rust/src/libsyntax/ast.rs

2203 lines
65 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
pub use self::TyParamBound::*;
pub use self::UnsafeSource::*;
pub use self::PathParameters::*;
pub use symbol::{Ident, Symbol as Name};
pub use util::ThinVec;
pub use util::parser::ExprPrecedence;
use syntax_pos::{Span, DUMMY_SP};
use codemap::{respan, Spanned};
use abi::Abi;
use ext::hygiene::{Mark, SyntaxContext};
use print::pprust;
use ptr::P;
use rustc_data_structures::indexed_vec;
use symbol::{Symbol, keywords};
use tokenstream::{ThinTokenStream, TokenStream};
use serialize::{self, Encoder, Decoder};
use std::collections::HashSet;
use std::fmt;
use rustc_data_structures::sync::Lrc;
use std::u32;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Label {
pub ident: Ident,
}
impl fmt::Debug for Label {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "label({:?})", self.ident)
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Lifetime {
pub id: NodeId,
pub ident: Ident,
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "lifetime({}: {})", self.id, pprust::lifetime_to_string(self))
}
}
/// A lifetime definition, e.g. `'a: 'b+'c+'d`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct LifetimeDef {
pub attrs: ThinVec<Attribute>,
pub lifetime: Lifetime,
pub bounds: Vec<Lifetime>
}
/// A "Path" is essentially Rust's notion of a name.
///
/// It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
///
/// E.g. `std::cmp::PartialEq`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Path {
pub span: Span,
/// The segments in the path: the things separated by `::`.
/// Global paths begin with `keywords::CrateRoot`.
pub segments: Vec<PathSegment>,
}
impl<'a> PartialEq<&'a str> for Path {
fn eq(&self, string: &&'a str) -> bool {
self.segments.len() == 1 && self.segments[0].ident.name == *string
}
}
impl fmt::Debug for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "path({})", pprust::path_to_string(self))
}
}
impl fmt::Display for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", pprust::path_to_string(self))
}
}
impl Path {
// convert a span and an identifier to the corresponding
// 1-segment path
pub fn from_ident(ident: Ident) -> Path {
Path { segments: vec![PathSegment::from_ident(ident)], span: ident.span }
}
// Make a "crate root" segment for this path unless it already has it
// or starts with something like `self`/`super`/`$crate`/etc.
pub fn make_root(&self) -> Option<PathSegment> {
if let Some(ident) = self.segments.get(0).map(|seg| seg.ident) {
if ::parse::token::is_path_segment_keyword(ident) &&
ident.name != keywords::Crate.name() {
return None;
}
}
Some(PathSegment::crate_root(self.span.shrink_to_lo()))
}
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].ident.name == keywords::CrateRoot.name()
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of types.
///
/// E.g. `std`, `String` or `Box<T>`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub ident: Ident,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
/// `None` means that no parameter list is supplied (`Path`),
/// `Some` means that parameter list is supplied (`Path<X, Y>`)
/// but it can be empty (`Path<>`).
/// `P` is used as a size optimization for the common case with no parameters.
pub parameters: Option<P<PathParameters>>,
}
impl PathSegment {
pub fn from_ident(ident: Ident) -> Self {
PathSegment { ident, parameters: None }
}
pub fn crate_root(span: Span) -> Self {
PathSegment::from_ident(Ident::new(keywords::CrateRoot.name(), span))
}
}
/// Parameters of a path segment.
///
/// E.g. `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PathParameters {
/// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>`
AngleBracketed(AngleBracketedParameterData),
/// The `(A,B)` and `C` in `Foo(A,B) -> C`
Parenthesized(ParenthesizedParameterData),
}
impl PathParameters {
pub fn span(&self) -> Span {
match *self {
AngleBracketed(ref data) => data.span,
Parenthesized(ref data) => data.span,
}
}
}
/// A path like `Foo<'a, T>`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Default)]
pub struct AngleBracketedParameterData {
/// Overall span
pub span: Span,
/// The lifetime parameters for this path segment.
pub lifetimes: Vec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: Vec<P<Ty>>,
/// Bindings (equality constraints) on associated types, if present.
///
/// E.g., `Foo<A=Bar>`.
pub bindings: Vec<TypeBinding>,
}
impl Into<Option<P<PathParameters>>> for AngleBracketedParameterData {
fn into(self) -> Option<P<PathParameters>> {
Some(P(PathParameters::AngleBracketed(self)))
}
}
impl Into<Option<P<PathParameters>>> for ParenthesizedParameterData {
fn into(self) -> Option<P<PathParameters>> {
Some(P(PathParameters::Parenthesized(self)))
}
}
/// A path like `Foo(A,B) -> C`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ParenthesizedParameterData {
/// Overall span
pub span: Span,
/// `(A,B)`
pub inputs: Vec<P<Ty>>,
/// `C`
pub output: Option<P<Ty>>,
}
#[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)]
pub struct NodeId(u32);
impl NodeId {
pub fn new(x: usize) -> NodeId {
assert!(x < (u32::MAX as usize));
NodeId(x as u32)
}
pub fn from_u32(x: u32) -> NodeId {
NodeId(x)
}
pub fn as_usize(&self) -> usize {
self.0 as usize
}
pub fn as_u32(&self) -> u32 {
self.0
}
pub fn placeholder_from_mark(mark: Mark) -> Self {
NodeId(mark.as_u32())
}
pub fn placeholder_to_mark(self) -> Mark {
Mark::from_u32(self.0)
}
}
impl fmt::Display for NodeId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
impl serialize::UseSpecializedEncodable for NodeId {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_u32(self.0)
}
}
impl serialize::UseSpecializedDecodable for NodeId {
fn default_decode<D: Decoder>(d: &mut D) -> Result<NodeId, D::Error> {
d.read_u32().map(NodeId)
}
}
impl indexed_vec::Idx for NodeId {
fn new(idx: usize) -> Self {
NodeId::new(idx)
}
fn index(self) -> usize {
self.as_usize()
}
}
/// Node id used to represent the root of the crate.
pub const CRATE_NODE_ID: NodeId = NodeId(0);
/// When parsing and doing expansions, we initially give all AST nodes this AST
/// node value. Then later, in the renumber pass, we renumber them to have
/// small, positive ids.
pub const DUMMY_NODE_ID: NodeId = NodeId(!0);
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TyParamBound {
TraitTyParamBound(PolyTraitRef, TraitBoundModifier),
RegionTyParamBound(Lifetime)
}
impl TyParamBound {
pub fn span(&self) -> Span {
match self {
&TraitTyParamBound(ref t, ..) => t.span,
&RegionTyParamBound(ref l) => l.ident.span,
}
}
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitBoundModifier {
None,
Maybe,
}
pub type TyParamBounds = Vec<TyParamBound>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TyParam {
pub attrs: ThinVec<Attribute>,
pub ident: Ident,
pub id: NodeId,
pub bounds: TyParamBounds,
pub default: Option<P<Ty>>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum GenericParam {
Lifetime(LifetimeDef),
Type(TyParam),
}
impl GenericParam {
pub fn is_lifetime_param(&self) -> bool {
match *self {
GenericParam::Lifetime(_) => true,
_ => false,
}
}
pub fn is_type_param(&self) -> bool {
match *self {
GenericParam::Type(_) => true,
_ => false,
}
}
}
/// Represents lifetime, type and const parameters attached to a declaration of
/// a function, enum, trait, etc.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Generics {
pub params: Vec<GenericParam>,
pub where_clause: WhereClause,
pub span: Span,
}
impl Generics {
pub fn is_lt_parameterized(&self) -> bool {
self.params.iter().any(|param| param.is_lifetime_param())
}
pub fn is_type_parameterized(&self) -> bool {
self.params.iter().any(|param| param.is_type_param())
}
pub fn is_parameterized(&self) -> bool {
!self.params.is_empty()
}
pub fn span_for_name(&self, name: &str) -> Option<Span> {
for param in &self.params {
if let GenericParam::Type(ref t) = *param {
if t.ident.name == name {
return Some(t.ident.span);
}
}
}
None
}
}
impl Default for Generics {
/// Creates an instance of `Generics`.
fn default() -> Generics {
Generics {
params: Vec::new(),
where_clause: WhereClause {
id: DUMMY_NODE_ID,
predicates: Vec::new(),
span: DUMMY_SP,
},
span: DUMMY_SP,
}
}
}
/// A `where` clause in a definition
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: Vec<WherePredicate>,
pub span: Span,
}
/// A single predicate in a `where` clause
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum WherePredicate {
/// A type binding, e.g. `for<'c> Foo: Send+Clone+'c`
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate, e.g. `'a: 'b+'c`
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported)
EqPredicate(WhereEqPredicate),
}
impl WherePredicate {
pub fn span(&self) -> Span {
match self {
&WherePredicate::BoundPredicate(ref p) => p.span,
&WherePredicate::RegionPredicate(ref p) => p.span,
&WherePredicate::EqPredicate(ref p) => p.span,
}
}
}
/// A type bound.
///
/// E.g. `for<'c> Foo: Send+Clone+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any generics from a `for` binding
pub bound_generic_params: Vec<GenericParam>,
/// The type being bounded
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone+Send+'static`)
pub bounds: TyParamBounds,
}
/// A lifetime predicate.
///
/// E.g. `'a: 'b+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: Vec<Lifetime>,
}
/// An equality predicate (unsupported).
///
/// E.g. `T=int`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereEqPredicate {
pub id: NodeId,
pub span: Span,
pub lhs_ty: P<Ty>,
pub rhs_ty: P<Ty>,
}
/// The set of MetaItems that define the compilation environment of the crate,
/// used to drive conditional compilation
pub type CrateConfig = HashSet<(Name, Option<Symbol>)>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Crate {
pub module: Mod,
pub attrs: Vec<Attribute>,
pub span: Span,
}
/// A spanned compile-time attribute list item.
pub type NestedMetaItem = Spanned<NestedMetaItemKind>;
/// Possible values inside of compile-time attribute lists.
///
/// E.g. the '..' in `#[name(..)]`.
#[derive(Clone, Eq, RustcEncodable, RustcDecodable, Hash, Debug, PartialEq)]
pub enum NestedMetaItemKind {
/// A full MetaItem, for recursive meta items.
MetaItem(MetaItem),
/// A literal.
///
/// E.g. "foo", 64, true
Literal(Lit),
}
/// A spanned compile-time attribute item.
///
/// E.g. `#[test]`, `#[derive(..)]` or `#[feature = "foo"]`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MetaItem {
pub ident: Ident,
pub node: MetaItemKind,
pub span: Span,
}
/// A compile-time attribute item.
///
/// E.g. `#[test]`, `#[derive(..)]` or `#[feature = "foo"]`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum MetaItemKind {
/// Word meta item.
///
/// E.g. `test` as in `#[test]`
Word,
/// List meta item.
///
/// E.g. `derive(..)` as in `#[derive(..)]`
List(Vec<NestedMetaItem>),
/// Name value meta item.
///
/// E.g. `feature = "foo"` as in `#[feature = "foo"]`
NameValue(Lit)
}
/// A Block (`{ .. }`).
///
/// E.g. `{ .. }` as in `fn foo() { .. }`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Block {
/// Statements in a block
pub stmts: Vec<Stmt>,
pub id: NodeId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`
pub rules: BlockCheckMode,
pub span: Span,
pub recovered: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Pat {
pub id: NodeId,
pub node: PatKind,
pub span: Span,
}
impl fmt::Debug for Pat {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "pat({}: {})", self.id, pprust::pat_to_string(self))
}
}
impl Pat {
pub(super) fn to_ty(&self) -> Option<P<Ty>> {
let node = match &self.node {
PatKind::Wild => TyKind::Infer,
PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), ident, None) =>
TyKind::Path(None, Path::from_ident(*ident)),
PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
PatKind::Mac(mac) => TyKind::Mac(mac.clone()),
PatKind::Ref(pat, mutbl) =>
pat.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?,
PatKind::Slice(pats, None, _) if pats.len() == 1 =>
pats[0].to_ty().map(TyKind::Slice)?,
PatKind::Tuple(pats, None) => {
let mut tys = Vec::new();
for pat in pats {
tys.push(pat.to_ty()?);
}
TyKind::Tup(tys)
}
_ => return None,
};
Some(P(Ty { node, id: self.id, span: self.span }))
}
pub fn walk<F>(&self, it: &mut F) -> bool
where F: FnMut(&Pat) -> bool
{
if !it(self) {
return false;
}
match self.node {
PatKind::Ident(_, _, Some(ref p)) => p.walk(it),
PatKind::Struct(_, ref fields, _) => {
fields.iter().all(|field| field.node.pat.walk(it))
}
PatKind::TupleStruct(_, ref s, _) | PatKind::Tuple(ref s, _) => {
s.iter().all(|p| p.walk(it))
}
PatKind::Box(ref s) | PatKind::Ref(ref s, _) | PatKind::Paren(ref s) => {
s.walk(it)
}
PatKind::Slice(ref before, ref slice, ref after) => {
before.iter().all(|p| p.walk(it)) &&
slice.iter().all(|p| p.walk(it)) &&
after.iter().all(|p| p.walk(it))
}
PatKind::Wild |
PatKind::Lit(_) |
PatKind::Range(..) |
PatKind::Ident(..) |
PatKind::Path(..) |
PatKind::Mac(_) => {
true
}
}
}
}
/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FieldPat {
/// The identifier for the field
pub ident: Ident,
/// The pattern the field is destructured to
pub pat: P<Pat>,
pub is_shorthand: bool,
pub attrs: ThinVec<Attribute>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BindingMode {
ByRef(Mutability),
ByValue(Mutability),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum RangeEnd {
Included(RangeSyntax),
Excluded,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum RangeSyntax {
DotDotDot,
DotDotEq,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PatKind {
/// Represents a wildcard pattern (`_`)
Wild,
/// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
/// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
/// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
/// during name resolution.
Ident(BindingMode, Ident, Option<P<Pat>>),
/// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`.
/// The `bool` is `true` in the presence of a `..`.
Struct(Path, Vec<Spanned<FieldPat>>, bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
TupleStruct(Path, Vec<P<Pat>>, Option<usize>),
/// A possibly qualified path pattern.
/// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
/// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
/// only legally refer to associated constants.
Path(Option<QSelf>, Path),
/// A tuple pattern `(a, b)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
Tuple(Vec<P<Pat>>, Option<usize>),
/// A `box` pattern
Box(P<Pat>),
/// A reference pattern, e.g. `&mut (a, b)`
Ref(P<Pat>, Mutability),
/// A literal
Lit(P<Expr>),
/// A range pattern, e.g. `1...2`, `1..=2` or `1..2`
Range(P<Expr>, P<Expr>, RangeEnd),
/// `[a, b, ..i, y, z]` is represented as:
/// `PatKind::Slice(box [a, b], Some(i), box [y, z])`
Slice(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>),
/// Parentheses in patters used for grouping, i.e. `(PAT)`.
Paren(P<Pat>),
/// A macro pattern; pre-expansion
Mac(Mac),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Mutability {
Mutable,
Immutable,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BinOpKind {
/// The `+` operator (addition)
Add,
/// The `-` operator (subtraction)
Sub,
/// The `*` operator (multiplication)
Mul,
/// The `/` operator (division)
Div,
/// The `%` operator (modulus)
Rem,
/// The `&&` operator (logical and)
And,
/// The `||` operator (logical or)
Or,
/// The `^` operator (bitwise xor)
BitXor,
/// The `&` operator (bitwise and)
BitAnd,
/// The `|` operator (bitwise or)
BitOr,
/// The `<<` operator (shift left)
Shl,
/// The `>>` operator (shift right)
Shr,
/// The `==` operator (equality)
Eq,
/// The `<` operator (less than)
Lt,
/// The `<=` operator (less than or equal to)
Le,
/// The `!=` operator (not equal to)
Ne,
/// The `>=` operator (greater than or equal to)
Ge,
/// The `>` operator (greater than)
Gt,
}
impl BinOpKind {
pub fn to_string(&self) -> &'static str {
use self::BinOpKind::*;
match *self {
Add => "+",
Sub => "-",
Mul => "*",
Div => "/",
Rem => "%",
And => "&&",
Or => "||",
BitXor => "^",
BitAnd => "&",
BitOr => "|",
Shl => "<<",
Shr => ">>",
Eq => "==",
Lt => "<",
Le => "<=",
Ne => "!=",
Ge => ">=",
Gt => ">",
}
}
pub fn lazy(&self) -> bool {
match *self {
BinOpKind::And | BinOpKind::Or => true,
_ => false
}
}
pub fn is_shift(&self) -> bool {
match *self {
BinOpKind::Shl | BinOpKind::Shr => true,
_ => false
}
}
pub fn is_comparison(&self) -> bool {
use self::BinOpKind::*;
match *self {
Eq | Lt | Le | Ne | Gt | Ge =>
true,
And | Or | Add | Sub | Mul | Div | Rem |
BitXor | BitAnd | BitOr | Shl | Shr =>
false,
}
}
/// Returns `true` if the binary operator takes its arguments by value
pub fn is_by_value(&self) -> bool {
!self.is_comparison()
}
}
pub type BinOp = Spanned<BinOpKind>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnOp {
/// The `*` operator for dereferencing
Deref,
/// The `!` operator for logical inversion
Not,
/// The `-` operator for negation
Neg,
}
impl UnOp {
/// Returns `true` if the unary operator takes its argument by value
pub fn is_by_value(u: UnOp) -> bool {
match u {
UnOp::Neg | UnOp::Not => true,
_ => false,
}
}
pub fn to_string(op: UnOp) -> &'static str {
match op {
UnOp::Deref => "*",
UnOp::Not => "!",
UnOp::Neg => "-",
}
}
}
/// A statement
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Stmt {
pub id: NodeId,
pub node: StmtKind,
pub span: Span,
}
impl Stmt {
pub fn add_trailing_semicolon(mut self) -> Self {
self.node = match self.node {
StmtKind::Expr(expr) => StmtKind::Semi(expr),
StmtKind::Mac(mac) => StmtKind::Mac(mac.map(|(mac, _style, attrs)| {
(mac, MacStmtStyle::Semicolon, attrs)
})),
node => node,
};
self
}
pub fn is_item(&self) -> bool {
match self.node {
StmtKind::Local(_) => true,
_ => false,
}
}
pub fn is_expr(&self) -> bool {
match self.node {
StmtKind::Expr(_) => true,
_ => false,
}
}
}
impl fmt::Debug for Stmt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "stmt({}: {})", self.id.to_string(), pprust::stmt_to_string(self))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum StmtKind {
/// A local (let) binding.
Local(P<Local>),
/// An item definition.
Item(P<Item>),
/// Expr without trailing semi-colon.
Expr(P<Expr>),
/// Expr with a trailing semi-colon.
Semi(P<Expr>),
/// Macro.
Mac(P<(Mac, MacStmtStyle, ThinVec<Attribute>)>),
}
#[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum MacStmtStyle {
/// The macro statement had a trailing semicolon, e.g. `foo! { ... };`
/// `foo!(...);`, `foo![...];`
Semicolon,
/// The macro statement had braces; e.g. foo! { ... }
Braces,
/// The macro statement had parentheses or brackets and no semicolon; e.g.
/// `foo!(...)`. All of these will end up being converted into macro
/// expressions.
NoBraces,
}
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Local {
pub pat: P<Pat>,
pub ty: Option<P<Ty>>,
/// Initializer expression to set the value, if any
pub init: Option<P<Expr>>,
pub id: NodeId,
pub span: Span,
pub attrs: ThinVec<Attribute>,
}
/// An arm of a 'match'.
///
/// E.g. `0...10 => { println!("match!") }` as in
///
/// ```
/// match 123 {
/// 0...10 => { println!("match!") },
/// _ => { println!("no match!") },
/// }
/// ```
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arm {
pub attrs: Vec<Attribute>,
pub pats: Vec<P<Pat>>,
pub guard: Option<P<Expr>>,
pub body: P<Expr>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Field {
pub ident: Ident,
pub expr: P<Expr>,
pub span: Span,
pub is_shorthand: bool,
pub attrs: ThinVec<Attribute>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BlockCheckMode {
Default,
Unsafe(UnsafeSource),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
/// An expression
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash,)]
pub struct Expr {
pub id: NodeId,
pub node: ExprKind,
pub span: Span,
pub attrs: ThinVec<Attribute>
}
impl Expr {
/// Whether this expression would be valid somewhere that expects a value, for example, an `if`
/// condition.
pub fn returns(&self) -> bool {
if let ExprKind::Block(ref block) = self.node {
match block.stmts.last().map(|last_stmt| &last_stmt.node) {
// implicit return
Some(&StmtKind::Expr(_)) => true,
Some(&StmtKind::Semi(ref expr)) => {
if let ExprKind::Ret(_) = expr.node {
// last statement is explicit return
true
} else {
false
}
}
// This is a block that doesn't end in either an implicit or explicit return
_ => false,
}
} else {
// This is not a block, it is a value
true
}
}
fn to_bound(&self) -> Option<TyParamBound> {
match &self.node {
ExprKind::Path(None, path) =>
Some(TraitTyParamBound(PolyTraitRef::new(Vec::new(), path.clone(), self.span),
TraitBoundModifier::None)),
_ => None,
}
}
pub(super) fn to_ty(&self) -> Option<P<Ty>> {
let node = match &self.node {
ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
ExprKind::Mac(mac) => TyKind::Mac(mac.clone()),
ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?,
ExprKind::AddrOf(mutbl, expr) =>
expr.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?,
ExprKind::Repeat(expr, expr_len) =>
expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?,
ExprKind::Array(exprs) if exprs.len() == 1 =>
exprs[0].to_ty().map(TyKind::Slice)?,
ExprKind::Tup(exprs) => {
let mut tys = Vec::new();
for expr in exprs {
tys.push(expr.to_ty()?);
}
TyKind::Tup(tys)
}
ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add =>
if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) {
TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None)
} else {
return None;
}
_ => return None,
};
Some(P(Ty { node, id: self.id, span: self.span }))
}
pub fn precedence(&self) -> ExprPrecedence {
match self.node {
ExprKind::Box(_) => ExprPrecedence::Box,
ExprKind::Array(_) => ExprPrecedence::Array,
ExprKind::Call(..) => ExprPrecedence::Call,
ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
ExprKind::Tup(_) => ExprPrecedence::Tup,
ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node),
ExprKind::Unary(..) => ExprPrecedence::Unary,
ExprKind::Lit(_) => ExprPrecedence::Lit,
ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
ExprKind::If(..) => ExprPrecedence::If,
ExprKind::IfLet(..) => ExprPrecedence::IfLet,
ExprKind::While(..) => ExprPrecedence::While,
ExprKind::WhileLet(..) => ExprPrecedence::WhileLet,
ExprKind::ForLoop(..) => ExprPrecedence::ForLoop,
ExprKind::Loop(..) => ExprPrecedence::Loop,
ExprKind::Match(..) => ExprPrecedence::Match,
ExprKind::Closure(..) => ExprPrecedence::Closure,
ExprKind::Block(..) => ExprPrecedence::Block,
ExprKind::Catch(..) => ExprPrecedence::Catch,
ExprKind::Assign(..) => ExprPrecedence::Assign,
ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
ExprKind::Field(..) => ExprPrecedence::Field,
ExprKind::Index(..) => ExprPrecedence::Index,
ExprKind::Range(..) => ExprPrecedence::Range,
ExprKind::Path(..) => ExprPrecedence::Path,
ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
ExprKind::Break(..) => ExprPrecedence::Break,
ExprKind::Continue(..) => ExprPrecedence::Continue,
ExprKind::Ret(..) => ExprPrecedence::Ret,
ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm,
ExprKind::Mac(..) => ExprPrecedence::Mac,
ExprKind::Struct(..) => ExprPrecedence::Struct,
ExprKind::Repeat(..) => ExprPrecedence::Repeat,
ExprKind::Paren(..) => ExprPrecedence::Paren,
ExprKind::Try(..) => ExprPrecedence::Try,
ExprKind::Yield(..) => ExprPrecedence::Yield,
}
}
}
impl fmt::Debug for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expr({}: {})", self.id, pprust::expr_to_string(self))
}
}
/// Limit types of a range (inclusive or exclusive)
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum RangeLimits {
/// Inclusive at the beginning, exclusive at the end
HalfOpen,
/// Inclusive at the beginning and end
Closed,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ExprKind {
/// A `box x` expression.
Box(P<Expr>),
/// An array (`[a, b, c, d]`)
Array(Vec<P<Expr>>),
/// A function call
///
/// The first field resolves to the function itself,
/// and the second field is the list of arguments.
/// This also represents calling the constructor of
/// tuple-like ADTs such as tuple structs and enum variants.
Call(P<Expr>, Vec<P<Expr>>),
/// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`)
///
/// The `PathSegment` represents the method name and its generic arguments
/// (within the angle brackets).
/// The first element of the vector of `Expr`s is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the remaining elements are the rest of the arguments.
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
MethodCall(PathSegment, Vec<P<Expr>>),
/// A tuple (`(a, b, c ,d)`)
Tup(Vec<P<Expr>>),
/// A binary operation (For example: `a + b`, `a * b`)
Binary(BinOp, P<Expr>, P<Expr>),
/// A unary operation (For example: `!x`, `*x`)
Unary(UnOp, P<Expr>),
/// A literal (For example: `1`, `"foo"`)
Lit(P<Lit>),
/// A cast (`foo as f64`)
Cast(P<Expr>, P<Ty>),
Type(P<Expr>, P<Ty>),
/// An `if` block, with an optional else block
///
/// `if expr { block } else { expr }`
If(P<Expr>, P<Block>, Option<P<Expr>>),
/// An `if let` expression with an optional else block
///
/// `if let pat = expr { block } else { expr }`
///
/// This is desugared to a `match` expression.
IfLet(Vec<P<Pat>>, P<Expr>, P<Block>, Option<P<Expr>>),
/// A while loop, with an optional label
///
/// `'label: while expr { block }`
While(P<Expr>, P<Block>, Option<Label>),
/// A while-let loop, with an optional label
///
/// `'label: while let pat = expr { block }`
///
/// This is desugared to a combination of `loop` and `match` expressions.
WhileLet(Vec<P<Pat>>, P<Expr>, P<Block>, Option<Label>),
/// A for loop, with an optional label
///
/// `'label: for pat in expr { block }`
///
/// This is desugared to a combination of `loop` and `match` expressions.
ForLoop(P<Pat>, P<Expr>, P<Block>, Option<Label>),
/// Conditionless loop (can be exited with break, continue, or return)
///
/// `'label: loop { block }`
Loop(P<Block>, Option<Label>),
/// A `match` block.
Match(P<Expr>, Vec<Arm>),
/// A closure (for example, `move |a, b, c| a + b + c`)
///
/// The final span is the span of the argument block `|...|`
Closure(CaptureBy, Movability, P<FnDecl>, P<Expr>, Span),
/// A block (`{ ... }`)
Block(P<Block>),
/// A catch block (`catch { ... }`)
Catch(P<Block>),
/// An assignment (`a = foo()`)
Assign(P<Expr>, P<Expr>),
/// An assignment with an operator
///
/// For example, `a += 1`.
AssignOp(BinOp, P<Expr>, P<Expr>),
/// Access of a named (`obj.foo`) or unnamed (`obj.0`) struct field
Field(P<Expr>, Ident),
/// An indexing operation (`foo[2]`)
Index(P<Expr>, P<Expr>),
/// A range (`1..2`, `1..`, `..2`, `1...2`, `1...`, `...2`)
Range(Option<P<Expr>>, Option<P<Expr>>, RangeLimits),
/// Variable reference, possibly containing `::` and/or type
/// parameters, e.g. foo::bar::<baz>.
///
/// Optionally "qualified",
/// E.g. `<Vec<T> as SomeTrait>::SomeType`.
Path(Option<QSelf>, Path),
/// A referencing operation (`&a` or `&mut a`)
AddrOf(Mutability, P<Expr>),
/// A `break`, with an optional label to break, and an optional expression
Break(Option<Label>, Option<P<Expr>>),
/// A `continue`, with an optional label
Continue(Option<Label>),
/// A `return`, with an optional value to be returned
Ret(Option<P<Expr>>),
/// Output of the `asm!()` macro
InlineAsm(P<InlineAsm>),
/// A macro invocation; pre-expansion
Mac(Mac),
/// A struct literal expression.
///
/// For example, `Foo {x: 1, y: 2}`, or
/// `Foo {x: 1, .. base}`, where `base` is the `Option<Expr>`.
Struct(Path, Vec<Field>, Option<P<Expr>>),
/// An array literal constructed from one repeated element.
///
/// For example, `[1; 5]`. The first expression is the element
/// to be repeated; the second is the number of times to repeat it.
Repeat(P<Expr>, P<Expr>),
/// No-op: used solely so we can pretty-print faithfully
Paren(P<Expr>),
/// `expr?`
Try(P<Expr>),
/// A `yield`, with an optional value to be yielded
Yield(Option<P<Expr>>),
}
/// The explicit Self type in a "qualified path". The actual
/// path, including the trait and the associated item, is stored
/// separately. `position` represents the index of the associated
/// item qualified with this Self type.
///
/// ```ignore (only-for-syntax-highlight)
/// <Vec<T> as a::b::Trait>::AssociatedItem
/// ^~~~~ ~~~~~~~~~~~~~~^
/// ty position = 3
///
/// <Vec<T>>::AssociatedItem
/// ^~~~~ ^
/// ty position = 0
/// ```
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct QSelf {
pub ty: P<Ty>,
pub position: usize
}
/// A capture clause
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum CaptureBy {
Value,
Ref,
}
/// The movability of a generator / closure literal
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Movability {
Static,
Movable,
}
pub type Mac = Spanned<Mac_>;
/// Represents a macro invocation. The Path indicates which macro
/// is being invoked, and the vector of token-trees contains the source
/// of the macro invocation.
///
/// NB: the additional ident for a macro_rules-style macro is actually
/// stored in the enclosing item. Oog.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Mac_ {
pub path: Path,
pub tts: ThinTokenStream,
}
impl Mac_ {
pub fn stream(&self) -> TokenStream {
self.tts.clone().into()
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MacroDef {
pub tokens: ThinTokenStream,
pub legacy: bool,
}
impl MacroDef {
pub fn stream(&self) -> TokenStream {
self.tokens.clone().into()
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum StrStyle {
/// A regular string, like `"foo"`
Cooked,
/// A raw string, like `r##"foo"##`
///
/// The uint is the number of `#` symbols used
Raw(usize)
}
/// A literal
pub type Lit = Spanned<LitKind>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum LitIntType {
Signed(IntTy),
Unsigned(UintTy),
Unsuffixed,
}
/// Literal kind.
///
/// E.g. `"foo"`, `42`, `12.34` or `bool`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum LitKind {
/// A string literal (`"foo"`)
Str(Symbol, StrStyle),
/// A byte string (`b"foo"`)
ByteStr(Lrc<Vec<u8>>),
/// A byte char (`b'f'`)
Byte(u8),
/// A character literal (`'a'`)
Char(char),
/// An integer literal (`1`)
Int(u128, LitIntType),
/// A float literal (`1f64` or `1E10f64`)
Float(Symbol, FloatTy),
/// A float literal without a suffix (`1.0 or 1.0E10`)
FloatUnsuffixed(Symbol),
/// A boolean literal
Bool(bool),
}
impl LitKind {
/// Returns true if this literal is a string and false otherwise.
pub fn is_str(&self) -> bool {
match *self {
LitKind::Str(..) => true,
_ => false,
}
}
/// Returns true if this literal has no suffix. Note: this will return true
/// for literals with prefixes such as raw strings and byte strings.
pub fn is_unsuffixed(&self) -> bool {
match *self {
// unsuffixed variants
LitKind::Str(..) |
LitKind::ByteStr(..) |
LitKind::Byte(..) |
LitKind::Char(..) |
LitKind::Int(_, LitIntType::Unsuffixed) |
LitKind::FloatUnsuffixed(..) |
LitKind::Bool(..) => true,
// suffixed variants
LitKind::Int(_, LitIntType::Signed(..)) |
LitKind::Int(_, LitIntType::Unsigned(..)) |
LitKind::Float(..) => false,
}
}
/// Returns true if this literal has a suffix.
pub fn is_suffixed(&self) -> bool {
!self.is_unsuffixed()
}
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
/// Represents a method's signature in a trait declaration,
/// or in an implementation.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MethodSig {
pub unsafety: Unsafety,
pub constness: Spanned<Constness>,
pub abi: Abi,
pub decl: P<FnDecl>,
}
/// Represents an item declaration within a trait declaration,
/// possibly including a default implementation. A trait item is
/// either required (meaning it doesn't have an implementation, just a
/// signature) or provided (meaning it has a default implementation).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitItem {
pub id: NodeId,
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub generics: Generics,
pub node: TraitItemKind,
pub span: Span,
/// See `Item::tokens` for what this is
pub tokens: Option<TokenStream>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitItemKind {
Const(P<Ty>, Option<P<Expr>>),
Method(MethodSig, Option<P<Block>>),
Type(TyParamBounds, Option<P<Ty>>),
Macro(Mac),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ImplItem {
pub id: NodeId,
pub ident: Ident,
pub vis: Visibility,
pub defaultness: Defaultness,
pub attrs: Vec<Attribute>,
pub generics: Generics,
pub node: ImplItemKind,
pub span: Span,
/// See `Item::tokens` for what this is
pub tokens: Option<TokenStream>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ImplItemKind {
Const(P<Ty>, P<Expr>),
Method(MethodSig, P<Block>),
Type(P<Ty>),
Macro(Mac),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy,
PartialOrd, Ord)]
pub enum IntTy {
Isize,
I8,
I16,
I32,
I64,
I128,
}
impl fmt::Debug for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.ty_to_string())
}
}
impl IntTy {
pub fn ty_to_string(&self) -> &'static str {
match *self {
IntTy::Isize => "isize",
IntTy::I8 => "i8",
IntTy::I16 => "i16",
IntTy::I32 => "i32",
IntTy::I64 => "i64",
IntTy::I128 => "i128",
}
}
pub fn val_to_string(&self, val: i128) -> String {
// cast to a u128 so we can correctly print INT128_MIN. All integral types
// are parsed as u128, so we wouldn't want to print an extra negative
// sign.
format!("{}{}", val as u128, self.ty_to_string())
}
pub fn bit_width(&self) -> Option<usize> {
Some(match *self {
IntTy::Isize => return None,
IntTy::I8 => 8,
IntTy::I16 => 16,
IntTy::I32 => 32,
IntTy::I64 => 64,
IntTy::I128 => 128,
})
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy,
PartialOrd, Ord)]
pub enum UintTy {
Usize,
U8,
U16,
U32,
U64,
U128,
}
impl UintTy {
pub fn ty_to_string(&self) -> &'static str {
match *self {
UintTy::Usize => "usize",
UintTy::U8 => "u8",
UintTy::U16 => "u16",
UintTy::U32 => "u32",
UintTy::U64 => "u64",
UintTy::U128 => "u128",
}
}
pub fn val_to_string(&self, val: u128) -> String {
format!("{}{}", val, self.ty_to_string())
}
pub fn bit_width(&self) -> Option<usize> {
Some(match *self {
UintTy::Usize => return None,
UintTy::U8 => 8,
UintTy::U16 => 16,
UintTy::U32 => 32,
UintTy::U64 => 64,
UintTy::U128 => 128,
})
}
}
impl fmt::Debug for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.ty_to_string())
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy,
PartialOrd, Ord)]
pub enum FloatTy {
F32,
F64,
}
impl fmt::Debug for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.ty_to_string())
}
}
impl FloatTy {
pub fn ty_to_string(&self) -> &'static str {
match *self {
FloatTy::F32 => "f32",
FloatTy::F64 => "f64",
}
}
pub fn bit_width(&self) -> usize {
match *self {
FloatTy::F32 => 32,
FloatTy::F64 => 64,
}
}
}
// Bind a type to an associated type: `A=Foo`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TypeBinding {
pub id: NodeId,
pub ident: Ident,
pub ty: P<Ty>,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Ty {
pub id: NodeId,
pub node: TyKind,
pub span: Span,
}
impl fmt::Debug for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "type({})", pprust::ty_to_string(self))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct BareFnTy {
pub unsafety: Unsafety,
pub abi: Abi,
pub generic_params: Vec<GenericParam>,
pub decl: P<FnDecl>
}
/// The different kinds of types recognized by the compiler
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TyKind {
/// A variable-length slice (`[T]`)
Slice(P<Ty>),
/// A fixed length array (`[T; n]`)
Array(P<Ty>, P<Expr>),
/// A raw pointer (`*const T` or `*mut T`)
Ptr(MutTy),
/// A reference (`&'a T` or `&'a mut T`)
Rptr(Option<Lifetime>, MutTy),
/// A bare function (e.g. `fn(usize) -> bool`)
BareFn(P<BareFnTy>),
/// The never type (`!`)
Never,
/// A tuple (`(A, B, C, D,...)`)
Tup(Vec<P<Ty>> ),
/// A path (`module::module::...::Type`), optionally
/// "qualified", e.g. `<Vec<T> as SomeTrait>::SomeType`.
///
/// Type parameters are stored in the Path itself
Path(Option<QSelf>, Path),
/// A trait object type `Bound1 + Bound2 + Bound3`
/// where `Bound` is a trait or a lifetime.
TraitObject(TyParamBounds, TraitObjectSyntax),
/// An `impl Bound1 + Bound2 + Bound3` type
/// where `Bound` is a trait or a lifetime.
ImplTrait(TyParamBounds),
/// No-op; kept solely so that we can pretty-print faithfully
Paren(P<Ty>),
/// Unused for now
Typeof(P<Expr>),
/// TyKind::Infer means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
Infer,
/// Inferred type of a `self` or `&self` argument in a method.
ImplicitSelf,
// A macro in the type position.
Mac(Mac),
/// Placeholder for a kind that has failed to be defined.
Err,
}
/// Syntax used to declare a trait object.
#[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitObjectSyntax {
Dyn,
None,
}
/// Inline assembly dialect.
///
/// E.g. `"intel"` as in `asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum AsmDialect {
Att,
Intel,
}
/// Inline assembly.
///
/// E.g. `"={eax}"(result)` as in `asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsmOutput {
pub constraint: Symbol,
pub expr: P<Expr>,
pub is_rw: bool,
pub is_indirect: bool,
}
/// Inline assembly.
///
/// E.g. `asm!("NOP");`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsm {
pub asm: Symbol,
pub asm_str_style: StrStyle,
pub outputs: Vec<InlineAsmOutput>,
pub inputs: Vec<(Symbol, P<Expr>)>,
pub clobbers: Vec<Symbol>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
pub ctxt: SyntaxContext,
}
/// An argument in a function header.
///
/// E.g. `bar: usize` as in `fn foo(bar: usize)`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arg {
pub ty: P<Ty>,
pub pat: P<Pat>,
pub id: NodeId,
}
/// Alternative representation for `Arg`s describing `self` parameter of methods.
///
/// E.g. `&mut self` as in `fn foo(&mut self)`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum SelfKind {
/// `self`, `mut self`
Value(Mutability),
/// `&'lt self`, `&'lt mut self`
Region(Option<Lifetime>, Mutability),
/// `self: TYPE`, `mut self: TYPE`
Explicit(P<Ty>, Mutability),
}
pub type ExplicitSelf = Spanned<SelfKind>;
impl Arg {
pub fn to_self(&self) -> Option<ExplicitSelf> {
if let PatKind::Ident(BindingMode::ByValue(mutbl), ident, _) = self.pat.node {
if ident.name == keywords::SelfValue.name() {
return match self.ty.node {
TyKind::ImplicitSelf => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
TyKind::Rptr(lt, MutTy{ref ty, mutbl}) if ty.node == TyKind::ImplicitSelf => {
Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
}
_ => Some(respan(self.pat.span.to(self.ty.span),
SelfKind::Explicit(self.ty.clone(), mutbl))),
}
}
}
None
}
pub fn is_self(&self) -> bool {
if let PatKind::Ident(_, ident, _) = self.pat.node {
ident.name == keywords::SelfValue.name()
} else {
false
}
}
pub fn from_self(eself: ExplicitSelf, eself_ident: Ident) -> Arg {
let span = eself.span.to(eself_ident.span);
let infer_ty = P(Ty {
id: DUMMY_NODE_ID,
node: TyKind::ImplicitSelf,
span,
});
let arg = |mutbl, ty| Arg {
pat: P(Pat {
id: DUMMY_NODE_ID,
node: PatKind::Ident(BindingMode::ByValue(mutbl), eself_ident, None),
span,
}),
ty,
id: DUMMY_NODE_ID,
};
match eself.node {
SelfKind::Explicit(ty, mutbl) => arg(mutbl, ty),
SelfKind::Value(mutbl) => arg(mutbl, infer_ty),
SelfKind::Region(lt, mutbl) => arg(Mutability::Immutable, P(Ty {
id: DUMMY_NODE_ID,
node: TyKind::Rptr(lt, MutTy { ty: infer_ty, mutbl: mutbl }),
span,
})),
}
}
}
/// Header (not the body) of a function declaration.
///
/// E.g. `fn foo(bar: baz)`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FnDecl {
pub inputs: Vec<Arg>,
pub output: FunctionRetTy,
pub variadic: bool
}
impl FnDecl {
pub fn get_self(&self) -> Option<ExplicitSelf> {
self.inputs.get(0).and_then(Arg::to_self)
}
pub fn has_self(&self) -> bool {
self.inputs.get(0).map(Arg::is_self).unwrap_or(false)
}
}
/// Is the trait definition an auto trait?
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum IsAuto {
Yes,
No
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Unsafety {
Unsafe,
Normal,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Constness {
Const,
NotConst,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Defaultness {
Default,
Final,
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(match *self {
Unsafety::Normal => "normal",
Unsafety::Unsafe => "unsafe",
}, f)
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum ImplPolarity {
/// `impl Trait for Type`
Positive,
/// `impl !Trait for Type`
Negative,
}
impl fmt::Debug for ImplPolarity {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ImplPolarity::Positive => "positive".fmt(f),
ImplPolarity::Negative => "negative".fmt(f),
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum FunctionRetTy {
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
Default(Span),
/// Everything else
Ty(P<Ty>),
}
impl FunctionRetTy {
pub fn span(&self) -> Span {
match *self {
FunctionRetTy::Default(span) => span,
FunctionRetTy::Ty(ref ty) => ty.span,
}
}
}
/// Module declaration.
///
/// E.g. `mod foo;` or `mod foo { .. }`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub items: Vec<P<Item>>,
}
/// Foreign module declaration.
///
/// E.g. `extern { .. }` or `extern C { .. }`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignMod {
pub abi: Abi,
pub items: Vec<ForeignItem>,
}
/// Global inline assembly
///
/// aka module-level assembly or file-scoped assembly
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub struct GlobalAsm {
pub asm: Symbol,
pub ctxt: SyntaxContext,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct EnumDef {
pub variants: Vec<Variant>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Variant_ {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub data: VariantData,
/// Explicit discriminant, e.g. `Foo = 1`
pub disr_expr: Option<P<Expr>>,
}
pub type Variant = Spanned<Variant_>;
/// Part of `use` item to the right of its prefix.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum UseTreeKind {
/// `use prefix` or `use prefix as rename`
Simple(Option<Ident>),
/// `use prefix::{...}`
Nested(Vec<(UseTree, NodeId)>),
/// `use prefix::*`
Glob,
}
/// A tree of paths sharing common prefixes.
/// Used in `use` items both at top-level and inside of braces in import groups.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct UseTree {
pub prefix: Path,
pub kind: UseTreeKind,
pub span: Span,
}
impl UseTree {
pub fn ident(&self) -> Ident {
match self.kind {
UseTreeKind::Simple(Some(rename)) => rename,
UseTreeKind::Simple(None) =>
self.prefix.segments.last().expect("empty prefix in a simple import").ident,
_ => panic!("`UseTree::ident` can only be used on a simple import"),
}
}
}
/// Distinguishes between Attributes that decorate items and Attributes that
/// are contained as statements within items. These two cases need to be
/// distinguished for pretty-printing.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum AttrStyle {
Outer,
Inner,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub struct AttrId(pub usize);
/// Meta-data associated with an item
/// Doc-comments are promoted to attributes that have is_sugared_doc = true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Attribute {
pub id: AttrId,
pub style: AttrStyle,
pub path: Path,
pub tokens: TokenStream,
pub is_sugared_doc: bool,
pub span: Span,
}
/// TraitRef's appear in impls.
///
/// resolve maps each TraitRef's ref_id to its defining trait; that's all
/// that the ref_id is for. The impl_id maps to the "self type" of this impl.
/// If this impl is an ItemKind::Impl, the impl_id is redundant (it could be the
/// same as the impl's node id).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PolyTraitRef {
/// The `'a` in `<'a> Foo<&'a T>`
pub bound_generic_params: Vec<GenericParam>,
/// The `Foo<&'a T>` in `<'a> Foo<&'a T>`
pub trait_ref: TraitRef,
pub span: Span,
}
impl PolyTraitRef {
pub fn new(generic_params: Vec<GenericParam>, path: Path, span: Span) -> Self {
PolyTraitRef {
bound_generic_params: generic_params,
trait_ref: TraitRef { path: path, ref_id: DUMMY_NODE_ID },
span,
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum CrateSugar {
/// Source is `pub(crate)`
PubCrate,
/// Source is (just) `crate`
JustCrate,
}
pub type Visibility = Spanned<VisibilityKind>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum VisibilityKind {
Public,
Crate(CrateSugar),
Restricted { path: P<Path>, id: NodeId },
Inherited,
}
/// Field of a struct.
///
/// E.g. `bar: usize` as in `struct Foo { bar: usize }`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct StructField {
pub span: Span,
pub ident: Option<Ident>,
pub vis: Visibility,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: Vec<Attribute>,
}
/// Fields and Ids of enum variants and structs
///
/// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all
/// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants).
/// One shared Id can be successfully used for these two purposes.
/// Id of the whole enum lives in `Item`.
///
/// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually
/// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of
/// the variant itself" from enum variants.
/// Id of the whole struct lives in `Item`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum VariantData {
/// Struct variant.
///
/// E.g. `Bar { .. }` as in `enum Foo { Bar { .. } }`
Struct(Vec<StructField>, NodeId),
/// Tuple variant.
///
/// E.g. `Bar(..)` as in `enum Foo { Bar(..) }`
Tuple(Vec<StructField>, NodeId),
/// Unit variant.
///
/// E.g. `Bar = ..` as in `enum Foo { Bar = .. }`
Unit(NodeId),
}
impl VariantData {
pub fn fields(&self) -> &[StructField] {
match *self {
VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields,
_ => &[],
}
}
pub fn id(&self) -> NodeId {
match *self {
VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id
}
}
pub fn is_struct(&self) -> bool {
if let VariantData::Struct(..) = *self { true } else { false }
}
pub fn is_tuple(&self) -> bool {
if let VariantData::Tuple(..) = *self { true } else { false }
}
pub fn is_unit(&self) -> bool {
if let VariantData::Unit(..) = *self { true } else { false }
}
}
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Item {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub node: ItemKind,
pub vis: Visibility,
pub span: Span,
/// Original tokens this item was parsed from. This isn't necessarily
/// available for all items, although over time more and more items should
/// have this be `Some`. Right now this is primarily used for procedural
/// macros, notably custom attributes.
///
/// Note that the tokens here do not include the outer attributes, but will
/// include inner attributes.
pub tokens: Option<TokenStream>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ItemKind {
/// An `extern crate` item, with optional *original* crate name if the crate was renamed.
///
/// E.g. `extern crate foo` or `extern crate foo_bar as foo`
ExternCrate(Option<Name>),
/// A use declaration (`use` or `pub use`) item.
///
/// E.g. `use foo;`, `use foo::bar;` or `use foo::bar as FooBar;`
Use(P<UseTree>),
/// A static item (`static` or `pub static`).
///
/// E.g. `static FOO: i32 = 42;` or `static FOO: &'static str = "bar";`
Static(P<Ty>, Mutability, P<Expr>),
/// A constant item (`const` or `pub const`).
///
/// E.g. `const FOO: i32 = 42;`
Const(P<Ty>, P<Expr>),
/// A function declaration (`fn` or `pub fn`).
///
/// E.g. `fn foo(bar: usize) -> usize { .. }`
Fn(P<FnDecl>, Unsafety, Spanned<Constness>, Abi, Generics, P<Block>),
/// A module declaration (`mod` or `pub mod`).
///
/// E.g. `mod foo;` or `mod foo { .. }`
Mod(Mod),
/// An external module (`extern` or `pub extern`).
///
/// E.g. `extern {}` or `extern "C" {}`
ForeignMod(ForeignMod),
/// Module-level inline assembly (from `global_asm!()`)
GlobalAsm(P<GlobalAsm>),
/// A type alias (`type` or `pub type`).
///
/// E.g. `type Foo = Bar<u8>;`
Ty(P<Ty>, Generics),
/// An enum definition (`enum` or `pub enum`).
///
/// E.g. `enum Foo<A, B> { C<A>, D<B> }`
Enum(EnumDef, Generics),
/// A struct definition (`struct` or `pub struct`).
///
/// E.g. `struct Foo<A> { x: A }`
Struct(VariantData, Generics),
/// A union definition (`union` or `pub union`).
///
/// E.g. `union Foo<A, B> { x: A, y: B }`
Union(VariantData, Generics),
/// A Trait declaration (`trait` or `pub trait`).
///
/// E.g. `trait Foo { .. }`, `trait Foo<T> { .. }` or `auto trait Foo {}`
Trait(IsAuto, Unsafety, Generics, TyParamBounds, Vec<TraitItem>),
/// Trait alias
///
/// E.g. `trait Foo = Bar + Quux;`
TraitAlias(Generics, TyParamBounds),
/// An implementation.
///
/// E.g. `impl<A> Foo<A> { .. }` or `impl<A> Trait for Foo<A> { .. }`
Impl(Unsafety,
ImplPolarity,
Defaultness,
Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
Vec<ImplItem>),
/// A macro invocation.
///
/// E.g. `macro_rules! foo { .. }` or `foo!(..)`
Mac(Mac),
/// A macro definition.
MacroDef(MacroDef),
}
impl ItemKind {
pub fn descriptive_variant(&self) -> &str {
match *self {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static item",
ItemKind::Const(..) => "constant item",
ItemKind::Fn(..) => "function",
ItemKind::Mod(..) => "module",
ItemKind::ForeignMod(..) => "foreign module",
ItemKind::GlobalAsm(..) => "global asm",
ItemKind::Ty(..) => "type alias",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Mac(..) |
ItemKind::MacroDef(..) |
ItemKind::Impl(..) => "item"
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignItem {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub node: ForeignItemKind,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
/// An item within an `extern` block
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ForeignItemKind {
/// A foreign function
Fn(P<FnDecl>, Generics),
/// A foreign static item (`static ext: u8`), with optional mutability
/// (the boolean is true when mutable)
Static(P<Ty>, bool),
/// A foreign type
Ty,
/// A macro invocation
Macro(Mac),
}
impl ForeignItemKind {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemKind::Fn(..) => "foreign function",
ForeignItemKind::Static(..) => "foreign static item",
ForeignItemKind::Ty => "foreign type",
ForeignItemKind::Macro(..) => "macro in foreign module",
}
}
}
#[cfg(test)]
mod tests {
use serialize;
use super::*;
// are ASTs encodable?
#[test]
fn check_asts_encodable() {
fn assert_encodable<T: serialize::Encodable>() {}
assert_encodable::<Crate>();
}
}