// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(deprecated)] //! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference //! Counted'. //! //! The type [`Rc`][`Rc`] provides shared ownership of a value of type `T`, //! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new //! pointer to the same value in the heap. When the last [`Rc`] pointer to a //! given value is destroyed, the pointed-to value is also destroyed. //! //! Shared references in Rust disallow mutation by default, and [`Rc`] //! is no exception: you cannot generally obtain a mutable reference to //! something inside an [`Rc`]. If you need mutability, put a [`Cell`] //! or [`RefCell`] inside the [`Rc`]; see [an example of mutability //! inside an Rc][mutability]. //! //! [`Rc`] uses non-atomic reference counting. This means that overhead is very //! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`] //! does not implement [`Send`][send]. As a result, the Rust compiler //! will check *at compile time* that you are not sending [`Rc`]s between //! threads. If you need multi-threaded, atomic reference counting, use //! [`sync::Arc`][arc]. //! //! The [`downgrade`][downgrade] method can be used to create a non-owning //! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d //! to an [`Rc`], but this will return [`None`] if the value has //! already been dropped. //! //! A cycle between [`Rc`] pointers will never be deallocated. For this reason, //! [`Weak`] is used to break cycles. For example, a tree could have strong //! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from //! children back to their parents. //! //! `Rc` automatically dereferences to `T` (via the [`Deref`] trait), //! so you can call `T`'s methods on a value of type [`Rc`][`Rc`]. To avoid name //! clashes with `T`'s methods, the methods of [`Rc`][`Rc`] itself are [associated //! functions][assoc], called using function-like syntax: //! //! ``` //! use std::rc::Rc; //! let my_rc = Rc::new(()); //! //! Rc::downgrade(&my_rc); //! ``` //! //! [`Weak`][`Weak`] does not auto-dereference to `T`, because the value may have //! already been destroyed. //! //! # Cloning references //! //! Creating a new reference from an existing reference counted pointer is done using the //! `Clone` trait implemented for [`Rc`][`Rc`] and [`Weak`][`Weak`]. //! //! ``` //! use std::rc::Rc; //! let foo = Rc::new(vec![1.0, 2.0, 3.0]); //! // The two syntaxes below are equivalent. //! let a = foo.clone(); //! let b = Rc::clone(&foo); //! // a and b both point to the same memory location as foo. //! ``` //! //! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly //! the meaning of the code. In the example above, this syntax makes it easier to see that //! this code is creating a new reference rather than copying the whole content of foo. //! //! # Examples //! //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`. //! We want to have our `Gadget`s point to their `Owner`. We can't do this with //! unique ownership, because more than one gadget may belong to the same //! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s, //! and have the `Owner` remain allocated as long as any `Gadget` points at it. //! //! ``` //! use std::rc::Rc; //! //! struct Owner { //! name: String, //! // ...other fields //! } //! //! struct Gadget { //! id: i32, //! owner: Rc, //! // ...other fields //! } //! //! fn main() { //! // Create a reference-counted `Owner`. //! let gadget_owner: Rc = Rc::new( //! Owner { //! name: "Gadget Man".to_string(), //! } //! ); //! //! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc` //! // value gives us a new pointer to the same `Owner` value, incrementing //! // the reference count in the process. //! let gadget1 = Gadget { //! id: 1, //! owner: Rc::clone(&gadget_owner), //! }; //! let gadget2 = Gadget { //! id: 2, //! owner: Rc::clone(&gadget_owner), //! }; //! //! // Dispose of our local variable `gadget_owner`. //! drop(gadget_owner); //! //! // Despite dropping `gadget_owner`, we're still able to print out the name //! // of the `Owner` of the `Gadget`s. This is because we've only dropped a //! // single `Rc`, not the `Owner` it points to. As long as there are //! // other `Rc` values pointing at the same `Owner`, it will remain //! // allocated. The field projection `gadget1.owner.name` works because //! // `Rc` automatically dereferences to `Owner`. //! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name); //! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name); //! //! // At the end of the function, `gadget1` and `gadget2` are destroyed, and //! // with them the last counted references to our `Owner`. Gadget Man now //! // gets destroyed as well. //! } //! ``` //! //! If our requirements change, and we also need to be able to traverse from //! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner` //! to `Gadget` introduces a cycle between the values. This means that their //! reference counts can never reach 0, and the values will remain allocated //! forever: a memory leak. In order to get around this, we can use [`Weak`] //! pointers. //! //! Rust actually makes it somewhat difficult to produce this loop in the first //! place. In order to end up with two values that point at each other, one of //! them needs to be mutable. This is difficult because [`Rc`] enforces //! memory safety by only giving out shared references to the value it wraps, //! and these don't allow direct mutation. We need to wrap the part of the //! value we wish to mutate in a [`RefCell`], which provides *interior //! mutability*: a method to achieve mutability through a shared reference. //! [`RefCell`] enforces Rust's borrowing rules at runtime. //! //! ``` //! use std::rc::Rc; //! use std::rc::Weak; //! use std::cell::RefCell; //! //! struct Owner { //! name: String, //! gadgets: RefCell>>, //! // ...other fields //! } //! //! struct Gadget { //! id: i32, //! owner: Rc, //! // ...other fields //! } //! //! fn main() { //! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s //! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through //! // a shared reference. //! let gadget_owner: Rc = Rc::new( //! Owner { //! name: "Gadget Man".to_string(), //! gadgets: RefCell::new(vec![]), //! } //! ); //! //! // Create `Gadget`s belonging to `gadget_owner`, as before. //! let gadget1 = Rc::new( //! Gadget { //! id: 1, //! owner: Rc::clone(&gadget_owner), //! } //! ); //! let gadget2 = Rc::new( //! Gadget { //! id: 2, //! owner: Rc::clone(&gadget_owner), //! } //! ); //! //! // Add the `Gadget`s to their `Owner`. //! { //! let mut gadgets = gadget_owner.gadgets.borrow_mut(); //! gadgets.push(Rc::downgrade(&gadget1)); //! gadgets.push(Rc::downgrade(&gadget2)); //! //! // `RefCell` dynamic borrow ends here. //! } //! //! // Iterate over our `Gadget`s, printing their details out. //! for gadget_weak in gadget_owner.gadgets.borrow().iter() { //! //! // `gadget_weak` is a `Weak`. Since `Weak` pointers can't //! // guarantee the value is still allocated, we need to call //! // `upgrade`, which returns an `Option>`. //! // //! // In this case we know the value still exists, so we simply //! // `unwrap` the `Option`. In a more complicated program, you might //! // need graceful error handling for a `None` result. //! //! let gadget = gadget_weak.upgrade().unwrap(); //! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name); //! } //! //! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2` //! // are destroyed. There are now no strong (`Rc`) pointers to the //! // gadgets, so they are destroyed. This zeroes the reference count on //! // Gadget Man, so he gets destroyed as well. //! } //! ``` //! //! [`Rc`]: struct.Rc.html //! [`Weak`]: struct.Weak.html //! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone //! [`Cell`]: ../../std/cell/struct.Cell.html //! [`RefCell`]: ../../std/cell/struct.RefCell.html //! [send]: ../../std/marker/trait.Send.html //! [arc]: ../../std/sync/struct.Arc.html //! [`Deref`]: ../../std/ops/trait.Deref.html //! [downgrade]: struct.Rc.html#method.downgrade //! [upgrade]: struct.Weak.html#method.upgrade //! [`None`]: ../../std/option/enum.Option.html#variant.None //! [assoc]: ../../book/first-edition/method-syntax.html#associated-functions //! [mutability]: ../../std/cell/index.html#introducing-mutability-inside-of-something-immutable #![stable(feature = "rust1", since = "1.0.0")] #[cfg(not(test))] use boxed::Box; #[cfg(test)] use std::boxed::Box; use core::any::Any; use core::borrow; use core::cell::Cell; use core::cmp::Ordering; use core::fmt; use core::hash::{Hash, Hasher}; use core::intrinsics::abort; use core::marker; use core::marker::{Unsize, PhantomData}; use core::mem::{self, align_of_val, forget, size_of_val, uninitialized}; use core::ops::Deref; use core::ops::CoerceUnsized; use core::ptr::{self, NonNull}; use core::convert::From; use heap::{Heap, Alloc, Layout, box_free}; use string::String; use vec::Vec; struct RcBox { strong: Cell, weak: Cell, value: T, } /// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference /// Counted'. /// /// See the [module-level documentation](./index.html) for more details. /// /// The inherent methods of `Rc` are all associated functions, which means /// that you have to call them as e.g. [`Rc::get_mut(&mut value)`][get_mut] instead of /// `value.get_mut()`. This avoids conflicts with methods of the inner /// type `T`. /// /// [get_mut]: #method.get_mut #[stable(feature = "rust1", since = "1.0.0")] pub struct Rc { ptr: NonNull>, phantom: PhantomData, } #[stable(feature = "rust1", since = "1.0.0")] impl !marker::Send for Rc {} #[stable(feature = "rust1", since = "1.0.0")] impl !marker::Sync for Rc {} #[unstable(feature = "coerce_unsized", issue = "27732")] impl, U: ?Sized> CoerceUnsized> for Rc {} impl Rc { /// Constructs a new `Rc`. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn new(value: T) -> Rc { Rc { // there is an implicit weak pointer owned by all the strong // pointers, which ensures that the weak destructor never frees // the allocation while the strong destructor is running, even // if the weak pointer is stored inside the strong one. ptr: Box::into_raw_non_null(box RcBox { strong: Cell::new(1), weak: Cell::new(1), value, }), phantom: PhantomData, } } /// Returns the contained value, if the `Rc` has exactly one strong reference. /// /// Otherwise, an [`Err`][result] is returned with the same `Rc` that was /// passed in. /// /// This will succeed even if there are outstanding weak references. /// /// [result]: ../../std/result/enum.Result.html /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let x = Rc::new(3); /// assert_eq!(Rc::try_unwrap(x), Ok(3)); /// /// let x = Rc::new(4); /// let _y = Rc::clone(&x); /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4); /// ``` #[inline] #[stable(feature = "rc_unique", since = "1.4.0")] pub fn try_unwrap(this: Self) -> Result { if Rc::strong_count(&this) == 1 { unsafe { let val = ptr::read(&*this); // copy the contained object // Indicate to Weaks that they can't be promoted by decrementing // the strong count, and then remove the implicit "strong weak" // pointer while also handling drop logic by just crafting a // fake Weak. this.dec_strong(); let _weak = Weak { ptr: this.ptr }; forget(this); Ok(val) } } else { Err(this) } } } impl Rc { /// Consumes the `Rc`, returning the wrapped pointer. /// /// To avoid a memory leak the pointer must be converted back to an `Rc` using /// [`Rc::from_raw`][from_raw]. /// /// [from_raw]: struct.Rc.html#method.from_raw /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let x = Rc::new(10); /// let x_ptr = Rc::into_raw(x); /// assert_eq!(unsafe { *x_ptr }, 10); /// ``` #[stable(feature = "rc_raw", since = "1.17.0")] pub fn into_raw(this: Self) -> *const T { let ptr: *const T = &*this; mem::forget(this); ptr } /// Constructs an `Rc` from a raw pointer. /// /// The raw pointer must have been previously returned by a call to a /// [`Rc::into_raw`][into_raw]. /// /// This function is unsafe because improper use may lead to memory problems. For example, a /// double-free may occur if the function is called twice on the same raw pointer. /// /// [into_raw]: struct.Rc.html#method.into_raw /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let x = Rc::new(10); /// let x_ptr = Rc::into_raw(x); /// /// unsafe { /// // Convert back to an `Rc` to prevent leak. /// let x = Rc::from_raw(x_ptr); /// assert_eq!(*x, 10); /// /// // Further calls to `Rc::from_raw(x_ptr)` would be memory unsafe. /// } /// /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! /// ``` #[stable(feature = "rc_raw", since = "1.17.0")] pub unsafe fn from_raw(ptr: *const T) -> Self { // Align the unsized value to the end of the RcBox. // Because it is ?Sized, it will always be the last field in memory. let align = align_of_val(&*ptr); let layout = Layout::new::>(); let offset = (layout.size() + layout.padding_needed_for(align)) as isize; // Reverse the offset to find the original RcBox. let fake_ptr = ptr as *mut RcBox; let rc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset)); Rc { ptr: NonNull::new_unchecked(rc_ptr), phantom: PhantomData, } } /// Creates a new [`Weak`][weak] pointer to this value. /// /// [weak]: struct.Weak.html /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// let weak_five = Rc::downgrade(&five); /// ``` #[stable(feature = "rc_weak", since = "1.4.0")] pub fn downgrade(this: &Self) -> Weak { this.inc_weak(); Weak { ptr: this.ptr } } /// Gets the number of [`Weak`][weak] pointers to this value. /// /// [weak]: struct.Weak.html /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// let _weak_five = Rc::downgrade(&five); /// /// assert_eq!(1, Rc::weak_count(&five)); /// ``` #[inline] #[stable(feature = "rc_counts", since = "1.15.0")] pub fn weak_count(this: &Self) -> usize { this.weak() - 1 } /// Gets the number of strong (`Rc`) pointers to this value. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// let _also_five = Rc::clone(&five); /// /// assert_eq!(2, Rc::strong_count(&five)); /// ``` #[inline] #[stable(feature = "rc_counts", since = "1.15.0")] pub fn strong_count(this: &Self) -> usize { this.strong() } /// Returns true if there are no other `Rc` or [`Weak`][weak] pointers to /// this inner value. /// /// [weak]: struct.Weak.html #[inline] fn is_unique(this: &Self) -> bool { Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1 } /// Returns a mutable reference to the inner value, if there are /// no other `Rc` or [`Weak`][weak] pointers to the same value. /// /// Returns [`None`] otherwise, because it is not safe to /// mutate a shared value. /// /// See also [`make_mut`][make_mut], which will [`clone`][clone] /// the inner value when it's shared. /// /// [weak]: struct.Weak.html /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [make_mut]: struct.Rc.html#method.make_mut /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let mut x = Rc::new(3); /// *Rc::get_mut(&mut x).unwrap() = 4; /// assert_eq!(*x, 4); /// /// let _y = Rc::clone(&x); /// assert!(Rc::get_mut(&mut x).is_none()); /// ``` #[inline] #[stable(feature = "rc_unique", since = "1.4.0")] pub fn get_mut(this: &mut Self) -> Option<&mut T> { if Rc::is_unique(this) { unsafe { Some(&mut this.ptr.as_mut().value) } } else { None } } #[inline] #[stable(feature = "ptr_eq", since = "1.17.0")] /// Returns true if the two `Rc`s point to the same value (not /// just values that compare as equal). /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// let same_five = Rc::clone(&five); /// let other_five = Rc::new(5); /// /// assert!(Rc::ptr_eq(&five, &same_five)); /// assert!(!Rc::ptr_eq(&five, &other_five)); /// ``` pub fn ptr_eq(this: &Self, other: &Self) -> bool { this.ptr.as_ptr() == other.ptr.as_ptr() } } impl Rc { /// Makes a mutable reference into the given `Rc`. /// /// If there are other `Rc` or [`Weak`][weak] pointers to the same value, /// then `make_mut` will invoke [`clone`][clone] on the inner value to /// ensure unique ownership. This is also referred to as clone-on-write. /// /// See also [`get_mut`][get_mut], which will fail rather than cloning. /// /// [weak]: struct.Weak.html /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone /// [get_mut]: struct.Rc.html#method.get_mut /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let mut data = Rc::new(5); /// /// *Rc::make_mut(&mut data) += 1; // Won't clone anything /// let mut other_data = Rc::clone(&data); // Won't clone inner data /// *Rc::make_mut(&mut data) += 1; // Clones inner data /// *Rc::make_mut(&mut data) += 1; // Won't clone anything /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything /// /// // Now `data` and `other_data` point to different values. /// assert_eq!(*data, 8); /// assert_eq!(*other_data, 12); /// ``` #[inline] #[stable(feature = "rc_unique", since = "1.4.0")] pub fn make_mut(this: &mut Self) -> &mut T { if Rc::strong_count(this) != 1 { // Gotta clone the data, there are other Rcs *this = Rc::new((**this).clone()) } else if Rc::weak_count(this) != 0 { // Can just steal the data, all that's left is Weaks unsafe { let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value)); mem::swap(this, &mut swap); swap.dec_strong(); // Remove implicit strong-weak ref (no need to craft a fake // Weak here -- we know other Weaks can clean up for us) swap.dec_weak(); forget(swap); } } // This unsafety is ok because we're guaranteed that the pointer // returned is the *only* pointer that will ever be returned to T. Our // reference count is guaranteed to be 1 at this point, and we required // the `Rc` itself to be `mut`, so we're returning the only possible // reference to the inner value. unsafe { &mut this.ptr.as_mut().value } } } impl Rc { #[inline] #[unstable(feature = "rc_downcast", issue = "44608")] /// Attempt to downcast the `Rc` to a concrete type. /// /// # Examples /// /// ``` /// #![feature(rc_downcast)] /// use std::any::Any; /// use std::rc::Rc; /// /// fn print_if_string(value: Rc) { /// if let Ok(string) = value.downcast::() { /// println!("String ({}): {}", string.len(), string); /// } /// } /// /// fn main() { /// let my_string = "Hello World".to_string(); /// print_if_string(Rc::new(my_string)); /// print_if_string(Rc::new(0i8)); /// } /// ``` pub fn downcast(self) -> Result, Rc> { if (*self).is::() { // avoid the pointer arithmetic in from_raw unsafe { let raw: *const RcBox = self.ptr.as_ptr(); forget(self); Ok(Rc { ptr: NonNull::new_unchecked(raw as *const RcBox as *mut _), phantom: PhantomData, }) } } else { Err(self) } } } impl Rc { // Allocates an `RcBox` with sufficient space for an unsized value unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox { // Create a fake RcBox to find allocation size and alignment let fake_ptr = ptr as *mut RcBox; let layout = Layout::for_value(&*fake_ptr); let mem = Heap.alloc(layout) .unwrap_or_else(|e| Heap.oom(e)); // Initialize the real RcBox let inner = set_data_ptr(ptr as *mut T, mem) as *mut RcBox; ptr::write(&mut (*inner).strong, Cell::new(1)); ptr::write(&mut (*inner).weak, Cell::new(1)); inner } fn from_box(v: Box) -> Rc { unsafe { let bptr = Box::into_raw(v); let value_size = size_of_val(&*bptr); let ptr = Self::allocate_for_ptr(bptr); // Copy value as bytes ptr::copy_nonoverlapping( bptr as *const T as *const u8, &mut (*ptr).value as *mut _ as *mut u8, value_size); // Free the allocation without dropping its contents box_free(bptr); Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } } } } // Sets the data pointer of a `?Sized` raw pointer. // // For a slice/trait object, this sets the `data` field and leaves the rest // unchanged. For a sized raw pointer, this simply sets the pointer. unsafe fn set_data_ptr(mut ptr: *mut T, data: *mut U) -> *mut T { ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8); ptr } impl Rc<[T]> { // Copy elements from slice into newly allocated Rc<[T]> // // Unsafe because the caller must either take ownership or bind `T: Copy` unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> { let v_ptr = v as *const [T]; let ptr = Self::allocate_for_ptr(v_ptr); ptr::copy_nonoverlapping( v.as_ptr(), &mut (*ptr).value as *mut [T] as *mut T, v.len()); Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } } } trait RcFromSlice { fn from_slice(slice: &[T]) -> Self; } impl RcFromSlice for Rc<[T]> { #[inline] default fn from_slice(v: &[T]) -> Self { // Panic guard while cloning T elements. // In the event of a panic, elements that have been written // into the new RcBox will be dropped, then the memory freed. struct Guard { mem: *mut u8, elems: *mut T, layout: Layout, n_elems: usize, } impl Drop for Guard { fn drop(&mut self) { use core::slice::from_raw_parts_mut; unsafe { let slice = from_raw_parts_mut(self.elems, self.n_elems); ptr::drop_in_place(slice); Heap.dealloc(self.mem, self.layout.clone()); } } } unsafe { let v_ptr = v as *const [T]; let ptr = Self::allocate_for_ptr(v_ptr); let mem = ptr as *mut _ as *mut u8; let layout = Layout::for_value(&*ptr); // Pointer to first element let elems = &mut (*ptr).value as *mut [T] as *mut T; let mut guard = Guard{ mem: mem, elems: elems, layout: layout, n_elems: 0, }; for (i, item) in v.iter().enumerate() { ptr::write(elems.offset(i as isize), item.clone()); guard.n_elems += 1; } // All clear. Forget the guard so it doesn't free the new RcBox. forget(guard); Rc { ptr: NonNull::new_unchecked(ptr), phantom: PhantomData } } } } impl RcFromSlice for Rc<[T]> { #[inline] fn from_slice(v: &[T]) -> Self { unsafe { Rc::copy_from_slice(v) } } } #[stable(feature = "rust1", since = "1.0.0")] impl Deref for Rc { type Target = T; #[inline(always)] fn deref(&self) -> &T { &self.inner().value } } #[stable(feature = "rust1", since = "1.0.0")] unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc { /// Drops the `Rc`. /// /// This will decrement the strong reference count. If the strong reference /// count reaches zero then the only other references (if any) are /// [`Weak`][weak], so we `drop` the inner value. /// /// [weak]: struct.Weak.html /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// struct Foo; /// /// impl Drop for Foo { /// fn drop(&mut self) { /// println!("dropped!"); /// } /// } /// /// let foo = Rc::new(Foo); /// let foo2 = Rc::clone(&foo); /// /// drop(foo); // Doesn't print anything /// drop(foo2); // Prints "dropped!" /// ``` fn drop(&mut self) { unsafe { let ptr = self.ptr.as_ptr(); self.dec_strong(); if self.strong() == 0 { // destroy the contained object ptr::drop_in_place(self.ptr.as_mut()); // remove the implicit "strong weak" pointer now that we've // destroyed the contents. self.dec_weak(); if self.weak() == 0 { Heap.dealloc(ptr as *mut u8, Layout::for_value(&*ptr)); } } } } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Rc { /// Makes a clone of the `Rc` pointer. /// /// This creates another pointer to the same inner value, increasing the /// strong reference count. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// Rc::clone(&five); /// ``` #[inline] fn clone(&self) -> Rc { self.inc_strong(); Rc { ptr: self.ptr, phantom: PhantomData } } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for Rc { /// Creates a new `Rc`, with the `Default` value for `T`. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let x: Rc = Default::default(); /// assert_eq!(*x, 0); /// ``` #[inline] fn default() -> Rc { Rc::new(Default::default()) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for Rc { /// Equality for two `Rc`s. /// /// Two `Rc`s are equal if their inner values are equal. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(five == Rc::new(5)); /// ``` #[inline(always)] fn eq(&self, other: &Rc) -> bool { **self == **other } /// Inequality for two `Rc`s. /// /// Two `Rc`s are unequal if their inner values are unequal. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(five != Rc::new(6)); /// ``` #[inline(always)] fn ne(&self, other: &Rc) -> bool { **self != **other } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Rc {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Rc { /// Partial comparison for two `Rc`s. /// /// The two are compared by calling `partial_cmp()` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// use std::cmp::Ordering; /// /// let five = Rc::new(5); /// /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6))); /// ``` #[inline(always)] fn partial_cmp(&self, other: &Rc) -> Option { (**self).partial_cmp(&**other) } /// Less-than comparison for two `Rc`s. /// /// The two are compared by calling `<` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(five < Rc::new(6)); /// ``` #[inline(always)] fn lt(&self, other: &Rc) -> bool { **self < **other } /// 'Less than or equal to' comparison for two `Rc`s. /// /// The two are compared by calling `<=` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(five <= Rc::new(5)); /// ``` #[inline(always)] fn le(&self, other: &Rc) -> bool { **self <= **other } /// Greater-than comparison for two `Rc`s. /// /// The two are compared by calling `>` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(five > Rc::new(4)); /// ``` #[inline(always)] fn gt(&self, other: &Rc) -> bool { **self > **other } /// 'Greater than or equal to' comparison for two `Rc`s. /// /// The two are compared by calling `>=` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(five >= Rc::new(5)); /// ``` #[inline(always)] fn ge(&self, other: &Rc) -> bool { **self >= **other } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Rc { /// Comparison for two `Rc`s. /// /// The two are compared by calling `cmp()` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// use std::cmp::Ordering; /// /// let five = Rc::new(5); /// /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6))); /// ``` #[inline] fn cmp(&self, other: &Rc) -> Ordering { (**self).cmp(&**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Hash for Rc { fn hash(&self, state: &mut H) { (**self).hash(state); } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Pointer for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Pointer::fmt(&(&**self as *const T), f) } } #[stable(feature = "from_for_ptrs", since = "1.6.0")] impl From for Rc { fn from(t: T) -> Self { Rc::new(t) } } #[stable(feature = "shared_from_slice", since = "1.21.0")] impl<'a, T: Clone> From<&'a [T]> for Rc<[T]> { #[inline] fn from(v: &[T]) -> Rc<[T]> { >::from_slice(v) } } #[stable(feature = "shared_from_slice", since = "1.21.0")] impl<'a> From<&'a str> for Rc { #[inline] fn from(v: &str) -> Rc { let rc = Rc::<[u8]>::from(v.as_bytes()); unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) } } } #[stable(feature = "shared_from_slice", since = "1.21.0")] impl From for Rc { #[inline] fn from(v: String) -> Rc { Rc::from(&v[..]) } } #[stable(feature = "shared_from_slice", since = "1.21.0")] impl From> for Rc { #[inline] fn from(v: Box) -> Rc { Rc::from_box(v) } } #[stable(feature = "shared_from_slice", since = "1.21.0")] impl From> for Rc<[T]> { #[inline] fn from(mut v: Vec) -> Rc<[T]> { unsafe { let rc = Rc::copy_from_slice(&v); // Allow the Vec to free its memory, but not destroy its contents v.set_len(0); rc } } } /// `Weak` is a version of [`Rc`] that holds a non-owning reference to the /// managed value. The value is accessed by calling [`upgrade`] on the `Weak` /// pointer, which returns an [`Option`]`<`[`Rc`]`>`. /// /// Since a `Weak` reference does not count towards ownership, it will not /// prevent the inner value from being dropped, and `Weak` itself makes no /// guarantees about the value still being present and may return [`None`] /// when [`upgrade`]d. /// /// A `Weak` pointer is useful for keeping a temporary reference to the value /// within [`Rc`] without extending its lifetime. It is also used to prevent /// circular references between [`Rc`] pointers, since mutual owning references /// would never allow either [`Rc`] to be dropped. For example, a tree could /// have strong [`Rc`] pointers from parent nodes to children, and `Weak` /// pointers from children back to their parents. /// /// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`]. /// /// [`Rc`]: struct.Rc.html /// [`Rc::downgrade`]: struct.Rc.html#method.downgrade /// [`upgrade`]: struct.Weak.html#method.upgrade /// [`Option`]: ../../std/option/enum.Option.html /// [`None`]: ../../std/option/enum.Option.html#variant.None #[stable(feature = "rc_weak", since = "1.4.0")] pub struct Weak { ptr: NonNull>, } #[stable(feature = "rc_weak", since = "1.4.0")] impl !marker::Send for Weak {} #[stable(feature = "rc_weak", since = "1.4.0")] impl !marker::Sync for Weak {} #[unstable(feature = "coerce_unsized", issue = "27732")] impl, U: ?Sized> CoerceUnsized> for Weak {} impl Weak { /// Constructs a new `Weak`, allocating memory for `T` without initializing /// it. Calling [`upgrade`] on the return value always gives [`None`]. /// /// [`upgrade`]: struct.Weak.html#method.upgrade /// [`None`]: ../../std/option/enum.Option.html /// /// # Examples /// /// ``` /// use std::rc::Weak; /// /// let empty: Weak = Weak::new(); /// assert!(empty.upgrade().is_none()); /// ``` #[stable(feature = "downgraded_weak", since = "1.10.0")] pub fn new() -> Weak { unsafe { Weak { ptr: Box::into_raw_non_null(box RcBox { strong: Cell::new(0), weak: Cell::new(1), value: uninitialized(), }), } } } } impl Weak { /// Attempts to upgrade the `Weak` pointer to an [`Rc`], extending /// the lifetime of the value if successful. /// /// Returns [`None`] if the value has since been dropped. /// /// [`Rc`]: struct.Rc.html /// [`None`]: ../../std/option/enum.Option.html /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// let weak_five = Rc::downgrade(&five); /// /// let strong_five: Option> = weak_five.upgrade(); /// assert!(strong_five.is_some()); /// /// // Destroy all strong pointers. /// drop(strong_five); /// drop(five); /// /// assert!(weak_five.upgrade().is_none()); /// ``` #[stable(feature = "rc_weak", since = "1.4.0")] pub fn upgrade(&self) -> Option> { if self.strong() == 0 { None } else { self.inc_strong(); Some(Rc { ptr: self.ptr, phantom: PhantomData }) } } } #[stable(feature = "rc_weak", since = "1.4.0")] impl Drop for Weak { /// Drops the `Weak` pointer. /// /// # Examples /// /// ``` /// use std::rc::{Rc, Weak}; /// /// struct Foo; /// /// impl Drop for Foo { /// fn drop(&mut self) { /// println!("dropped!"); /// } /// } /// /// let foo = Rc::new(Foo); /// let weak_foo = Rc::downgrade(&foo); /// let other_weak_foo = Weak::clone(&weak_foo); /// /// drop(weak_foo); // Doesn't print anything /// drop(foo); // Prints "dropped!" /// /// assert!(other_weak_foo.upgrade().is_none()); /// ``` fn drop(&mut self) { unsafe { let ptr = self.ptr.as_ptr(); self.dec_weak(); // the weak count starts at 1, and will only go to zero if all // the strong pointers have disappeared. if self.weak() == 0 { Heap.dealloc(ptr as *mut u8, Layout::for_value(&*ptr)); } } } } #[stable(feature = "rc_weak", since = "1.4.0")] impl Clone for Weak { /// Makes a clone of the `Weak` pointer that points to the same value. /// /// # Examples /// /// ``` /// use std::rc::{Rc, Weak}; /// /// let weak_five = Rc::downgrade(&Rc::new(5)); /// /// Weak::clone(&weak_five); /// ``` #[inline] fn clone(&self) -> Weak { self.inc_weak(); Weak { ptr: self.ptr } } } #[stable(feature = "rc_weak", since = "1.4.0")] impl fmt::Debug for Weak { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "(Weak)") } } #[stable(feature = "downgraded_weak", since = "1.10.0")] impl Default for Weak { /// Constructs a new `Weak`, allocating memory for `T` without initializing /// it. Calling [`upgrade`] on the return value always gives [`None`]. /// /// [`upgrade`]: struct.Weak.html#method.upgrade /// [`None`]: ../../std/option/enum.Option.html /// /// # Examples /// /// ``` /// use std::rc::Weak; /// /// let empty: Weak = Default::default(); /// assert!(empty.upgrade().is_none()); /// ``` fn default() -> Weak { Weak::new() } } // NOTE: We checked_add here to deal with mem::forget safety. In particular // if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then // you can free the allocation while outstanding Rcs (or Weaks) exist. // We abort because this is such a degenerate scenario that we don't care about // what happens -- no real program should ever experience this. // // This should have negligible overhead since you don't actually need to // clone these much in Rust thanks to ownership and move-semantics. #[doc(hidden)] trait RcBoxPtr { fn inner(&self) -> &RcBox; #[inline] fn strong(&self) -> usize { self.inner().strong.get() } #[inline] fn inc_strong(&self) { self.inner().strong.set(self.strong().checked_add(1).unwrap_or_else(|| unsafe { abort() })); } #[inline] fn dec_strong(&self) { self.inner().strong.set(self.strong() - 1); } #[inline] fn weak(&self) -> usize { self.inner().weak.get() } #[inline] fn inc_weak(&self) { self.inner().weak.set(self.weak().checked_add(1).unwrap_or_else(|| unsafe { abort() })); } #[inline] fn dec_weak(&self) { self.inner().weak.set(self.weak() - 1); } } impl RcBoxPtr for Rc { #[inline(always)] fn inner(&self) -> &RcBox { unsafe { self.ptr.as_ref() } } } impl RcBoxPtr for Weak { #[inline(always)] fn inner(&self) -> &RcBox { unsafe { self.ptr.as_ref() } } } #[cfg(test)] mod tests { use super::{Rc, Weak}; use std::boxed::Box; use std::cell::RefCell; use std::option::Option; use std::option::Option::{None, Some}; use std::result::Result::{Err, Ok}; use std::mem::drop; use std::clone::Clone; use std::convert::From; #[test] fn test_clone() { let x = Rc::new(RefCell::new(5)); let y = x.clone(); *x.borrow_mut() = 20; assert_eq!(*y.borrow(), 20); } #[test] fn test_simple() { let x = Rc::new(5); assert_eq!(*x, 5); } #[test] fn test_simple_clone() { let x = Rc::new(5); let y = x.clone(); assert_eq!(*x, 5); assert_eq!(*y, 5); } #[test] fn test_destructor() { let x: Rc> = Rc::new(box 5); assert_eq!(**x, 5); } #[test] fn test_live() { let x = Rc::new(5); let y = Rc::downgrade(&x); assert!(y.upgrade().is_some()); } #[test] fn test_dead() { let x = Rc::new(5); let y = Rc::downgrade(&x); drop(x); assert!(y.upgrade().is_none()); } #[test] fn weak_self_cyclic() { struct Cycle { x: RefCell>>, } let a = Rc::new(Cycle { x: RefCell::new(None) }); let b = Rc::downgrade(&a.clone()); *a.x.borrow_mut() = Some(b); // hopefully we don't double-free (or leak)... } #[test] fn is_unique() { let x = Rc::new(3); assert!(Rc::is_unique(&x)); let y = x.clone(); assert!(!Rc::is_unique(&x)); drop(y); assert!(Rc::is_unique(&x)); let w = Rc::downgrade(&x); assert!(!Rc::is_unique(&x)); drop(w); assert!(Rc::is_unique(&x)); } #[test] fn test_strong_count() { let a = Rc::new(0); assert!(Rc::strong_count(&a) == 1); let w = Rc::downgrade(&a); assert!(Rc::strong_count(&a) == 1); let b = w.upgrade().expect("upgrade of live rc failed"); assert!(Rc::strong_count(&b) == 2); assert!(Rc::strong_count(&a) == 2); drop(w); drop(a); assert!(Rc::strong_count(&b) == 1); let c = b.clone(); assert!(Rc::strong_count(&b) == 2); assert!(Rc::strong_count(&c) == 2); } #[test] fn test_weak_count() { let a = Rc::new(0); assert!(Rc::strong_count(&a) == 1); assert!(Rc::weak_count(&a) == 0); let w = Rc::downgrade(&a); assert!(Rc::strong_count(&a) == 1); assert!(Rc::weak_count(&a) == 1); drop(w); assert!(Rc::strong_count(&a) == 1); assert!(Rc::weak_count(&a) == 0); let c = a.clone(); assert!(Rc::strong_count(&a) == 2); assert!(Rc::weak_count(&a) == 0); drop(c); } #[test] fn try_unwrap() { let x = Rc::new(3); assert_eq!(Rc::try_unwrap(x), Ok(3)); let x = Rc::new(4); let _y = x.clone(); assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4))); let x = Rc::new(5); let _w = Rc::downgrade(&x); assert_eq!(Rc::try_unwrap(x), Ok(5)); } #[test] fn into_from_raw() { let x = Rc::new(box "hello"); let y = x.clone(); let x_ptr = Rc::into_raw(x); drop(y); unsafe { assert_eq!(**x_ptr, "hello"); let x = Rc::from_raw(x_ptr); assert_eq!(**x, "hello"); assert_eq!(Rc::try_unwrap(x).map(|x| *x), Ok("hello")); } } #[test] fn test_into_from_raw_unsized() { use std::fmt::Display; use std::string::ToString; let rc: Rc = Rc::from("foo"); let ptr = Rc::into_raw(rc.clone()); let rc2 = unsafe { Rc::from_raw(ptr) }; assert_eq!(unsafe { &*ptr }, "foo"); assert_eq!(rc, rc2); let rc: Rc = Rc::new(123); let ptr = Rc::into_raw(rc.clone()); let rc2 = unsafe { Rc::from_raw(ptr) }; assert_eq!(unsafe { &*ptr }.to_string(), "123"); assert_eq!(rc2.to_string(), "123"); } #[test] fn get_mut() { let mut x = Rc::new(3); *Rc::get_mut(&mut x).unwrap() = 4; assert_eq!(*x, 4); let y = x.clone(); assert!(Rc::get_mut(&mut x).is_none()); drop(y); assert!(Rc::get_mut(&mut x).is_some()); let _w = Rc::downgrade(&x); assert!(Rc::get_mut(&mut x).is_none()); } #[test] fn test_cowrc_clone_make_unique() { let mut cow0 = Rc::new(75); let mut cow1 = cow0.clone(); let mut cow2 = cow1.clone(); assert!(75 == *Rc::make_mut(&mut cow0)); assert!(75 == *Rc::make_mut(&mut cow1)); assert!(75 == *Rc::make_mut(&mut cow2)); *Rc::make_mut(&mut cow0) += 1; *Rc::make_mut(&mut cow1) += 2; *Rc::make_mut(&mut cow2) += 3; assert!(76 == *cow0); assert!(77 == *cow1); assert!(78 == *cow2); // none should point to the same backing memory assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 != *cow2); } #[test] fn test_cowrc_clone_unique2() { let mut cow0 = Rc::new(75); let cow1 = cow0.clone(); let cow2 = cow1.clone(); assert!(75 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); *Rc::make_mut(&mut cow0) += 1; assert!(76 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); // cow1 and cow2 should share the same contents // cow0 should have a unique reference assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 == *cow2); } #[test] fn test_cowrc_clone_weak() { let mut cow0 = Rc::new(75); let cow1_weak = Rc::downgrade(&cow0); assert!(75 == *cow0); assert!(75 == *cow1_weak.upgrade().unwrap()); *Rc::make_mut(&mut cow0) += 1; assert!(76 == *cow0); assert!(cow1_weak.upgrade().is_none()); } #[test] fn test_show() { let foo = Rc::new(75); assert_eq!(format!("{:?}", foo), "75"); } #[test] fn test_unsized() { let foo: Rc<[i32]> = Rc::new([1, 2, 3]); assert_eq!(foo, foo.clone()); } #[test] fn test_from_owned() { let foo = 123; let foo_rc = Rc::from(foo); assert!(123 == *foo_rc); } #[test] fn test_new_weak() { let foo: Weak = Weak::new(); assert!(foo.upgrade().is_none()); } #[test] fn test_ptr_eq() { let five = Rc::new(5); let same_five = five.clone(); let other_five = Rc::new(5); assert!(Rc::ptr_eq(&five, &same_five)); assert!(!Rc::ptr_eq(&five, &other_five)); } #[test] fn test_from_str() { let r: Rc = Rc::from("foo"); assert_eq!(&r[..], "foo"); } #[test] fn test_copy_from_slice() { let s: &[u32] = &[1, 2, 3]; let r: Rc<[u32]> = Rc::from(s); assert_eq!(&r[..], [1, 2, 3]); } #[test] fn test_clone_from_slice() { #[derive(Clone, Debug, Eq, PartialEq)] struct X(u32); let s: &[X] = &[X(1), X(2), X(3)]; let r: Rc<[X]> = Rc::from(s); assert_eq!(&r[..], s); } #[test] #[should_panic] fn test_clone_from_slice_panic() { use std::string::{String, ToString}; struct Fail(u32, String); impl Clone for Fail { fn clone(&self) -> Fail { if self.0 == 2 { panic!(); } Fail(self.0, self.1.clone()) } } let s: &[Fail] = &[ Fail(0, "foo".to_string()), Fail(1, "bar".to_string()), Fail(2, "baz".to_string()), ]; // Should panic, but not cause memory corruption let _r: Rc<[Fail]> = Rc::from(s); } #[test] fn test_from_box() { let b: Box = box 123; let r: Rc = Rc::from(b); assert_eq!(*r, 123); } #[test] fn test_from_box_str() { use std::string::String; let s = String::from("foo").into_boxed_str(); let r: Rc = Rc::from(s); assert_eq!(&r[..], "foo"); } #[test] fn test_from_box_slice() { let s = vec![1, 2, 3].into_boxed_slice(); let r: Rc<[u32]> = Rc::from(s); assert_eq!(&r[..], [1, 2, 3]); } #[test] fn test_from_box_trait() { use std::fmt::Display; use std::string::ToString; let b: Box = box 123; let r: Rc = Rc::from(b); assert_eq!(r.to_string(), "123"); } #[test] fn test_from_box_trait_zero_sized() { use std::fmt::Debug; let b: Box = box (); let r: Rc = Rc::from(b); assert_eq!(format!("{:?}", r), "()"); } #[test] fn test_from_vec() { let v = vec![1, 2, 3]; let r: Rc<[u32]> = Rc::from(v); assert_eq!(&r[..], [1, 2, 3]); } #[test] fn test_downcast() { use std::any::Any; let r1: Rc = Rc::new(i32::max_value()); let r2: Rc = Rc::new("abc"); assert!(r1.clone().downcast::().is_err()); let r1i32 = r1.downcast::(); assert!(r1i32.is_ok()); assert_eq!(r1i32.unwrap(), Rc::new(i32::max_value())); assert!(r2.clone().downcast::().is_err()); let r2str = r2.downcast::<&'static str>(); assert!(r2str.is_ok()); assert_eq!(r2str.unwrap(), Rc::new("abc")); } } #[stable(feature = "rust1", since = "1.0.0")] impl borrow::Borrow for Rc { fn borrow(&self) -> &T { &**self } } #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] impl AsRef for Rc { fn as_ref(&self) -> &T { &**self } }