// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::metadata::file_metadata; use super::utils::DIB; use llvm; use llvm::debuginfo::{DIScope, DISubprogram}; use trans::common::CrateContext; use middle::pat_util; use rustc::util::nodemap::NodeMap; use libc::c_uint; use syntax::codemap::{Span, Pos}; use syntax::{ast, codemap}; use rustc_front; use rustc_front::hir; // This procedure builds the *scope map* for a given function, which maps any // given ast::NodeId in the function's AST to the correct DIScope metadata instance. // // This builder procedure walks the AST in execution order and keeps track of // what belongs to which scope, creating DIScope DIEs along the way, and // introducing *artificial* lexical scope descriptors where necessary. These // artificial scopes allow GDB to correctly handle name shadowing. pub fn create_scope_map(cx: &CrateContext, args: &[hir::Arg], fn_entry_block: &hir::Block, fn_metadata: DISubprogram, fn_ast_id: ast::NodeId) -> NodeMap { let mut scope_map = NodeMap(); let def_map = &cx.tcx().def_map; let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, name: None }); scope_map.insert(fn_ast_id, fn_metadata); // Push argument identifiers onto the stack so arguments integrate nicely // with variable shadowing. for arg in args { pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| { scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata, name: Some(path1.node.name) }); scope_map.insert(node_id, fn_metadata); }) } // Clang creates a separate scope for function bodies, so let's do this too. with_new_scope(cx, fn_entry_block.span, &mut scope_stack, &mut scope_map, |cx, scope_stack, scope_map| { walk_block(cx, fn_entry_block, scope_stack, scope_map); }); return scope_map; } // local helper functions for walking the AST. fn with_new_scope(cx: &CrateContext, scope_span: Span, scope_stack: &mut Vec , scope_map: &mut NodeMap, inner_walk: F) where F: FnOnce(&CrateContext, &mut Vec, &mut NodeMap), { // Create a new lexical scope and push it onto the stack let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo); let file_metadata = file_metadata(cx, &loc.file.name); let parent_scope = scope_stack.last().unwrap().scope_metadata; let scope_metadata = unsafe { llvm::LLVMDIBuilderCreateLexicalBlock( DIB(cx), parent_scope, file_metadata, loc.line as c_uint, loc.col.to_usize() as c_uint) }; scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: None }); inner_walk(cx, scope_stack, scope_map); // pop artificial scopes while scope_stack.last().unwrap().name.is_some() { scope_stack.pop(); } if scope_stack.last().unwrap().scope_metadata != scope_metadata { cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management."); } scope_stack.pop(); } struct ScopeStackEntry { scope_metadata: DIScope, name: Option } fn walk_block(cx: &CrateContext, block: &hir::Block, scope_stack: &mut Vec , scope_map: &mut NodeMap) { scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata); // The interesting things here are statements and the concluding expression. for statement in &block.stmts { scope_map.insert(rustc_front::util::stmt_id(&**statement), scope_stack.last().unwrap().scope_metadata); match statement.node { hir::StmtDecl(ref decl, _) => walk_decl(cx, &**decl, scope_stack, scope_map), hir::StmtExpr(ref exp, _) | hir::StmtSemi(ref exp, _) => walk_expr(cx, &**exp, scope_stack, scope_map), } } if let Some(ref exp) = block.expr { walk_expr(cx, &**exp, scope_stack, scope_map); } } fn walk_decl(cx: &CrateContext, decl: &hir::Decl, scope_stack: &mut Vec , scope_map: &mut NodeMap) { match *decl { codemap::Spanned { node: hir::DeclLocal(ref local), .. } => { scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata); walk_pattern(cx, &*local.pat, scope_stack, scope_map); if let Some(ref exp) = local.init { walk_expr(cx, &**exp, scope_stack, scope_map); } } _ => () } } fn walk_pattern(cx: &CrateContext, pat: &hir::Pat, scope_stack: &mut Vec , scope_map: &mut NodeMap) { let def_map = &cx.tcx().def_map; // Unfortunately, we cannot just use pat_util::pat_bindings() or // ast_util::walk_pat() here because we have to visit *all* nodes in // order to put them into the scope map. The above functions don't do that. match pat.node { hir::PatIdent(_, ref path1, ref sub_pat_opt) => { // Check if this is a binding. If so we need to put it on the // scope stack and maybe introduce an artificial scope if pat_util::pat_is_binding(def_map, &*pat) { let name = path1.node.name; // LLVM does not properly generate 'DW_AT_start_scope' fields // for variable DIEs. For this reason we have to introduce // an artificial scope at bindings whenever a variable with // the same name is declared in *any* parent scope. // // Otherwise the following error occurs: // // let x = 10; // // do_something(); // 'gdb print x' correctly prints 10 // // { // do_something(); // 'gdb print x' prints 0, because it // // already reads the uninitialized 'x' // // from the next line... // let x = 100; // do_something(); // 'gdb print x' correctly prints 100 // } // Is there already a binding with that name? // N.B.: this comparison must be UNhygienic... because // gdb knows nothing about the context, so any two // variables with the same name will cause the problem. let need_new_scope = scope_stack .iter() .any(|entry| entry.name == Some(name)); if need_new_scope { // Create a new lexical scope and push it onto the stack let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo); let file_metadata = file_metadata(cx, &loc.file.name); let parent_scope = scope_stack.last().unwrap().scope_metadata; let scope_metadata = unsafe { llvm::LLVMDIBuilderCreateLexicalBlock( DIB(cx), parent_scope, file_metadata, loc.line as c_uint, loc.col.to_usize() as c_uint) }; scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: Some(name) }); } else { // Push a new entry anyway so the name can be found let prev_metadata = scope_stack.last().unwrap().scope_metadata; scope_stack.push(ScopeStackEntry { scope_metadata: prev_metadata, name: Some(name) }); } } scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); if let Some(ref sub_pat) = *sub_pat_opt { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } hir::PatWild(_) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); } hir::PatEnum(_, ref sub_pats_opt) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); if let Some(ref sub_pats) = *sub_pats_opt { for p in sub_pats { walk_pattern(cx, &**p, scope_stack, scope_map); } } } hir::PatQPath(..) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); } hir::PatStruct(_, ref field_pats, _) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for &codemap::Spanned { node: hir::FieldPat { pat: ref sub_pat, .. }, .. } in field_pats { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } hir::PatTup(ref sub_pats) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for sub_pat in sub_pats { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } hir::PatBox(ref sub_pat) | hir::PatRegion(ref sub_pat, _) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } hir::PatLit(ref exp) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); walk_expr(cx, &**exp, scope_stack, scope_map); } hir::PatRange(ref exp1, ref exp2) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); walk_expr(cx, &**exp1, scope_stack, scope_map); walk_expr(cx, &**exp2, scope_stack, scope_map); } hir::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for sub_pat in front_sub_pats { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } if let Some(ref sub_pat) = *middle_sub_pats { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } for sub_pat in back_sub_pats { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } } } fn walk_expr(cx: &CrateContext, exp: &hir::Expr, scope_stack: &mut Vec , scope_map: &mut NodeMap) { scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata); match exp.node { hir::ExprLit(_) | hir::ExprBreak(_) | hir::ExprAgain(_) | hir::ExprPath(..) => {} hir::ExprCast(ref sub_exp, _) | hir::ExprAddrOf(_, ref sub_exp) | hir::ExprField(ref sub_exp, _) | hir::ExprTupField(ref sub_exp, _) | hir::ExprParen(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), hir::ExprBox(ref place, ref sub_expr) => { place.as_ref().map( |e| walk_expr(cx, &**e, scope_stack, scope_map)); walk_expr(cx, &**sub_expr, scope_stack, scope_map); } hir::ExprRet(ref exp_opt) => match *exp_opt { Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), None => () }, hir::ExprUnary(_, ref sub_exp) => { walk_expr(cx, &**sub_exp, scope_stack, scope_map); } hir::ExprAssignOp(_, ref lhs, ref rhs) | hir::ExprIndex(ref lhs, ref rhs) | hir::ExprBinary(_, ref lhs, ref rhs) => { walk_expr(cx, &**lhs, scope_stack, scope_map); walk_expr(cx, &**rhs, scope_stack, scope_map); } hir::ExprRange(ref start, ref end) => { start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); } hir::ExprVec(ref init_expressions) | hir::ExprTup(ref init_expressions) => { for ie in init_expressions { walk_expr(cx, &**ie, scope_stack, scope_map); } } hir::ExprAssign(ref sub_exp1, ref sub_exp2) | hir::ExprRepeat(ref sub_exp1, ref sub_exp2) => { walk_expr(cx, &**sub_exp1, scope_stack, scope_map); walk_expr(cx, &**sub_exp2, scope_stack, scope_map); } hir::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => { walk_expr(cx, &**cond_exp, scope_stack, scope_map); with_new_scope(cx, then_block.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { walk_block(cx, &**then_block, scope_stack, scope_map); }); match *opt_else_exp { Some(ref else_exp) => walk_expr(cx, &**else_exp, scope_stack, scope_map), _ => () } } hir::ExprWhile(ref cond_exp, ref loop_body, _) => { walk_expr(cx, &**cond_exp, scope_stack, scope_map); with_new_scope(cx, loop_body.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { walk_block(cx, &**loop_body, scope_stack, scope_map); }) } hir::ExprLoop(ref block, _) | hir::ExprBlock(ref block) => { with_new_scope(cx, block.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { walk_block(cx, &**block, scope_stack, scope_map); }) } hir::ExprClosure(_, ref decl, ref block) => { with_new_scope(cx, block.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { for &hir::Arg { pat: ref pattern, .. } in &decl.inputs { walk_pattern(cx, &**pattern, scope_stack, scope_map); } walk_block(cx, &**block, scope_stack, scope_map); }) } hir::ExprCall(ref fn_exp, ref args) => { walk_expr(cx, &**fn_exp, scope_stack, scope_map); for arg_exp in args { walk_expr(cx, &**arg_exp, scope_stack, scope_map); } } hir::ExprMethodCall(_, _, ref args) => { for arg_exp in args { walk_expr(cx, &**arg_exp, scope_stack, scope_map); } } hir::ExprMatch(ref discriminant_exp, ref arms, _) => { walk_expr(cx, &**discriminant_exp, scope_stack, scope_map); // For each arm we have to first walk the pattern as these might // introduce new artificial scopes. It should be sufficient to // walk only one pattern per arm, as they all must contain the // same binding names. for arm_ref in arms { let arm_span = arm_ref.pats[0].span; with_new_scope(cx, arm_span, scope_stack, scope_map, |cx, scope_stack, scope_map| { for pat in &arm_ref.pats { walk_pattern(cx, &**pat, scope_stack, scope_map); } if let Some(ref guard_exp) = arm_ref.guard { walk_expr(cx, &**guard_exp, scope_stack, scope_map) } walk_expr(cx, &*arm_ref.body, scope_stack, scope_map); }) } } hir::ExprStruct(_, ref fields, ref base_exp) => { for &hir::Field { expr: ref exp, .. } in fields { walk_expr(cx, &**exp, scope_stack, scope_map); } match *base_exp { Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map), None => () } } hir::ExprInlineAsm(hir::InlineAsm { ref inputs, ref outputs, .. }) => { // inputs, outputs: Vec<(String, P)> for &(_, ref exp) in inputs { walk_expr(cx, &**exp, scope_stack, scope_map); } for &(_, ref exp, _) in outputs { walk_expr(cx, &**exp, scope_stack, scope_map); } } } }