rust/src/liballoc/rc.rs

1808 lines
51 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(deprecated)]
//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
//! Counted'.
//!
//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
//! pointer to the same value in the heap. When the last [`Rc`] pointer to a
//! given value is destroyed, the pointed-to value is also destroyed.
//!
//! Shared references in Rust disallow mutation by default, and [`Rc`]
//! is no exception: you cannot generally obtain a mutable reference to
//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
//! inside an Rc][mutability].
//!
//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
//! does not implement [`Send`][send]. As a result, the Rust compiler
//! will check *at compile time* that you are not sending [`Rc`]s between
//! threads. If you need multi-threaded, atomic reference counting, use
//! [`sync::Arc`][arc].
//!
//! The [`downgrade`][downgrade] method can be used to create a non-owning
//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
//! to an [`Rc`], but this will return [`None`] if the value has
//! already been dropped.
//!
//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
//! [`Weak`] is used to break cycles. For example, a tree could have strong
//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
//! children back to their parents.
//!
//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are [associated
//! functions][assoc], called using function-like syntax:
//!
//! ```
//! use std::rc::Rc;
//! let my_rc = Rc::new(());
//!
//! Rc::downgrade(&my_rc);
//! ```
//!
//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the value may have
//! already been destroyed.
//!
//! # Cloning references
//!
//! Creating a new reference from an existing reference counted pointer is done using the
//! `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
//!
//! ```
//! use std::rc::Rc;
//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
//! // The two syntaxes below are equivalent.
//! let a = foo.clone();
//! let b = Rc::clone(&foo);
//! // a and b both point to the same memory location as foo.
//! ```
//!
//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
//! the meaning of the code. In the example above, this syntax makes it easier to see that
//! this code is creating a new reference rather than copying the whole content of foo.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```
//! use std::rc::Rc;
//!
//! struct Owner {
//! name: String,
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: i32,
//! owner: Rc<Owner>,
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference-counted `Owner`.
//! let gadget_owner: Rc<Owner> = Rc::new(
//! Owner {
//! name: "Gadget Man".to_string(),
//! }
//! );
//!
//! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
//! // value gives us a new pointer to the same `Owner` value, incrementing
//! // the reference count in the process.
//! let gadget1 = Gadget {
//! id: 1,
//! owner: Rc::clone(&gadget_owner),
//! };
//! let gadget2 = Gadget {
//! id: 2,
//! owner: Rc::clone(&gadget_owner),
//! };
//!
//! // Dispose of our local variable `gadget_owner`.
//! drop(gadget_owner);
//!
//! // Despite dropping `gadget_owner`, we're still able to print out the name
//! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
//! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
//! // other `Rc<Owner>` values pointing at the same `Owner`, it will remain
//! // allocated. The field projection `gadget1.owner.name` works because
//! // `Rc<Owner>` automatically dereferences to `Owner`.
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
//! // with them the last counted references to our `Owner`. Gadget Man now
//! // gets destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
//! to `Gadget` introduces a cycle between the values. This means that their
//! reference counts can never reach 0, and the values will remain allocated
//! forever: a memory leak. In order to get around this, we can use [`Weak`]
//! pointers.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place. In order to end up with two values that point at each other, one of
//! them needs to be mutable. This is difficult because [`Rc`] enforces
//! memory safety by only giving out shared references to the value it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! value we wish to mutate in a [`RefCell`], which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! [`RefCell`] enforces Rust's borrowing rules at runtime.
//!
//! ```
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//! name: String,
//! gadgets: RefCell<Vec<Weak<Gadget>>>,
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: i32,
//! owner: Rc<Owner>,
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
//! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
//! // a shared reference.
//! let gadget_owner: Rc<Owner> = Rc::new(
//! Owner {
//! name: "Gadget Man".to_string(),
//! gadgets: RefCell::new(vec![]),
//! }
//! );
//!
//! // Create `Gadget`s belonging to `gadget_owner`, as before.
//! let gadget1 = Rc::new(
//! Gadget {
//! id: 1,
//! owner: Rc::clone(&gadget_owner),
//! }
//! );
//! let gadget2 = Rc::new(
//! Gadget {
//! id: 2,
//! owner: Rc::clone(&gadget_owner),
//! }
//! );
//!
//! // Add the `Gadget`s to their `Owner`.
//! {
//! let mut gadgets = gadget_owner.gadgets.borrow_mut();
//! gadgets.push(Rc::downgrade(&gadget1));
//! gadgets.push(Rc::downgrade(&gadget2));
//!
//! // `RefCell` dynamic borrow ends here.
//! }
//!
//! // Iterate over our `Gadget`s, printing their details out.
//! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
//!
//! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
//! // guarantee the value is still allocated, we need to call
//! // `upgrade`, which returns an `Option<Rc<Gadget>>`.
//! //
//! // In this case we know the value still exists, so we simply
//! // `unwrap` the `Option`. In a more complicated program, you might
//! // need graceful error handling for a `None` result.
//!
//! let gadget = gadget_weak.upgrade().unwrap();
//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//! }
//!
//! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
//! // are destroyed. There are now no strong (`Rc`) pointers to the
//! // gadgets, so they are destroyed. This zeroes the reference count on
//! // Gadget Man, so he gets destroyed as well.
//! }
//! ```
//!
//! [`Rc`]: struct.Rc.html
//! [`Weak`]: struct.Weak.html
//! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
//! [`Cell`]: ../../std/cell/struct.Cell.html
//! [`RefCell`]: ../../std/cell/struct.RefCell.html
//! [send]: ../../std/marker/trait.Send.html
//! [arc]: ../../std/sync/struct.Arc.html
//! [`Deref`]: ../../std/ops/trait.Deref.html
//! [downgrade]: struct.Rc.html#method.downgrade
//! [upgrade]: struct.Weak.html#method.upgrade
//! [`None`]: ../../std/option/enum.Option.html#variant.None
//! [assoc]: ../../book/first-edition/method-syntax.html#associated-functions
//! [mutability]: ../../std/cell/index.html#introducing-mutability-inside-of-something-immutable
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(test))]
use boxed::Box;
#[cfg(test)]
use std::boxed::Box;
use core::any::Any;
use core::borrow;
use core::cell::Cell;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::intrinsics::abort;
use core::marker;
use core::marker::{Unsize, PhantomData};
use core::mem::{self, align_of_val, forget, size_of_val, uninitialized};
use core::ops::Deref;
use core::ops::CoerceUnsized;
use core::ptr::{self, NonNull};
use core::convert::From;
use heap::{Heap, Alloc, Layout, box_free};
use string::String;
use vec::Vec;
struct RcBox<T: ?Sized> {
strong: Cell<usize>,
weak: Cell<usize>,
value: T,
}
/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
/// Counted'.
///
/// See the [module-level documentation](./index.html) for more details.
///
/// The inherent methods of `Rc` are all associated functions, which means
/// that you have to call them as e.g. [`Rc::get_mut(&mut value)`][get_mut] instead of
/// `value.get_mut()`. This avoids conflicts with methods of the inner
/// type `T`.
///
/// [get_mut]: #method.get_mut
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Rc<T: ?Sized> {
ptr: NonNull<RcBox<T>>,
phantom: PhantomData<T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Send for Rc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Sync for Rc<T> {}
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
impl<T> Rc<T> {
/// Constructs a new `Rc<T>`.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(value: T) -> Rc<T> {
Rc {
// there is an implicit weak pointer owned by all the strong
// pointers, which ensures that the weak destructor never frees
// the allocation while the strong destructor is running, even
// if the weak pointer is stored inside the strong one.
ptr: Box::into_raw_non_null(box RcBox {
strong: Cell::new(1),
weak: Cell::new(1),
value,
}),
phantom: PhantomData,
}
}
/// Returns the contained value, if the `Rc` has exactly one strong reference.
///
/// Otherwise, an [`Err`][result] is returned with the same `Rc` that was
/// passed in.
///
/// This will succeed even if there are outstanding weak references.
///
/// [result]: ../../std/result/enum.Result.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x = Rc::new(3);
/// assert_eq!(Rc::try_unwrap(x), Ok(3));
///
/// let x = Rc::new(4);
/// let _y = Rc::clone(&x);
/// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
/// ```
#[inline]
#[stable(feature = "rc_unique", since = "1.4.0")]
pub fn try_unwrap(this: Self) -> Result<T, Self> {
if Rc::strong_count(&this) == 1 {
unsafe {
let val = ptr::read(&*this); // copy the contained object
// Indicate to Weaks that they can't be promoted by decrementing
// the strong count, and then remove the implicit "strong weak"
// pointer while also handling drop logic by just crafting a
// fake Weak.
this.dec_strong();
let _weak = Weak { ptr: this.ptr };
forget(this);
Ok(val)
}
} else {
Err(this)
}
}
}
impl<T: ?Sized> Rc<T> {
/// Consumes the `Rc`, returning the wrapped pointer.
///
/// To avoid a memory leak the pointer must be converted back to an `Rc` using
/// [`Rc::from_raw`][from_raw].
///
/// [from_raw]: struct.Rc.html#method.from_raw
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x = Rc::new(10);
/// let x_ptr = Rc::into_raw(x);
/// assert_eq!(unsafe { *x_ptr }, 10);
/// ```
#[stable(feature = "rc_raw", since = "1.17.0")]
pub fn into_raw(this: Self) -> *const T {
let ptr: *const T = &*this;
mem::forget(this);
ptr
}
/// Constructs an `Rc` from a raw pointer.
///
/// The raw pointer must have been previously returned by a call to a
/// [`Rc::into_raw`][into_raw].
///
/// This function is unsafe because improper use may lead to memory problems. For example, a
/// double-free may occur if the function is called twice on the same raw pointer.
///
/// [into_raw]: struct.Rc.html#method.into_raw
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x = Rc::new(10);
/// let x_ptr = Rc::into_raw(x);
///
/// unsafe {
/// // Convert back to an `Rc` to prevent leak.
/// let x = Rc::from_raw(x_ptr);
/// assert_eq!(*x, 10);
///
/// // Further calls to `Rc::from_raw(x_ptr)` would be memory unsafe.
/// }
///
/// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
/// ```
#[stable(feature = "rc_raw", since = "1.17.0")]
pub unsafe fn from_raw(ptr: *const T) -> Self {
// Align the unsized value to the end of the RcBox.
// Because it is ?Sized, it will always be the last field in memory.
let align = align_of_val(&*ptr);
let layout = Layout::new::<RcBox<()>>();
let offset = (layout.size() + layout.padding_needed_for(align)) as isize;
// Reverse the offset to find the original RcBox.
let fake_ptr = ptr as *mut RcBox<T>;
let rc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
Rc {
ptr: NonNull::new_unchecked(rc_ptr),
phantom: PhantomData,
}
}
/// Creates a new [`Weak`][weak] pointer to this value.
///
/// [weak]: struct.Weak.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// let weak_five = Rc::downgrade(&five);
/// ```
#[stable(feature = "rc_weak", since = "1.4.0")]
pub fn downgrade(this: &Self) -> Weak<T> {
this.inc_weak();
Weak { ptr: this.ptr }
}
/// Gets the number of [`Weak`][weak] pointers to this value.
///
/// [weak]: struct.Weak.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// let _weak_five = Rc::downgrade(&five);
///
/// assert_eq!(1, Rc::weak_count(&five));
/// ```
#[inline]
#[stable(feature = "rc_counts", since = "1.15.0")]
pub fn weak_count(this: &Self) -> usize {
this.weak() - 1
}
/// Gets the number of strong (`Rc`) pointers to this value.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// let _also_five = Rc::clone(&five);
///
/// assert_eq!(2, Rc::strong_count(&five));
/// ```
#[inline]
#[stable(feature = "rc_counts", since = "1.15.0")]
pub fn strong_count(this: &Self) -> usize {
this.strong()
}
/// Returns true if there are no other `Rc` or [`Weak`][weak] pointers to
/// this inner value.
///
/// [weak]: struct.Weak.html
#[inline]
fn is_unique(this: &Self) -> bool {
Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
}
/// Returns a mutable reference to the inner value, if there are
/// no other `Rc` or [`Weak`][weak] pointers to the same value.
///
/// Returns [`None`] otherwise, because it is not safe to
/// mutate a shared value.
///
/// See also [`make_mut`][make_mut], which will [`clone`][clone]
/// the inner value when it's shared.
///
/// [weak]: struct.Weak.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [make_mut]: struct.Rc.html#method.make_mut
/// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let mut x = Rc::new(3);
/// *Rc::get_mut(&mut x).unwrap() = 4;
/// assert_eq!(*x, 4);
///
/// let _y = Rc::clone(&x);
/// assert!(Rc::get_mut(&mut x).is_none());
/// ```
#[inline]
#[stable(feature = "rc_unique", since = "1.4.0")]
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
if Rc::is_unique(this) {
unsafe {
Some(&mut this.ptr.as_mut().value)
}
} else {
None
}
}
#[inline]
#[stable(feature = "ptr_eq", since = "1.17.0")]
/// Returns true if the two `Rc`s point to the same value (not
/// just values that compare as equal).
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// let same_five = Rc::clone(&five);
/// let other_five = Rc::new(5);
///
/// assert!(Rc::ptr_eq(&five, &same_five));
/// assert!(!Rc::ptr_eq(&five, &other_five));
/// ```
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr.as_ptr() == other.ptr.as_ptr()
}
}
impl<T: Clone> Rc<T> {
/// Makes a mutable reference into the given `Rc`.
///
/// If there are other `Rc` or [`Weak`][weak] pointers to the same value,
/// then `make_mut` will invoke [`clone`][clone] on the inner value to
/// ensure unique ownership. This is also referred to as clone-on-write.
///
/// See also [`get_mut`][get_mut], which will fail rather than cloning.
///
/// [weak]: struct.Weak.html
/// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
/// [get_mut]: struct.Rc.html#method.get_mut
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let mut data = Rc::new(5);
///
/// *Rc::make_mut(&mut data) += 1; // Won't clone anything
/// let mut other_data = Rc::clone(&data); // Won't clone inner data
/// *Rc::make_mut(&mut data) += 1; // Clones inner data
/// *Rc::make_mut(&mut data) += 1; // Won't clone anything
/// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
///
/// // Now `data` and `other_data` point to different values.
/// assert_eq!(*data, 8);
/// assert_eq!(*other_data, 12);
/// ```
#[inline]
#[stable(feature = "rc_unique", since = "1.4.0")]
pub fn make_mut(this: &mut Self) -> &mut T {
if Rc::strong_count(this) != 1 {
// Gotta clone the data, there are other Rcs
*this = Rc::new((**this).clone())
} else if Rc::weak_count(this) != 0 {
// Can just steal the data, all that's left is Weaks
unsafe {
let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value));
mem::swap(this, &mut swap);
swap.dec_strong();
// Remove implicit strong-weak ref (no need to craft a fake
// Weak here -- we know other Weaks can clean up for us)
swap.dec_weak();
forget(swap);
}
}
// This unsafety is ok because we're guaranteed that the pointer
// returned is the *only* pointer that will ever be returned to T. Our
// reference count is guaranteed to be 1 at this point, and we required
// the `Rc<T>` itself to be `mut`, so we're returning the only possible
// reference to the inner value.
unsafe {
&mut this.ptr.as_mut().value
}
}
}
impl Rc<Any> {
#[inline]
#[unstable(feature = "rc_downcast", issue = "44608")]
/// Attempt to downcast the `Rc<Any>` to a concrete type.
///
/// # Examples
///
/// ```
/// #![feature(rc_downcast)]
/// use std::any::Any;
/// use std::rc::Rc;
///
/// fn print_if_string(value: Rc<Any>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// fn main() {
/// let my_string = "Hello World".to_string();
/// print_if_string(Rc::new(my_string));
/// print_if_string(Rc::new(0i8));
/// }
/// ```
pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<Any>> {
if (*self).is::<T>() {
// avoid the pointer arithmetic in from_raw
unsafe {
let raw: *const RcBox<Any> = self.ptr.as_ptr();
forget(self);
Ok(Rc {
ptr: NonNull::new_unchecked(raw as *const RcBox<T> as *mut _),
phantom: PhantomData,
})
}
} else {
Err(self)
}
}
}
impl<T: ?Sized> Rc<T> {
// Allocates an `RcBox<T>` with sufficient space for an unsized value
unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
// Create a fake RcBox to find allocation size and alignment
let fake_ptr = ptr as *mut RcBox<T>;
let layout = Layout::for_value(&*fake_ptr);
let mem = Heap.alloc(layout)
.unwrap_or_else(|e| Heap.oom(e));
// Initialize the real RcBox
let inner = set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>;
ptr::write(&mut (*inner).strong, Cell::new(1));
ptr::write(&mut (*inner).weak, Cell::new(1));
inner
}
fn from_box(v: Box<T>) -> Rc<T> {
unsafe {
let bptr = Box::into_raw(v);
let value_size = size_of_val(&*bptr);
let ptr = Self::allocate_for_ptr(bptr);
// Copy value as bytes
ptr::copy_nonoverlapping(
bptr as *const T as *const u8,
&mut (*ptr).value as *mut _ as *mut u8,
value_size);
// Free the allocation without dropping its contents
box_free(bptr);
Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData }
}
}
}
// Sets the data pointer of a `?Sized` raw pointer.
//
// For a slice/trait object, this sets the `data` field and leaves the rest
// unchanged. For a sized raw pointer, this simply sets the pointer.
unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
ptr
}
impl<T> Rc<[T]> {
// Copy elements from slice into newly allocated Rc<[T]>
//
// Unsafe because the caller must either take ownership or bind `T: Copy`
unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
let v_ptr = v as *const [T];
let ptr = Self::allocate_for_ptr(v_ptr);
ptr::copy_nonoverlapping(
v.as_ptr(),
&mut (*ptr).value as *mut [T] as *mut T,
v.len());
Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData }
}
}
trait RcFromSlice<T> {
fn from_slice(slice: &[T]) -> Self;
}
impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
#[inline]
default fn from_slice(v: &[T]) -> Self {
// Panic guard while cloning T elements.
// In the event of a panic, elements that have been written
// into the new RcBox will be dropped, then the memory freed.
struct Guard<T> {
mem: *mut u8,
elems: *mut T,
layout: Layout,
n_elems: usize,
}
impl<T> Drop for Guard<T> {
fn drop(&mut self) {
use core::slice::from_raw_parts_mut;
unsafe {
let slice = from_raw_parts_mut(self.elems, self.n_elems);
ptr::drop_in_place(slice);
Heap.dealloc(self.mem, self.layout.clone());
}
}
}
unsafe {
let v_ptr = v as *const [T];
let ptr = Self::allocate_for_ptr(v_ptr);
let mem = ptr as *mut _ as *mut u8;
let layout = Layout::for_value(&*ptr);
// Pointer to first element
let elems = &mut (*ptr).value as *mut [T] as *mut T;
let mut guard = Guard{
mem: mem,
elems: elems,
layout: layout,
n_elems: 0,
};
for (i, item) in v.iter().enumerate() {
ptr::write(elems.offset(i as isize), item.clone());
guard.n_elems += 1;
}
// All clear. Forget the guard so it doesn't free the new RcBox.
forget(guard);
Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData }
}
}
}
impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
#[inline]
fn from_slice(v: &[T]) -> Self {
unsafe { Rc::copy_from_slice(v) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Rc<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
&self.inner().value
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
/// Drops the `Rc`.
///
/// This will decrement the strong reference count. If the strong reference
/// count reaches zero then the only other references (if any) are
/// [`Weak`][weak], so we `drop` the inner value.
///
/// [weak]: struct.Weak.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// struct Foo;
///
/// impl Drop for Foo {
/// fn drop(&mut self) {
/// println!("dropped!");
/// }
/// }
///
/// let foo = Rc::new(Foo);
/// let foo2 = Rc::clone(&foo);
///
/// drop(foo); // Doesn't print anything
/// drop(foo2); // Prints "dropped!"
/// ```
fn drop(&mut self) {
unsafe {
let ptr = self.ptr.as_ptr();
self.dec_strong();
if self.strong() == 0 {
// destroy the contained object
ptr::drop_in_place(self.ptr.as_mut());
// remove the implicit "strong weak" pointer now that we've
// destroyed the contents.
self.dec_weak();
if self.weak() == 0 {
Heap.dealloc(ptr as *mut u8, Layout::for_value(&*ptr));
}
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Clone for Rc<T> {
/// Makes a clone of the `Rc` pointer.
///
/// This creates another pointer to the same inner value, increasing the
/// strong reference count.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// Rc::clone(&five);
/// ```
#[inline]
fn clone(&self) -> Rc<T> {
self.inc_strong();
Rc { ptr: self.ptr, phantom: PhantomData }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Rc<T> {
/// Creates a new `Rc<T>`, with the `Default` value for `T`.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x: Rc<i32> = Default::default();
/// assert_eq!(*x, 0);
/// ```
#[inline]
fn default() -> Rc<T> {
Rc::new(Default::default())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
/// Equality for two `Rc`s.
///
/// Two `Rc`s are equal if their inner values are equal.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// assert!(five == Rc::new(5));
/// ```
#[inline(always)]
fn eq(&self, other: &Rc<T>) -> bool {
**self == **other
}
/// Inequality for two `Rc`s.
///
/// Two `Rc`s are unequal if their inner values are unequal.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// assert!(five != Rc::new(6));
/// ```
#[inline(always)]
fn ne(&self, other: &Rc<T>) -> bool {
**self != **other
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Rc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
/// Partial comparison for two `Rc`s.
///
/// The two are compared by calling `partial_cmp()` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
/// use std::cmp::Ordering;
///
/// let five = Rc::new(5);
///
/// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
/// ```
#[inline(always)]
fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
/// Less-than comparison for two `Rc`s.
///
/// The two are compared by calling `<` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// assert!(five < Rc::new(6));
/// ```
#[inline(always)]
fn lt(&self, other: &Rc<T>) -> bool {
**self < **other
}
/// 'Less than or equal to' comparison for two `Rc`s.
///
/// The two are compared by calling `<=` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// assert!(five <= Rc::new(5));
/// ```
#[inline(always)]
fn le(&self, other: &Rc<T>) -> bool {
**self <= **other
}
/// Greater-than comparison for two `Rc`s.
///
/// The two are compared by calling `>` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// assert!(five > Rc::new(4));
/// ```
#[inline(always)]
fn gt(&self, other: &Rc<T>) -> bool {
**self > **other
}
/// 'Greater than or equal to' comparison for two `Rc`s.
///
/// The two are compared by calling `>=` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// assert!(five >= Rc::new(5));
/// ```
#[inline(always)]
fn ge(&self, other: &Rc<T>) -> bool {
**self >= **other
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Rc<T> {
/// Comparison for two `Rc`s.
///
/// The two are compared by calling `cmp()` on their inner values.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
/// use std::cmp::Ordering;
///
/// let five = Rc::new(5);
///
/// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
/// ```
#[inline]
fn cmp(&self, other: &Rc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Rc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Rc<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&(&**self as *const T), f)
}
}
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Rc<T> {
fn from(t: T) -> Self {
Rc::new(t)
}
}
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<'a, T: Clone> From<&'a [T]> for Rc<[T]> {
#[inline]
fn from(v: &[T]) -> Rc<[T]> {
<Self as RcFromSlice<T>>::from_slice(v)
}
}
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<'a> From<&'a str> for Rc<str> {
#[inline]
fn from(v: &str) -> Rc<str> {
let rc = Rc::<[u8]>::from(v.as_bytes());
unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
}
}
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl From<String> for Rc<str> {
#[inline]
fn from(v: String) -> Rc<str> {
Rc::from(&v[..])
}
}
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T: ?Sized> From<Box<T>> for Rc<T> {
#[inline]
fn from(v: Box<T>) -> Rc<T> {
Rc::from_box(v)
}
}
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T> From<Vec<T>> for Rc<[T]> {
#[inline]
fn from(mut v: Vec<T>) -> Rc<[T]> {
unsafe {
let rc = Rc::copy_from_slice(&v);
// Allow the Vec to free its memory, but not destroy its contents
v.set_len(0);
rc
}
}
}
/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
/// managed value. The value is accessed by calling [`upgrade`] on the `Weak`
/// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`.
///
/// Since a `Weak` reference does not count towards ownership, it will not
/// prevent the inner value from being dropped, and `Weak` itself makes no
/// guarantees about the value still being present and may return [`None`]
/// when [`upgrade`]d.
///
/// A `Weak` pointer is useful for keeping a temporary reference to the value
/// within [`Rc`] without extending its lifetime. It is also used to prevent
/// circular references between [`Rc`] pointers, since mutual owning references
/// would never allow either [`Rc`] to be dropped. For example, a tree could
/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
/// pointers from children back to their parents.
///
/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
///
/// [`Rc`]: struct.Rc.html
/// [`Rc::downgrade`]: struct.Rc.html#method.downgrade
/// [`upgrade`]: struct.Weak.html#method.upgrade
/// [`Option`]: ../../std/option/enum.Option.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
#[stable(feature = "rc_weak", since = "1.4.0")]
pub struct Weak<T: ?Sized> {
ptr: NonNull<RcBox<T>>,
}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> !marker::Send for Weak<T> {}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> !marker::Sync for Weak<T> {}
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
impl<T> Weak<T> {
/// Constructs a new `Weak<T>`, allocating memory for `T` without initializing
/// it. Calling [`upgrade`] on the return value always gives [`None`].
///
/// [`upgrade`]: struct.Weak.html#method.upgrade
/// [`None`]: ../../std/option/enum.Option.html
///
/// # Examples
///
/// ```
/// use std::rc::Weak;
///
/// let empty: Weak<i64> = Weak::new();
/// assert!(empty.upgrade().is_none());
/// ```
#[stable(feature = "downgraded_weak", since = "1.10.0")]
pub fn new() -> Weak<T> {
unsafe {
Weak {
ptr: Box::into_raw_non_null(box RcBox {
strong: Cell::new(0),
weak: Cell::new(1),
value: uninitialized(),
}),
}
}
}
}
impl<T: ?Sized> Weak<T> {
/// Attempts to upgrade the `Weak` pointer to an [`Rc`], extending
/// the lifetime of the value if successful.
///
/// Returns [`None`] if the value has since been dropped.
///
/// [`Rc`]: struct.Rc.html
/// [`None`]: ../../std/option/enum.Option.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// let weak_five = Rc::downgrade(&five);
///
/// let strong_five: Option<Rc<_>> = weak_five.upgrade();
/// assert!(strong_five.is_some());
///
/// // Destroy all strong pointers.
/// drop(strong_five);
/// drop(five);
///
/// assert!(weak_five.upgrade().is_none());
/// ```
#[stable(feature = "rc_weak", since = "1.4.0")]
pub fn upgrade(&self) -> Option<Rc<T>> {
if self.strong() == 0 {
None
} else {
self.inc_strong();
Some(Rc { ptr: self.ptr, phantom: PhantomData })
}
}
}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> Drop for Weak<T> {
/// Drops the `Weak` pointer.
///
/// # Examples
///
/// ```
/// use std::rc::{Rc, Weak};
///
/// struct Foo;
///
/// impl Drop for Foo {
/// fn drop(&mut self) {
/// println!("dropped!");
/// }
/// }
///
/// let foo = Rc::new(Foo);
/// let weak_foo = Rc::downgrade(&foo);
/// let other_weak_foo = Weak::clone(&weak_foo);
///
/// drop(weak_foo); // Doesn't print anything
/// drop(foo); // Prints "dropped!"
///
/// assert!(other_weak_foo.upgrade().is_none());
/// ```
fn drop(&mut self) {
unsafe {
let ptr = self.ptr.as_ptr();
self.dec_weak();
// the weak count starts at 1, and will only go to zero if all
// the strong pointers have disappeared.
if self.weak() == 0 {
Heap.dealloc(ptr as *mut u8, Layout::for_value(&*ptr));
}
}
}
}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> Clone for Weak<T> {
/// Makes a clone of the `Weak` pointer that points to the same value.
///
/// # Examples
///
/// ```
/// use std::rc::{Rc, Weak};
///
/// let weak_five = Rc::downgrade(&Rc::new(5));
///
/// Weak::clone(&weak_five);
/// ```
#[inline]
fn clone(&self) -> Weak<T> {
self.inc_weak();
Weak { ptr: self.ptr }
}
}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(Weak)")
}
}
#[stable(feature = "downgraded_weak", since = "1.10.0")]
impl<T> Default for Weak<T> {
/// Constructs a new `Weak<T>`, allocating memory for `T` without initializing
/// it. Calling [`upgrade`] on the return value always gives [`None`].
///
/// [`upgrade`]: struct.Weak.html#method.upgrade
/// [`None`]: ../../std/option/enum.Option.html
///
/// # Examples
///
/// ```
/// use std::rc::Weak;
///
/// let empty: Weak<i64> = Default::default();
/// assert!(empty.upgrade().is_none());
/// ```
fn default() -> Weak<T> {
Weak::new()
}
}
// NOTE: We checked_add here to deal with mem::forget safety. In particular
// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
// you can free the allocation while outstanding Rcs (or Weaks) exist.
// We abort because this is such a degenerate scenario that we don't care about
// what happens -- no real program should ever experience this.
//
// This should have negligible overhead since you don't actually need to
// clone these much in Rust thanks to ownership and move-semantics.
#[doc(hidden)]
trait RcBoxPtr<T: ?Sized> {
fn inner(&self) -> &RcBox<T>;
#[inline]
fn strong(&self) -> usize {
self.inner().strong.get()
}
#[inline]
fn inc_strong(&self) {
self.inner().strong.set(self.strong().checked_add(1).unwrap_or_else(|| unsafe { abort() }));
}
#[inline]
fn dec_strong(&self) {
self.inner().strong.set(self.strong() - 1);
}
#[inline]
fn weak(&self) -> usize {
self.inner().weak.get()
}
#[inline]
fn inc_weak(&self) {
self.inner().weak.set(self.weak().checked_add(1).unwrap_or_else(|| unsafe { abort() }));
}
#[inline]
fn dec_weak(&self) {
self.inner().weak.set(self.weak() - 1);
}
}
impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
#[inline(always)]
fn inner(&self) -> &RcBox<T> {
unsafe {
self.ptr.as_ref()
}
}
}
impl<T: ?Sized> RcBoxPtr<T> for Weak<T> {
#[inline(always)]
fn inner(&self) -> &RcBox<T> {
unsafe {
self.ptr.as_ref()
}
}
}
#[cfg(test)]
mod tests {
use super::{Rc, Weak};
use std::boxed::Box;
use std::cell::RefCell;
use std::option::Option;
use std::option::Option::{None, Some};
use std::result::Result::{Err, Ok};
use std::mem::drop;
use std::clone::Clone;
use std::convert::From;
#[test]
fn test_clone() {
let x = Rc::new(RefCell::new(5));
let y = x.clone();
*x.borrow_mut() = 20;
assert_eq!(*y.borrow(), 20);
}
#[test]
fn test_simple() {
let x = Rc::new(5);
assert_eq!(*x, 5);
}
#[test]
fn test_simple_clone() {
let x = Rc::new(5);
let y = x.clone();
assert_eq!(*x, 5);
assert_eq!(*y, 5);
}
#[test]
fn test_destructor() {
let x: Rc<Box<_>> = Rc::new(box 5);
assert_eq!(**x, 5);
}
#[test]
fn test_live() {
let x = Rc::new(5);
let y = Rc::downgrade(&x);
assert!(y.upgrade().is_some());
}
#[test]
fn test_dead() {
let x = Rc::new(5);
let y = Rc::downgrade(&x);
drop(x);
assert!(y.upgrade().is_none());
}
#[test]
fn weak_self_cyclic() {
struct Cycle {
x: RefCell<Option<Weak<Cycle>>>,
}
let a = Rc::new(Cycle { x: RefCell::new(None) });
let b = Rc::downgrade(&a.clone());
*a.x.borrow_mut() = Some(b);
// hopefully we don't double-free (or leak)...
}
#[test]
fn is_unique() {
let x = Rc::new(3);
assert!(Rc::is_unique(&x));
let y = x.clone();
assert!(!Rc::is_unique(&x));
drop(y);
assert!(Rc::is_unique(&x));
let w = Rc::downgrade(&x);
assert!(!Rc::is_unique(&x));
drop(w);
assert!(Rc::is_unique(&x));
}
#[test]
fn test_strong_count() {
let a = Rc::new(0);
assert!(Rc::strong_count(&a) == 1);
let w = Rc::downgrade(&a);
assert!(Rc::strong_count(&a) == 1);
let b = w.upgrade().expect("upgrade of live rc failed");
assert!(Rc::strong_count(&b) == 2);
assert!(Rc::strong_count(&a) == 2);
drop(w);
drop(a);
assert!(Rc::strong_count(&b) == 1);
let c = b.clone();
assert!(Rc::strong_count(&b) == 2);
assert!(Rc::strong_count(&c) == 2);
}
#[test]
fn test_weak_count() {
let a = Rc::new(0);
assert!(Rc::strong_count(&a) == 1);
assert!(Rc::weak_count(&a) == 0);
let w = Rc::downgrade(&a);
assert!(Rc::strong_count(&a) == 1);
assert!(Rc::weak_count(&a) == 1);
drop(w);
assert!(Rc::strong_count(&a) == 1);
assert!(Rc::weak_count(&a) == 0);
let c = a.clone();
assert!(Rc::strong_count(&a) == 2);
assert!(Rc::weak_count(&a) == 0);
drop(c);
}
#[test]
fn try_unwrap() {
let x = Rc::new(3);
assert_eq!(Rc::try_unwrap(x), Ok(3));
let x = Rc::new(4);
let _y = x.clone();
assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4)));
let x = Rc::new(5);
let _w = Rc::downgrade(&x);
assert_eq!(Rc::try_unwrap(x), Ok(5));
}
#[test]
fn into_from_raw() {
let x = Rc::new(box "hello");
let y = x.clone();
let x_ptr = Rc::into_raw(x);
drop(y);
unsafe {
assert_eq!(**x_ptr, "hello");
let x = Rc::from_raw(x_ptr);
assert_eq!(**x, "hello");
assert_eq!(Rc::try_unwrap(x).map(|x| *x), Ok("hello"));
}
}
#[test]
fn test_into_from_raw_unsized() {
use std::fmt::Display;
use std::string::ToString;
let rc: Rc<str> = Rc::from("foo");
let ptr = Rc::into_raw(rc.clone());
let rc2 = unsafe { Rc::from_raw(ptr) };
assert_eq!(unsafe { &*ptr }, "foo");
assert_eq!(rc, rc2);
let rc: Rc<Display> = Rc::new(123);
let ptr = Rc::into_raw(rc.clone());
let rc2 = unsafe { Rc::from_raw(ptr) };
assert_eq!(unsafe { &*ptr }.to_string(), "123");
assert_eq!(rc2.to_string(), "123");
}
#[test]
fn get_mut() {
let mut x = Rc::new(3);
*Rc::get_mut(&mut x).unwrap() = 4;
assert_eq!(*x, 4);
let y = x.clone();
assert!(Rc::get_mut(&mut x).is_none());
drop(y);
assert!(Rc::get_mut(&mut x).is_some());
let _w = Rc::downgrade(&x);
assert!(Rc::get_mut(&mut x).is_none());
}
#[test]
fn test_cowrc_clone_make_unique() {
let mut cow0 = Rc::new(75);
let mut cow1 = cow0.clone();
let mut cow2 = cow1.clone();
assert!(75 == *Rc::make_mut(&mut cow0));
assert!(75 == *Rc::make_mut(&mut cow1));
assert!(75 == *Rc::make_mut(&mut cow2));
*Rc::make_mut(&mut cow0) += 1;
*Rc::make_mut(&mut cow1) += 2;
*Rc::make_mut(&mut cow2) += 3;
assert!(76 == *cow0);
assert!(77 == *cow1);
assert!(78 == *cow2);
// none should point to the same backing memory
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 != *cow2);
}
#[test]
fn test_cowrc_clone_unique2() {
let mut cow0 = Rc::new(75);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
*Rc::make_mut(&mut cow0) += 1;
assert!(76 == *cow0);
assert!(75 == *cow1);
assert!(75 == *cow2);
// cow1 and cow2 should share the same contents
// cow0 should have a unique reference
assert!(*cow0 != *cow1);
assert!(*cow0 != *cow2);
assert!(*cow1 == *cow2);
}
#[test]
fn test_cowrc_clone_weak() {
let mut cow0 = Rc::new(75);
let cow1_weak = Rc::downgrade(&cow0);
assert!(75 == *cow0);
assert!(75 == *cow1_weak.upgrade().unwrap());
*Rc::make_mut(&mut cow0) += 1;
assert!(76 == *cow0);
assert!(cow1_weak.upgrade().is_none());
}
#[test]
fn test_show() {
let foo = Rc::new(75);
assert_eq!(format!("{:?}", foo), "75");
}
#[test]
fn test_unsized() {
let foo: Rc<[i32]> = Rc::new([1, 2, 3]);
assert_eq!(foo, foo.clone());
}
#[test]
fn test_from_owned() {
let foo = 123;
let foo_rc = Rc::from(foo);
assert!(123 == *foo_rc);
}
#[test]
fn test_new_weak() {
let foo: Weak<usize> = Weak::new();
assert!(foo.upgrade().is_none());
}
#[test]
fn test_ptr_eq() {
let five = Rc::new(5);
let same_five = five.clone();
let other_five = Rc::new(5);
assert!(Rc::ptr_eq(&five, &same_five));
assert!(!Rc::ptr_eq(&five, &other_five));
}
#[test]
fn test_from_str() {
let r: Rc<str> = Rc::from("foo");
assert_eq!(&r[..], "foo");
}
#[test]
fn test_copy_from_slice() {
let s: &[u32] = &[1, 2, 3];
let r: Rc<[u32]> = Rc::from(s);
assert_eq!(&r[..], [1, 2, 3]);
}
#[test]
fn test_clone_from_slice() {
#[derive(Clone, Debug, Eq, PartialEq)]
struct X(u32);
let s: &[X] = &[X(1), X(2), X(3)];
let r: Rc<[X]> = Rc::from(s);
assert_eq!(&r[..], s);
}
#[test]
#[should_panic]
fn test_clone_from_slice_panic() {
use std::string::{String, ToString};
struct Fail(u32, String);
impl Clone for Fail {
fn clone(&self) -> Fail {
if self.0 == 2 {
panic!();
}
Fail(self.0, self.1.clone())
}
}
let s: &[Fail] = &[
Fail(0, "foo".to_string()),
Fail(1, "bar".to_string()),
Fail(2, "baz".to_string()),
];
// Should panic, but not cause memory corruption
let _r: Rc<[Fail]> = Rc::from(s);
}
#[test]
fn test_from_box() {
let b: Box<u32> = box 123;
let r: Rc<u32> = Rc::from(b);
assert_eq!(*r, 123);
}
#[test]
fn test_from_box_str() {
use std::string::String;
let s = String::from("foo").into_boxed_str();
let r: Rc<str> = Rc::from(s);
assert_eq!(&r[..], "foo");
}
#[test]
fn test_from_box_slice() {
let s = vec![1, 2, 3].into_boxed_slice();
let r: Rc<[u32]> = Rc::from(s);
assert_eq!(&r[..], [1, 2, 3]);
}
#[test]
fn test_from_box_trait() {
use std::fmt::Display;
use std::string::ToString;
let b: Box<Display> = box 123;
let r: Rc<Display> = Rc::from(b);
assert_eq!(r.to_string(), "123");
}
#[test]
fn test_from_box_trait_zero_sized() {
use std::fmt::Debug;
let b: Box<Debug> = box ();
let r: Rc<Debug> = Rc::from(b);
assert_eq!(format!("{:?}", r), "()");
}
#[test]
fn test_from_vec() {
let v = vec![1, 2, 3];
let r: Rc<[u32]> = Rc::from(v);
assert_eq!(&r[..], [1, 2, 3]);
}
#[test]
fn test_downcast() {
use std::any::Any;
let r1: Rc<Any> = Rc::new(i32::max_value());
let r2: Rc<Any> = Rc::new("abc");
assert!(r1.clone().downcast::<u32>().is_err());
let r1i32 = r1.downcast::<i32>();
assert!(r1i32.is_ok());
assert_eq!(r1i32.unwrap(), Rc::new(i32::max_value()));
assert!(r2.clone().downcast::<i32>().is_err());
let r2str = r2.downcast::<&'static str>();
assert!(r2str.is_ok());
assert_eq!(r2str.unwrap(), Rc::new("abc"));
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
fn borrow(&self) -> &T {
&**self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Rc<T> {
fn as_ref(&self) -> &T {
&**self
}
}