NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.
The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
These commits fix bugs related to identically named statics in functions of implementations in various situations. The commit messages have most of the information about what bugs are being fixed and why.
As a bonus, while I was messing around with name mangling, I improved the backtraces we'll get in gdb by removing `__extensions__` for the trait/type being implemented and by adding the method name as well. Yay!
As with the previous commit, this is targeted at removing the possibility of
collisions between statics. The main use case here is when there's a
type-parametric function with an inner static that's compiled as a library.
Before this commit, any impl would generate a path item of "__extensions__".
This changes this identifier to be a "pretty name", which is either the last
element of the path of the trait implemented or the last element of the type's
path that's being implemented. That doesn't quite cut it though, so the (trait,
type) pair is hashed and again used to append information to the symbol.
Essentially, __extensions__ was removed for something nicer for debugging, and
then some more information was added to symbol name by including a hash of the
trait being implemented and type it's being implemented for. This should prevent
colliding names for inner statics in regular functions with similar names.
This requires changes to method search and to codegen. We now emit a
vtable for objects that includes methods from all supertraits.
Closes#4100.
Also, actually populate the cache for vtables, and also key it by type
so that it actually works.
to favor inherent methods over extension methods.
The reason to favor inherent methods is that otherwise an impl
like
impl Foo for @Foo { fn method(&self) { self.method() } }
causes infinite recursion. The current change to favor inherent methods is
rather hacky; the method resolution code is in need of a refactoring.