rust/src/librustc/util/ppaux.rs

1067 lines
31 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use metadata::encoder;
use middle::ty::{ReSkolemized, ReVar};
use middle::ty::{BoundRegion, BrAnon, BrNamed};
use middle::ty::{BrFresh, ctxt};
use middle::ty::{mt, t, param_ty};
use middle::ty::{ReFree, ReScope, ReInfer, ReStatic, Region,
ReEmpty};
use middle::ty::{ty_bool, ty_char, ty_bot, ty_box, ty_struct, ty_enum};
use middle::ty::{ty_err, ty_str, ty_vec, ty_float, ty_bare_fn, ty_closure};
use middle::ty::{ty_nil, ty_param, ty_ptr, ty_rptr, ty_self, ty_tup};
use middle::ty::{ty_uniq, ty_trait, ty_int, ty_uint, ty_unboxed_vec, ty_infer};
use middle::ty;
use middle::typeck;
use syntax::abi::AbiSet;
use syntax::ast_map;
use syntax::codemap::{Span, Pos};
use syntax::parse::token;
use syntax::print::pprust;
use syntax::{ast, ast_util};
use syntax::opt_vec;
use syntax::opt_vec::OptVec;
/// Produces a string suitable for debugging output.
pub trait Repr {
fn repr(&self, tcx: ctxt) -> ~str;
}
/// Produces a string suitable for showing to the user.
pub trait UserString {
fn user_string(&self, tcx: ctxt) -> ~str;
}
pub fn note_and_explain_region(cx: ctxt,
prefix: &str,
region: ty::Region,
suffix: &str) {
match explain_region_and_span(cx, region) {
(ref str, Some(span)) => {
cx.sess.span_note(
span,
format!("{}{}{}", prefix, (*str), suffix));
}
(ref str, None) => {
cx.sess.note(
format!("{}{}{}", prefix, (*str), suffix));
}
}
}
/// Returns a string like "the block at 27:31" that attempts to explain a
/// lifetime in a way it might plausibly be understood.
pub fn explain_region(cx: ctxt, region: ty::Region) -> ~str {
let (res, _) = explain_region_and_span(cx, region);
return res;
}
pub fn explain_region_and_span(cx: ctxt, region: ty::Region)
-> (~str, Option<Span>) {
return match region {
ReScope(node_id) => {
match cx.items.find(node_id) {
Some(ast_map::NodeBlock(ref blk)) => {
explain_span(cx, "block", blk.span)
}
Some(ast_map::NodeCalleeScope(expr)) => {
explain_span(cx, "callee", expr.span)
}
Some(ast_map::NodeExpr(expr)) => {
match expr.node {
ast::ExprCall(..) => explain_span(cx, "call", expr.span),
ast::ExprMethodCall(..) => {
explain_span(cx, "method call", expr.span)
},
ast::ExprMatch(..) => explain_span(cx, "match", expr.span),
_ => explain_span(cx, "expression", expr.span)
}
}
Some(ast_map::NodeStmt(stmt)) => {
explain_span(cx, "statement", stmt.span)
}
Some(ast_map::NodeItem(it, _)) if (match it.node {
ast::ItemFn(..) => true, _ => false}) => {
explain_span(cx, "function body", it.span)
}
Some(_) | None => {
// this really should not happen
(format!("unknown scope: {}. Please report a bug.", node_id),
None)
}
}
}
ReFree(ref fr) => {
let prefix = match fr.bound_region {
BrAnon(idx) => format!("the anonymous lifetime \\#{} defined on",
idx + 1),
BrFresh(_) => format!("an anonymous lifetime defined on"),
_ => format!("the lifetime {} as defined on",
bound_region_ptr_to_str(cx, fr.bound_region))
};
match cx.items.find(fr.scope_id) {
Some(ast_map::NodeBlock(ref blk)) => {
let (msg, opt_span) = explain_span(cx, "block", blk.span);
(format!("{} {}", prefix, msg), opt_span)
}
Some(ast_map::NodeItem(it, _)) if match it.node {
ast::ItemImpl(..) => true, _ => false} => {
let (msg, opt_span) = explain_span(cx, "impl", it.span);
(format!("{} {}", prefix, msg), opt_span)
}
Some(_) | None => {
// this really should not happen
(format!("{} node {}", prefix, fr.scope_id), None)
}
}
}
ReStatic => { (~"the static lifetime", None) }
ReEmpty => { (~"the empty lifetime", None) }
// I believe these cases should not occur (except when debugging,
// perhaps)
ty::ReInfer(_) | ty::ReEarlyBound(..) | ty::ReLateBound(..) => {
(format!("lifetime {:?}", region), None)
}
};
fn explain_span(cx: ctxt, heading: &str, span: Span)
-> (~str, Option<Span>)
{
let lo = cx.sess.codemap.lookup_char_pos_adj(span.lo);
(format!("the {} at {}:{}", heading,
lo.line, lo.col.to_uint()), Some(span))
}
}
pub fn bound_region_ptr_to_str(cx: ctxt, br: BoundRegion) -> ~str {
bound_region_to_str(cx, "&", true, br)
}
pub fn bound_region_to_str(cx: ctxt,
prefix: &str, space: bool,
br: BoundRegion) -> ~str {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return format!("{}{}{}", prefix, br.repr(cx), space_str);
}
match br {
BrNamed(_, ident) => format!("{}'{}{}", prefix,
cx.sess.str_of(ident), space_str),
BrAnon(_) => prefix.to_str(),
BrFresh(_) => prefix.to_str(),
}
}
pub fn ReScope_id_to_str(cx: ctxt, node_id: ast::NodeId) -> ~str {
match cx.items.find(node_id) {
Some(ast_map::NodeBlock(ref blk)) => {
format!("<block at {}>",
cx.sess.codemap.span_to_str(blk.span))
}
Some(ast_map::NodeExpr(expr)) => {
match expr.node {
ast::ExprCall(..) => {
format!("<call at {}>",
cx.sess.codemap.span_to_str(expr.span))
}
ast::ExprMatch(..) => {
format!("<match at {}>",
cx.sess.codemap.span_to_str(expr.span))
}
ast::ExprAssignOp(..) |
ast::ExprUnary(..) |
ast::ExprBinary(..) |
ast::ExprIndex(..) => {
format!("<method at {}>",
cx.sess.codemap.span_to_str(expr.span))
}
_ => {
format!("<expression at {}>",
cx.sess.codemap.span_to_str(expr.span))
}
}
}
None => {
format!("<unknown-{}>", node_id)
}
_ => { cx.sess.bug(
format!("ReScope refers to {}",
ast_map::node_id_to_str(cx.items, node_id,
token::get_ident_interner()))) }
}
}
// In general, if you are giving a region error message,
// you should use `explain_region()` or, better yet,
// `note_and_explain_region()`
pub fn region_ptr_to_str(cx: ctxt, region: Region) -> ~str {
region_to_str(cx, "&", true, region)
}
pub fn region_to_str(cx: ctxt, prefix: &str, space: bool, region: Region) -> ~str {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return format!("{}{}{}", prefix, region.repr(cx), space_str);
}
// These printouts are concise. They do not contain all the information
// the user might want to diagnose an error, but there is basically no way
// to fit that into a short string. Hence the recommendation to use
// `explain_region()` or `note_and_explain_region()`.
match region {
ty::ReScope(_) => prefix.to_str(),
ty::ReEarlyBound(_, _, ident) => cx.sess.str_of(ident).to_owned(),
ty::ReLateBound(_, br) => bound_region_to_str(cx, prefix, space, br),
ty::ReFree(ref fr) => bound_region_to_str(cx, prefix, space, fr.bound_region),
ty::ReInfer(ReSkolemized(_, br)) => {
bound_region_to_str(cx, prefix, space, br)
}
ty::ReInfer(ReVar(_)) => prefix.to_str(),
ty::ReStatic => format!("{}'static{}", prefix, space_str),
ty::ReEmpty => format!("{}'<empty>{}", prefix, space_str)
}
}
pub fn mutability_to_str(m: ast::Mutability) -> ~str {
match m {
ast::MutMutable => ~"mut ",
ast::MutImmutable => ~"",
}
}
pub fn mt_to_str(cx: ctxt, m: &mt) -> ~str {
mt_to_str_wrapped(cx, "", m, "")
}
pub fn mt_to_str_wrapped(cx: ctxt, before: &str, m: &mt, after: &str) -> ~str {
let mstr = mutability_to_str(m.mutbl);
return format!("{}{}{}{}", mstr, before, ty_to_str(cx, m.ty), after);
}
pub fn vstore_to_str(cx: ctxt, vs: ty::vstore) -> ~str {
match vs {
ty::vstore_fixed(n) => format!("{}", n),
ty::vstore_uniq => ~"~",
ty::vstore_slice(r) => region_ptr_to_str(cx, r)
}
}
pub fn trait_store_to_str(cx: ctxt, s: ty::TraitStore) -> ~str {
match s {
ty::UniqTraitStore => ~"~",
ty::RegionTraitStore(r) => region_ptr_to_str(cx, r)
}
}
pub fn vstore_ty_to_str(cx: ctxt, mt: &mt, vs: ty::vstore) -> ~str {
match vs {
ty::vstore_fixed(_) => {
format!("[{}, .. {}]", mt_to_str(cx, mt), vstore_to_str(cx, vs))
}
_ => {
format!("{}{}", vstore_to_str(cx, vs), mt_to_str_wrapped(cx, "[", mt, "]"))
}
}
}
pub fn vec_map_to_str<T>(ts: &[T], f: |t: &T| -> ~str) -> ~str {
let tstrs = ts.map(f);
format!("[{}]", tstrs.connect(", "))
}
pub fn tys_to_str(cx: ctxt, ts: &[t]) -> ~str {
vec_map_to_str(ts, |t| ty_to_str(cx, *t))
}
pub fn fn_sig_to_str(cx: ctxt, typ: &ty::FnSig) -> ~str {
format!("fn{}{} -> {}",
typ.binder_id,
typ.inputs.repr(cx),
typ.output.repr(cx))
}
pub fn trait_ref_to_str(cx: ctxt, trait_ref: &ty::TraitRef) -> ~str {
trait_ref.user_string(cx)
}
pub fn ty_to_str(cx: ctxt, typ: t) -> ~str {
fn fn_input_to_str(cx: ctxt, input: ty::t) -> ~str {
ty_to_str(cx, input)
}
fn bare_fn_to_str(cx: ctxt,
purity: ast::Purity,
abis: AbiSet,
ident: Option<ast::Ident>,
sig: &ty::FnSig)
-> ~str {
let mut s = if abis.is_rust() {
~""
} else {
format!("extern {} ", abis.to_str())
};
match purity {
ast::ImpureFn => {}
_ => {
s.push_str(purity.to_str());
s.push_char(' ');
}
};
s.push_str("fn");
match ident {
Some(i) => {
s.push_char(' ');
s.push_str(cx.sess.str_of(i));
}
_ => { }
}
push_sig_to_str(cx, &mut s, '(', ')', sig);
return s;
}
fn closure_to_str(cx: ctxt, cty: &ty::ClosureTy) -> ~str {
let is_proc =
(cty.sigil, cty.onceness) == (ast::OwnedSigil, ast::Once);
let is_borrowed_closure = cty.sigil == ast::BorrowedSigil;
let mut s = if is_proc || is_borrowed_closure {
~""
} else {
cty.sigil.to_str()
};
match (cty.sigil, cty.region) {
(ast::ManagedSigil, ty::ReStatic) |
(ast::OwnedSigil, ty::ReStatic) => {}
(_, region) => {
s.push_str(region_to_str(cx, "", true, region));
}
}
match cty.purity {
ast::ImpureFn => {}
_ => {
s.push_str(cty.purity.to_str());
s.push_char(' ');
}
};
if is_proc {
s.push_str("proc");
} else {
match cty.onceness {
ast::Many => {}
ast::Once => {
s.push_str(cty.onceness.to_str());
s.push_char(' ');
}
};
if !is_borrowed_closure {
s.push_str("fn");
}
}
if !is_borrowed_closure {
// Print bounds before `fn` if this is not a borrowed closure.
if !cty.bounds.is_empty() {
s.push_str(":");
s.push_str(cty.bounds.repr(cx));
}
push_sig_to_str(cx, &mut s, '(', ')', &cty.sig);
} else {
// Print bounds after the signature if this is a borrowed closure.
push_sig_to_str(cx, &mut s, '|', '|', &cty.sig);
if is_borrowed_closure {
if !cty.bounds.is_empty() {
s.push_str(":");
s.push_str(cty.bounds.repr(cx));
}
}
}
return s;
}
fn push_sig_to_str(cx: ctxt,
s: &mut ~str,
bra: char,
ket: char,
sig: &ty::FnSig) {
s.push_char(bra);
let strs = sig.inputs.map(|a| fn_input_to_str(cx, *a));
s.push_str(strs.connect(", "));
if sig.variadic {
s.push_str(", ...");
}
s.push_char(ket);
if ty::get(sig.output).sty != ty_nil {
s.push_str(" -> ");
if ty::type_is_bot(sig.output) {
s.push_char('!');
} else {
s.push_str(ty_to_str(cx, sig.output));
}
}
}
// if there is an id, print that instead of the structural type:
/*for def_id in ty::type_def_id(typ).iter() {
// note that this typedef cannot have type parameters
return ast_map::path_to_str(ty::item_path(cx, *def_id),
cx.sess.intr());
}*/
// pretty print the structural type representation:
return match ty::get(typ).sty {
ty_nil => ~"()",
ty_bot => ~"!",
ty_bool => ~"bool",
ty_char => ~"char",
ty_int(ast::TyI) => ~"int",
ty_int(t) => ast_util::int_ty_to_str(t),
ty_uint(ast::TyU) => ~"uint",
ty_uint(t) => ast_util::uint_ty_to_str(t),
ty_float(t) => ast_util::float_ty_to_str(t),
ty_box(typ) => ~"@" + ty_to_str(cx, typ),
ty_uniq(typ) => ~"~" + ty_to_str(cx, typ),
ty_ptr(ref tm) => ~"*" + mt_to_str(cx, tm),
ty_rptr(r, ref tm) => {
region_ptr_to_str(cx, r) + mt_to_str(cx, tm)
}
ty_unboxed_vec(ref tm) => { format!("unboxed_vec<{}>", mt_to_str(cx, tm)) }
ty_tup(ref elems) => {
let strs = elems.map(|elem| ty_to_str(cx, *elem));
~"(" + strs.connect(",") + ")"
}
ty_closure(ref f) => {
closure_to_str(cx, f)
}
ty_bare_fn(ref f) => {
bare_fn_to_str(cx, f.purity, f.abis, None, &f.sig)
}
ty_infer(infer_ty) => infer_ty.to_str(),
ty_err => ~"[type error]",
ty_param(param_ty {idx: id, def_id: did}) => {
let ty_param_defs = cx.ty_param_defs.borrow();
let param_def = ty_param_defs.get().find(&did.node);
let ident = match param_def {
Some(def) => cx.sess.str_of(def.ident).to_owned(),
None => {
// This should not happen...
format!("BUG[{:?}]", id)
}
};
if !cx.sess.verbose() { ident } else { format!("{}:{:?}", ident, did) }
}
ty_self(..) => ~"Self",
ty_enum(did, ref substs) | ty_struct(did, ref substs) => {
let path = ty::item_path(cx, did);
let base = ast_map::path_to_str(path, cx.sess.intr());
parameterized(cx, base, &substs.regions, substs.tps, did, false)
}
ty_trait(did, ref substs, s, mutbl, ref bounds) => {
let path = ty::item_path(cx, did);
let base = ast_map::path_to_str(path, cx.sess.intr());
let ty = parameterized(cx, base, &substs.regions,
substs.tps, did, true);
let bound_sep = if bounds.is_empty() { "" } else { ":" };
let bound_str = bounds.repr(cx);
format!("{}{}{}{}{}", trait_store_to_str(cx, s), mutability_to_str(mutbl), ty,
bound_sep, bound_str)
}
ty_vec(ref mt, vs) => {
vstore_ty_to_str(cx, mt, vs)
}
ty_str(vs) => format!("{}{}", vstore_to_str(cx, vs), "str")
}
}
pub fn parameterized(cx: ctxt,
base: &str,
regions: &ty::RegionSubsts,
tps: &[ty::t],
did: ast::DefId,
is_trait: bool) -> ~str {
let mut strs = ~[];
match *regions {
ty::ErasedRegions => { }
ty::NonerasedRegions(ref regions) => {
for &r in regions.iter() {
strs.push(region_to_str(cx, "", false, r))
}
}
}
let generics = if is_trait {
ty::lookup_trait_def(cx, did).generics.clone()
} else {
ty::lookup_item_type(cx, did).generics
};
let ty_params = generics.type_param_defs();
let has_defaults = ty_params.last().map_or(false, |def| def.default.is_some());
let num_defaults = if has_defaults {
// We should have a borrowed version of substs instead of cloning.
let mut substs = ty::substs {
tps: tps.to_owned(),
regions: regions.clone(),
self_ty: None
};
ty_params.iter().zip(tps.iter()).rev().take_while(|&(def, &actual)| {
substs.tps.pop();
match def.default {
Some(default) => ty::subst(cx, &substs, default) == actual,
None => false
}
}).len()
} else {
0
};
for t in tps.slice_to(tps.len() - num_defaults).iter() {
strs.push(ty_to_str(cx, *t))
}
if strs.len() > 0u {
format!("{}<{}>", base, strs.connect(","))
} else {
format!("{}", base)
}
}
pub fn ty_to_short_str(cx: ctxt, typ: t) -> ~str {
let mut s = encoder::encoded_ty(cx, typ);
if s.len() >= 32u { s = s.slice(0u, 32u).to_owned(); }
return s;
}
impl<T:Repr> Repr for Option<T> {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&None => ~"None",
&Some(ref t) => t.repr(tcx),
}
}
}
impl<T:Repr,U:Repr> Repr for Result<T,U> {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&Ok(ref t) => t.repr(tcx),
&Err(ref u) => format!("Err({})", u.repr(tcx))
}
}
}
impl Repr for () {
fn repr(&self, _tcx: ctxt) -> ~str {
~"()"
}
}
impl<T:Repr> Repr for @T {
fn repr(&self, tcx: ctxt) -> ~str {
(&**self).repr(tcx)
}
}
impl<T:Repr> Repr for ~T {
fn repr(&self, tcx: ctxt) -> ~str {
(&**self).repr(tcx)
}
}
fn repr_vec<T:Repr>(tcx: ctxt, v: &[T]) -> ~str {
vec_map_to_str(v, |t| t.repr(tcx))
}
impl<'a, T:Repr> Repr for &'a [T] {
fn repr(&self, tcx: ctxt) -> ~str {
repr_vec(tcx, *self)
}
}
impl<T:Repr> Repr for OptVec<T> {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
opt_vec::Empty => ~"[]",
opt_vec::Vec(ref v) => repr_vec(tcx, *v)
}
}
}
// This is necessary to handle types like Option<~[T]>, for which
// autoderef cannot convert the &[T] handler
impl<T:Repr> Repr for ~[T] {
fn repr(&self, tcx: ctxt) -> ~str {
repr_vec(tcx, *self)
}
}
impl Repr for ty::TypeParameterDef {
fn repr(&self, tcx: ctxt) -> ~str {
format!("TypeParameterDef({:?}, {})",
self.def_id,
self.bounds.repr(tcx))
}
}
impl Repr for ty::RegionParameterDef {
fn repr(&self, tcx: ctxt) -> ~str {
format!("RegionParameterDef({}, {:?})",
tcx.sess.str_of(self.ident),
self.def_id)
}
}
impl Repr for ty::t {
fn repr(&self, tcx: ctxt) -> ~str {
ty_to_str(tcx, *self)
}
}
impl Repr for ty::substs {
fn repr(&self, tcx: ctxt) -> ~str {
format!("substs(regions={}, self_ty={}, tps={})",
self.regions.repr(tcx),
self.self_ty.repr(tcx),
self.tps.repr(tcx))
}
}
impl Repr for ty::RegionSubsts {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
ty::ErasedRegions => ~"erased",
ty::NonerasedRegions(ref regions) => regions.repr(tcx)
}
}
}
impl Repr for ty::ParamBounds {
fn repr(&self, tcx: ctxt) -> ~str {
let mut res = ~[];
for b in self.builtin_bounds.iter() {
res.push(match b {
ty::BoundStatic => ~"'static",
ty::BoundSend => ~"Send",
ty::BoundFreeze => ~"Freeze",
ty::BoundSized => ~"Sized",
ty::BoundPod => ~"Pod",
});
}
for t in self.trait_bounds.iter() {
res.push(t.repr(tcx));
}
res.connect("+")
}
}
impl Repr for ty::TraitRef {
fn repr(&self, tcx: ctxt) -> ~str {
trait_ref_to_str(tcx, self)
}
}
impl Repr for ast::Expr {
fn repr(&self, tcx: ctxt) -> ~str {
format!("expr({}: {})",
self.id,
pprust::expr_to_str(self, tcx.sess.intr()))
}
}
impl Repr for ast::Item {
fn repr(&self, tcx: ctxt) -> ~str {
format!("item({})",
ast_map::node_id_to_str(tcx.items,
self.id,
token::get_ident_interner()))
}
}
impl Repr for ast::Stmt {
fn repr(&self, tcx: ctxt) -> ~str {
format!("stmt({}: {})",
ast_util::stmt_id(self),
pprust::stmt_to_str(self, tcx.sess.intr()))
}
}
impl Repr for ast::Pat {
fn repr(&self, tcx: ctxt) -> ~str {
format!("pat({}: {})",
self.id,
pprust::pat_to_str(self, tcx.sess.intr()))
}
}
impl Repr for ty::BoundRegion {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
ty::BrAnon(id) => format!("BrAnon({})", id),
ty::BrNamed(id, ident) => format!("BrNamed({}, {})",
id.repr(tcx),
ident.repr(tcx)),
ty::BrFresh(id) => format!("BrFresh({})", id),
}
}
}
impl Repr for ty::Region {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
ty::ReEarlyBound(id, index, ident) => {
format!("ReEarlyBound({}, {}, {})",
id, index, ident.repr(tcx))
}
ty::ReLateBound(binder_id, ref bound_region) => {
format!("ReLateBound({}, {})",
binder_id, bound_region.repr(tcx))
}
ty::ReFree(ref fr) => {
format!("ReFree({}, {})",
fr.scope_id,
fr.bound_region.repr(tcx))
}
ty::ReScope(id) => {
format!("ReScope({})", id)
}
ty::ReStatic => {
format!("ReStatic")
}
ty::ReInfer(ReVar(ref vid)) => {
format!("ReInfer({})", vid.id)
}
ty::ReInfer(ReSkolemized(id, ref bound_region)) => {
format!("re_skolemized({}, {})",
id, bound_region.repr(tcx))
}
ty::ReEmpty => {
format!("ReEmpty")
}
}
}
}
impl Repr for ast::DefId {
fn repr(&self, tcx: ctxt) -> ~str {
// Unfortunately, there seems to be no way to attempt to print
// a path for a def-id, so I'll just make a best effort for now
// and otherwise fallback to just printing the crate/node pair
if self.crate == ast::LOCAL_CRATE {
{
match tcx.items.find(self.node) {
Some(ast_map::NodeItem(..)) |
Some(ast_map::NodeForeignItem(..)) |
Some(ast_map::NodeMethod(..)) |
Some(ast_map::NodeTraitMethod(..)) |
Some(ast_map::NodeVariant(..)) |
Some(ast_map::NodeStructCtor(..)) => {
return format!("{:?}:{}",
*self,
ty::item_path_str(tcx, *self));
}
_ => {}
}
}
}
return format!("{:?}", *self);
}
}
impl Repr for ty::ty_param_bounds_and_ty {
fn repr(&self, tcx: ctxt) -> ~str {
format!("ty_param_bounds_and_ty \\{generics: {}, ty: {}\\}",
self.generics.repr(tcx),
self.ty.repr(tcx))
}
}
impl Repr for ty::Generics {
fn repr(&self, tcx: ctxt) -> ~str {
format!("Generics(type_param_defs: {}, region_param_defs: {})",
self.type_param_defs().repr(tcx),
self.region_param_defs().repr(tcx))
}
}
impl Repr for ty::ItemVariances {
fn repr(&self, tcx: ctxt) -> ~str {
format!("IterVariances(self_param={}, type_params={}, region_params={})",
self.self_param.repr(tcx),
self.type_params.repr(tcx),
self.region_params.repr(tcx))
}
}
impl Repr for ty::Variance {
fn repr(&self, _: ctxt) -> ~str {
self.to_str().to_owned()
}
}
impl Repr for ty::Method {
fn repr(&self, tcx: ctxt) -> ~str {
format!("method(ident: {}, generics: {}, fty: {}, \
explicit_self: {}, vis: {}, def_id: {})",
self.ident.repr(tcx),
self.generics.repr(tcx),
self.fty.repr(tcx),
self.explicit_self.repr(tcx),
self.vis.repr(tcx),
self.def_id.repr(tcx))
}
}
impl Repr for ast::Ident {
fn repr(&self, _tcx: ctxt) -> ~str {
let string = token::get_ident(self.name);
string.get().to_str()
}
}
impl Repr for ast::ExplicitSelf_ {
fn repr(&self, _tcx: ctxt) -> ~str {
format!("{:?}", *self)
}
}
impl Repr for ast::Visibility {
fn repr(&self, _tcx: ctxt) -> ~str {
format!("{:?}", *self)
}
}
impl Repr for ty::BareFnTy {
fn repr(&self, tcx: ctxt) -> ~str {
format!("BareFnTy \\{purity: {:?}, abis: {}, sig: {}\\}",
self.purity,
self.abis.to_str(),
self.sig.repr(tcx))
}
}
impl Repr for ty::FnSig {
fn repr(&self, tcx: ctxt) -> ~str {
fn_sig_to_str(tcx, self)
}
}
impl Repr for typeck::method_map_entry {
fn repr(&self, tcx: ctxt) -> ~str {
format!("method_map_entry \\{origin: {}\\}", self.origin.repr(tcx))
}
}
impl Repr for typeck::method_origin {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&typeck::method_static(def_id) => {
format!("method_static({})", def_id.repr(tcx))
}
&typeck::method_param(ref p) => {
p.repr(tcx)
}
&typeck::method_object(ref p) => {
p.repr(tcx)
}
}
}
}
impl Repr for typeck::method_param {
fn repr(&self, tcx: ctxt) -> ~str {
format!("method_param({},{:?},{:?},{:?})",
self.trait_id.repr(tcx),
self.method_num,
self.param_num,
self.bound_num)
}
}
impl Repr for typeck::method_object {
fn repr(&self, tcx: ctxt) -> ~str {
format!("method_object({},{:?},{:?})",
self.trait_id.repr(tcx),
self.method_num,
self.real_index)
}
}
impl Repr for ty::RegionVid {
fn repr(&self, _tcx: ctxt) -> ~str {
format!("{:?}", *self)
}
}
impl Repr for ty::TraitStore {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&ty::UniqTraitStore => ~"~Trait",
&ty::RegionTraitStore(r) => format!("&{} Trait", r.repr(tcx))
}
}
}
impl Repr for ty::vstore {
fn repr(&self, tcx: ctxt) -> ~str {
vstore_to_str(tcx, *self)
}
}
impl Repr for ast_map::PathElem {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
ast_map::PathMod(id) => id.repr(tcx),
ast_map::PathName(id) => id.repr(tcx),
ast_map::PathPrettyName(id, _) => id.repr(tcx),
}
}
}
impl Repr for ty::BuiltinBound {
fn repr(&self, _tcx: ctxt) -> ~str {
format!("{:?}", *self)
}
}
impl UserString for ty::BuiltinBound {
fn user_string(&self, _tcx: ctxt) -> ~str {
match *self {
ty::BoundStatic => ~"'static",
ty::BoundSend => ~"Send",
ty::BoundFreeze => ~"Freeze",
ty::BoundSized => ~"Sized",
ty::BoundPod => ~"Pod",
}
}
}
impl Repr for ty::BuiltinBounds {
fn repr(&self, tcx: ctxt) -> ~str {
self.user_string(tcx)
}
}
impl Repr for Span {
fn repr(&self, tcx: ctxt) -> ~str {
tcx.sess.codemap.span_to_str(*self)
}
}
impl<A:UserString> UserString for @A {
fn user_string(&self, tcx: ctxt) -> ~str {
let this: &A = &**self;
this.user_string(tcx)
}
}
impl UserString for ty::BuiltinBounds {
fn user_string(&self, tcx: ctxt) -> ~str {
if self.is_empty() { ~"<no-bounds>" } else {
let mut result = ~[];
for bb in self.iter() {
result.push(bb.user_string(tcx));
}
result.connect("+")
}
}
}
impl UserString for ty::TraitRef {
fn user_string(&self, tcx: ctxt) -> ~str {
let path = ty::item_path(tcx, self.def_id);
let base = ast_map::path_to_str(path, tcx.sess.intr());
if tcx.sess.verbose() && self.substs.self_ty.is_some() {
let mut all_tps = self.substs.tps.clone();
for &t in self.substs.self_ty.iter() { all_tps.push(t); }
parameterized(tcx, base, &self.substs.regions,
all_tps, self.def_id, true)
} else {
parameterized(tcx, base, &self.substs.regions,
self.substs.tps, self.def_id, true)
}
}
}
impl UserString for ty::t {
fn user_string(&self, tcx: ctxt) -> ~str {
ty_to_str(tcx, *self)
}
}
impl Repr for AbiSet {
fn repr(&self, _tcx: ctxt) -> ~str {
self.to_str()
}
}
impl UserString for AbiSet {
fn user_string(&self, _tcx: ctxt) -> ~str {
self.to_str()
}
}
impl Repr for ty::UpvarId {
fn repr(&self, tcx: ctxt) -> ~str {
format!("UpvarId({};`{}`;{})",
self.var_id,
ty::local_var_name_str(tcx, self.var_id),
self.closure_expr_id)
}
}
impl Repr for ast::Mutability {
fn repr(&self, _tcx: ctxt) -> ~str {
format!("{:?}", *self)
}
}
impl Repr for ty::BorrowKind {
fn repr(&self, _tcx: ctxt) -> ~str {
format!("{:?}", *self)
}
}
impl Repr for ty::UpvarBorrow {
fn repr(&self, tcx: ctxt) -> ~str {
format!("UpvarBorrow({}, {})",
self.kind.repr(tcx),
self.region.repr(tcx))
}
}