block, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
hir::ExprCall(ref fn_exp, ref args) => {
|
|
walk_expr(cx, &**fn_exp, scope_stack, scope_map);
|
|
|
|
for arg_exp in args {
|
|
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
hir::ExprMethodCall(_, _, ref args) => {
|
|
for arg_exp in args {
|
|
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
hir::ExprMatch(ref discriminant_exp, ref arms, _) => {
|
|
walk_expr(cx, &**discriminant_exp, scope_stack, scope_map);
|
|
|
|
// For each arm we have to first walk the pattern as these might
|
|
// introduce new artificial scopes. It should be sufficient to
|
|
// walk only one pattern per arm, as they all must contain the
|
|
// same binding names.
|
|
|
|
for arm_ref in arms {
|
|
let arm_span = arm_ref.pats[0].span;
|
|
|
|
with_new_scope(cx,
|
|
arm_span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
for pat in &arm_ref.pats {
|
|
walk_pattern(cx, &**pat, scope_stack, scope_map);
|
|
}
|
|
|
|
if let Some(ref guard_exp) = arm_ref.guard {
|
|
walk_expr(cx, &**guard_exp, scope_stack, scope_map)
|
|
}
|
|
|
|
walk_expr(cx, &*arm_ref.body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
}
|
|
|
|
hir::ExprStruct(_, ref fields, ref base_exp) => {
|
|
for &hir::Field { expr: ref exp, .. } in fields {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
|
|
match *base_exp {
|
|
Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map),
|
|
None => ()
|
|
}
|
|
}
|
|
|
|
hir::ExprInlineAsm(hir::InlineAsm { ref inputs,
|
|
ref outputs,
|
|
.. }) => {
|
|
// inputs, outputs: Vec<(String, P<Expr>)>
|
|
for &(_, ref exp) in inputs {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
|
|
for &(_, ref exp, _) in outputs {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
} |