// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust abstract syntax tree. pub use self::TyParamBound::*; pub use self::UnsafeSource::*; pub use self::PathParameters::*; pub use symbol::{Ident, Symbol as Name}; pub use util::ThinVec; pub use util::parser::ExprPrecedence; use syntax_pos::{Span, DUMMY_SP}; use codemap::{respan, Spanned}; use abi::Abi; use ext::hygiene::{Mark, SyntaxContext}; use print::pprust; use ptr::P; use rustc_data_structures::indexed_vec; use symbol::{Symbol, keywords}; use tokenstream::{ThinTokenStream, TokenStream}; use serialize::{self, Encoder, Decoder}; use std::collections::HashSet; use std::fmt; use rustc_data_structures::sync::Lrc; use std::u32; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub struct Label { pub ident: Ident, } impl fmt::Debug for Label { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "label({:?})", self.ident) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)] pub struct Lifetime { pub id: NodeId, pub ident: Ident, } impl fmt::Debug for Lifetime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "lifetime({}: {})", self.id, pprust::lifetime_to_string(self)) } } /// A lifetime definition, e.g. `'a: 'b+'c+'d` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct LifetimeDef { pub attrs: ThinVec, pub lifetime: Lifetime, pub bounds: Vec } /// A "Path" is essentially Rust's notion of a name. /// /// It's represented as a sequence of identifiers, /// along with a bunch of supporting information. /// /// E.g. `std::cmp::PartialEq` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Path { pub span: Span, /// The segments in the path: the things separated by `::`. /// Global paths begin with `keywords::CrateRoot`. pub segments: Vec, } impl<'a> PartialEq<&'a str> for Path { fn eq(&self, string: &&'a str) -> bool { self.segments.len() == 1 && self.segments[0].ident.name == *string } } impl fmt::Debug for Path { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "path({})", pprust::path_to_string(self)) } } impl fmt::Display for Path { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", pprust::path_to_string(self)) } } impl Path { // convert a span and an identifier to the corresponding // 1-segment path pub fn from_ident(ident: Ident) -> Path { Path { segments: vec![PathSegment::from_ident(ident)], span: ident.span } } // Make a "crate root" segment for this path unless it already has it // or starts with something like `self`/`super`/`$crate`/etc. pub fn make_root(&self) -> Option { if let Some(ident) = self.segments.get(0).map(|seg| seg.ident) { if ::parse::token::is_path_segment_keyword(ident) && ident.name != keywords::Crate.name() { return None; } } Some(PathSegment::crate_root(self.span.shrink_to_lo())) } pub fn is_global(&self) -> bool { !self.segments.is_empty() && self.segments[0].ident.name == keywords::CrateRoot.name() } } /// A segment of a path: an identifier, an optional lifetime, and a set of types. /// /// E.g. `std`, `String` or `Box` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct PathSegment { /// The identifier portion of this path segment. pub ident: Ident, /// Type/lifetime parameters attached to this path. They come in /// two flavors: `Path` and `Path(A,B) -> C`. /// `None` means that no parameter list is supplied (`Path`), /// `Some` means that parameter list is supplied (`Path`) /// but it can be empty (`Path<>`). /// `P` is used as a size optimization for the common case with no parameters. pub parameters: Option>, } impl PathSegment { pub fn from_ident(ident: Ident) -> Self { PathSegment { ident, parameters: None } } pub fn crate_root(span: Span) -> Self { PathSegment::from_ident(Ident::new(keywords::CrateRoot.name(), span)) } } /// Parameters of a path segment. /// /// E.g. `` as in `Foo` or `(A, B)` as in `Foo(A, B)` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum PathParameters { /// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>` AngleBracketed(AngleBracketedParameterData), /// The `(A,B)` and `C` in `Foo(A,B) -> C` Parenthesized(ParenthesizedParameterData), } impl PathParameters { pub fn span(&self) -> Span { match *self { AngleBracketed(ref data) => data.span, Parenthesized(ref data) => data.span, } } } /// A path like `Foo<'a, T>` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Default)] pub struct AngleBracketedParameterData { /// Overall span pub span: Span, /// The lifetime parameters for this path segment. pub lifetimes: Vec, /// The type parameters for this path segment, if present. pub types: Vec>, /// Bindings (equality constraints) on associated types, if present. /// /// E.g., `Foo`. pub bindings: Vec, } impl Into>> for AngleBracketedParameterData { fn into(self) -> Option> { Some(P(PathParameters::AngleBracketed(self))) } } impl Into>> for ParenthesizedParameterData { fn into(self) -> Option> { Some(P(PathParameters::Parenthesized(self))) } } /// A path like `Foo(A,B) -> C` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ParenthesizedParameterData { /// Overall span pub span: Span, /// `(A,B)` pub inputs: Vec>, /// `C` pub output: Option>, } #[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)] pub struct NodeId(u32); impl NodeId { pub fn new(x: usize) -> NodeId { assert!(x < (u32::MAX as usize)); NodeId(x as u32) } pub fn from_u32(x: u32) -> NodeId { NodeId(x) } pub fn as_usize(&self) -> usize { self.0 as usize } pub fn as_u32(&self) -> u32 { self.0 } pub fn placeholder_from_mark(mark: Mark) -> Self { NodeId(mark.as_u32()) } pub fn placeholder_to_mark(self) -> Mark { Mark::from_u32(self.0) } } impl fmt::Display for NodeId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.0, f) } } impl serialize::UseSpecializedEncodable for NodeId { fn default_encode(&self, s: &mut S) -> Result<(), S::Error> { s.emit_u32(self.0) } } impl serialize::UseSpecializedDecodable for NodeId { fn default_decode(d: &mut D) -> Result { d.read_u32().map(NodeId) } } impl indexed_vec::Idx for NodeId { fn new(idx: usize) -> Self { NodeId::new(idx) } fn index(self) -> usize { self.as_usize() } } /// Node id used to represent the root of the crate. pub const CRATE_NODE_ID: NodeId = NodeId(0); /// When parsing and doing expansions, we initially give all AST nodes this AST /// node value. Then later, in the renumber pass, we renumber them to have /// small, positive ids. pub const DUMMY_NODE_ID: NodeId = NodeId(!0); /// The AST represents all type param bounds as types. /// typeck::collect::compute_bounds matches these against /// the "special" built-in traits (see middle::lang_items) and /// detects Copy, Send and Sync. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TyParamBound { TraitTyParamBound(PolyTraitRef, TraitBoundModifier), RegionTyParamBound(Lifetime) } impl TyParamBound { pub fn span(&self) -> Span { match self { &TraitTyParamBound(ref t, ..) => t.span, &RegionTyParamBound(ref l) => l.ident.span, } } } /// A modifier on a bound, currently this is only used for `?Sized`, where the /// modifier is `Maybe`. Negative bounds should also be handled here. #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum TraitBoundModifier { None, Maybe, } pub type TyParamBounds = Vec; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct TyParam { pub attrs: ThinVec, pub ident: Ident, pub id: NodeId, pub bounds: TyParamBounds, pub default: Option>, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum GenericParam { Lifetime(LifetimeDef), Type(TyParam), } impl GenericParam { pub fn is_lifetime_param(&self) -> bool { match *self { GenericParam::Lifetime(_) => true, _ => false, } } pub fn is_type_param(&self) -> bool { match *self { GenericParam::Type(_) => true, _ => false, } } } /// Represents lifetime, type and const parameters attached to a declaration of /// a function, enum, trait, etc. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Generics { pub params: Vec, pub where_clause: WhereClause, pub span: Span, } impl Generics { pub fn is_lt_parameterized(&self) -> bool { self.params.iter().any(|param| param.is_lifetime_param()) } pub fn is_type_parameterized(&self) -> bool { self.params.iter().any(|param| param.is_type_param()) } pub fn is_parameterized(&self) -> bool { !self.params.is_empty() } pub fn span_for_name(&self, name: &str) -> Option { for param in &self.params { if let GenericParam::Type(ref t) = *param { if t.ident.name == name { return Some(t.ident.span); } } } None } } impl Default for Generics { /// Creates an instance of `Generics`. fn default() -> Generics { Generics { params: Vec::new(), where_clause: WhereClause { id: DUMMY_NODE_ID, predicates: Vec::new(), span: DUMMY_SP, }, span: DUMMY_SP, } } } /// A `where` clause in a definition #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereClause { pub id: NodeId, pub predicates: Vec, pub span: Span, } /// A single predicate in a `where` clause #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum WherePredicate { /// A type binding, e.g. `for<'c> Foo: Send+Clone+'c` BoundPredicate(WhereBoundPredicate), /// A lifetime predicate, e.g. `'a: 'b+'c` RegionPredicate(WhereRegionPredicate), /// An equality predicate (unsupported) EqPredicate(WhereEqPredicate), } impl WherePredicate { pub fn span(&self) -> Span { match self { &WherePredicate::BoundPredicate(ref p) => p.span, &WherePredicate::RegionPredicate(ref p) => p.span, &WherePredicate::EqPredicate(ref p) => p.span, } } } /// A type bound. /// /// E.g. `for<'c> Foo: Send+Clone+'c` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereBoundPredicate { pub span: Span, /// Any generics from a `for` binding pub bound_generic_params: Vec, /// The type being bounded pub bounded_ty: P, /// Trait and lifetime bounds (`Clone+Send+'static`) pub bounds: TyParamBounds, } /// A lifetime predicate. /// /// E.g. `'a: 'b+'c` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereRegionPredicate { pub span: Span, pub lifetime: Lifetime, pub bounds: Vec, } /// An equality predicate (unsupported). /// /// E.g. `T=int` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct WhereEqPredicate { pub id: NodeId, pub span: Span, pub lhs_ty: P, pub rhs_ty: P, } /// The set of MetaItems that define the compilation environment of the crate, /// used to drive conditional compilation pub type CrateConfig = HashSet<(Name, Option)>; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Crate { pub module: Mod, pub attrs: Vec, pub span: Span, } /// A spanned compile-time attribute list item. pub type NestedMetaItem = Spanned; /// Possible values inside of compile-time attribute lists. /// /// E.g. the '..' in `#[name(..)]`. #[derive(Clone, Eq, RustcEncodable, RustcDecodable, Hash, Debug, PartialEq)] pub enum NestedMetaItemKind { /// A full MetaItem, for recursive meta items. MetaItem(MetaItem), /// A literal. /// /// E.g. "foo", 64, true Literal(Lit), } /// A spanned compile-time attribute item. /// /// E.g. `#[test]`, `#[derive(..)]` or `#[feature = "foo"]` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct MetaItem { pub ident: Ident, pub node: MetaItemKind, pub span: Span, } /// A compile-time attribute item. /// /// E.g. `#[test]`, `#[derive(..)]` or `#[feature = "foo"]` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum MetaItemKind { /// Word meta item. /// /// E.g. `test` as in `#[test]` Word, /// List meta item. /// /// E.g. `derive(..)` as in `#[derive(..)]` List(Vec), /// Name value meta item. /// /// E.g. `feature = "foo"` as in `#[feature = "foo"]` NameValue(Lit) } /// A Block (`{ .. }`). /// /// E.g. `{ .. }` as in `fn foo() { .. }` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Block { /// Statements in a block pub stmts: Vec, pub id: NodeId, /// Distinguishes between `unsafe { ... }` and `{ ... }` pub rules: BlockCheckMode, pub span: Span, pub recovered: bool, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Pat { pub id: NodeId, pub node: PatKind, pub span: Span, } impl fmt::Debug for Pat { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "pat({}: {})", self.id, pprust::pat_to_string(self)) } } impl Pat { pub(super) fn to_ty(&self) -> Option> { let node = match &self.node { PatKind::Wild => TyKind::Infer, PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), ident, None) => TyKind::Path(None, Path::from_ident(*ident)), PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()), PatKind::Mac(mac) => TyKind::Mac(mac.clone()), PatKind::Ref(pat, mutbl) => pat.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?, PatKind::Slice(pats, None, _) if pats.len() == 1 => pats[0].to_ty().map(TyKind::Slice)?, PatKind::Tuple(pats, None) => { let mut tys = Vec::new(); for pat in pats { tys.push(pat.to_ty()?); } TyKind::Tup(tys) } _ => return None, }; Some(P(Ty { node, id: self.id, span: self.span })) } pub fn walk(&self, it: &mut F) -> bool where F: FnMut(&Pat) -> bool { if !it(self) { return false; } match self.node { PatKind::Ident(_, _, Some(ref p)) => p.walk(it), PatKind::Struct(_, ref fields, _) => { fields.iter().all(|field| field.node.pat.walk(it)) } PatKind::TupleStruct(_, ref s, _) | PatKind::Tuple(ref s, _) => { s.iter().all(|p| p.walk(it)) } PatKind::Box(ref s) | PatKind::Ref(ref s, _) | PatKind::Paren(ref s) => { s.walk(it) } PatKind::Slice(ref before, ref slice, ref after) => { before.iter().all(|p| p.walk(it)) && slice.iter().all(|p| p.walk(it)) && after.iter().all(|p| p.walk(it)) } PatKind::Wild | PatKind::Lit(_) | PatKind::Range(..) | PatKind::Ident(..) | PatKind::Path(..) | PatKind::Mac(_) => { true } } } } /// A single field in a struct pattern /// /// Patterns like the fields of Foo `{ x, ref y, ref mut z }` /// are treated the same as` x: x, y: ref y, z: ref mut z`, /// except is_shorthand is true #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct FieldPat { /// The identifier for the field pub ident: Ident, /// The pattern the field is destructured to pub pat: P, pub is_shorthand: bool, pub attrs: ThinVec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BindingMode { ByRef(Mutability), ByValue(Mutability), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum RangeEnd { Included(RangeSyntax), Excluded, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum RangeSyntax { DotDotDot, DotDotEq, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum PatKind { /// Represents a wildcard pattern (`_`) Wild, /// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`), /// or a unit struct/variant pattern, or a const pattern (in the last two cases the third /// field must be `None`). Disambiguation cannot be done with parser alone, so it happens /// during name resolution. Ident(BindingMode, Ident, Option>), /// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`. /// The `bool` is `true` in the presence of a `..`. Struct(Path, Vec>, bool), /// A tuple struct/variant pattern `Variant(x, y, .., z)`. /// If the `..` pattern fragment is present, then `Option` denotes its position. /// 0 <= position <= subpats.len() TupleStruct(Path, Vec>, Option), /// A possibly qualified path pattern. /// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants /// or associated constants. Qualified path patterns `::B::C`/`::B::C` can /// only legally refer to associated constants. Path(Option, Path), /// A tuple pattern `(a, b)`. /// If the `..` pattern fragment is present, then `Option` denotes its position. /// 0 <= position <= subpats.len() Tuple(Vec>, Option), /// A `box` pattern Box(P), /// A reference pattern, e.g. `&mut (a, b)` Ref(P, Mutability), /// A literal Lit(P), /// A range pattern, e.g. `1...2`, `1..=2` or `1..2` Range(P, P, RangeEnd), /// `[a, b, ..i, y, z]` is represented as: /// `PatKind::Slice(box [a, b], Some(i), box [y, z])` Slice(Vec>, Option>, Vec>), /// Parentheses in patters used for grouping, i.e. `(PAT)`. Paren(P), /// A macro pattern; pre-expansion Mac(Mac), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum Mutability { Mutable, Immutable, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BinOpKind { /// The `+` operator (addition) Add, /// The `-` operator (subtraction) Sub, /// The `*` operator (multiplication) Mul, /// The `/` operator (division) Div, /// The `%` operator (modulus) Rem, /// The `&&` operator (logical and) And, /// The `||` operator (logical or) Or, /// The `^` operator (bitwise xor) BitXor, /// The `&` operator (bitwise and) BitAnd, /// The `|` operator (bitwise or) BitOr, /// The `<<` operator (shift left) Shl, /// The `>>` operator (shift right) Shr, /// The `==` operator (equality) Eq, /// The `<` operator (less than) Lt, /// The `<=` operator (less than or equal to) Le, /// The `!=` operator (not equal to) Ne, /// The `>=` operator (greater than or equal to) Ge, /// The `>` operator (greater than) Gt, } impl BinOpKind { pub fn to_string(&self) -> &'static str { use self::BinOpKind::*; match *self { Add => "+", Sub => "-", Mul => "*", Div => "/", Rem => "%", And => "&&", Or => "||", BitXor => "^", BitAnd => "&", BitOr => "|", Shl => "<<", Shr => ">>", Eq => "==", Lt => "<", Le => "<=", Ne => "!=", Ge => ">=", Gt => ">", } } pub fn lazy(&self) -> bool { match *self { BinOpKind::And | BinOpKind::Or => true, _ => false } } pub fn is_shift(&self) -> bool { match *self { BinOpKind::Shl | BinOpKind::Shr => true, _ => false } } pub fn is_comparison(&self) -> bool { use self::BinOpKind::*; match *self { Eq | Lt | Le | Ne | Gt | Ge => true, And | Or | Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr => false, } } /// Returns `true` if the binary operator takes its arguments by value pub fn is_by_value(&self) -> bool { !self.is_comparison() } } pub type BinOp = Spanned; #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum UnOp { /// The `*` operator for dereferencing Deref, /// The `!` operator for logical inversion Not, /// The `-` operator for negation Neg, } impl UnOp { /// Returns `true` if the unary operator takes its argument by value pub fn is_by_value(u: UnOp) -> bool { match u { UnOp::Neg | UnOp::Not => true, _ => false, } } pub fn to_string(op: UnOp) -> &'static str { match op { UnOp::Deref => "*", UnOp::Not => "!", UnOp::Neg => "-", } } } /// A statement #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub struct Stmt { pub id: NodeId, pub node: StmtKind, pub span: Span, } impl Stmt { pub fn add_trailing_semicolon(mut self) -> Self { self.node = match self.node { StmtKind::Expr(expr) => StmtKind::Semi(expr), StmtKind::Mac(mac) => StmtKind::Mac(mac.map(|(mac, _style, attrs)| { (mac, MacStmtStyle::Semicolon, attrs) })), node => node, }; self } pub fn is_item(&self) -> bool { match self.node { StmtKind::Local(_) => true, _ => false, } } pub fn is_expr(&self) -> bool { match self.node { StmtKind::Expr(_) => true, _ => false, } } } impl fmt::Debug for Stmt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "stmt({}: {})", self.id.to_string(), pprust::stmt_to_string(self)) } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub enum StmtKind { /// A local (let) binding. Local(P), /// An item definition. Item(P), /// Expr without trailing semi-colon. Expr(P), /// Expr with a trailing semi-colon. Semi(P), /// Macro. Mac(P<(Mac, MacStmtStyle, ThinVec)>), } #[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum MacStmtStyle { /// The macro statement had a trailing semicolon, e.g. `foo! { ... };` /// `foo!(...);`, `foo![...];` Semicolon, /// The macro statement had braces; e.g. foo! { ... } Braces, /// The macro statement had parentheses or brackets and no semicolon; e.g. /// `foo!(...)`. All of these will end up being converted into macro /// expressions. NoBraces, } /// Local represents a `let` statement, e.g., `let : = ;` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Local { pub pat: P, pub ty: Option>, /// Initializer expression to set the value, if any pub init: Option>, pub id: NodeId, pub span: Span, pub attrs: ThinVec, } /// An arm of a 'match'. /// /// E.g. `0...10 => { println!("match!") }` as in /// /// ``` /// match 123 { /// 0...10 => { println!("match!") }, /// _ => { println!("no match!") }, /// } /// ``` #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Arm { pub attrs: Vec, pub pats: Vec>, pub guard: Option>, pub body: P, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Field { pub ident: Ident, pub expr: P, pub span: Span, pub is_shorthand: bool, pub attrs: ThinVec, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum BlockCheckMode { Default, Unsafe(UnsafeSource), } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } /// An expression #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash,)] pub struct Expr { pub id: NodeId, pub node: ExprKind, pub span: Span, pub attrs: ThinVec } impl Expr { /// Whether this expression would be valid somewhere that expects a value, for example, an `if` /// condition. pub fn returns(&self) -> bool { if let ExprKind::Block(ref block) = self.node { match block.stmts.last().map(|last_stmt| &last_stmt.node) { // implicit return Some(&StmtKind::Expr(_)) => true, Some(&StmtKind::Semi(ref expr)) => { if let ExprKind::Ret(_) = expr.node { // last statement is explicit return true } else { false } } // This is a block that doesn't end in either an implicit or explicit return _ => false, } } else { // This is not a block, it is a value true } } fn to_bound(&self) -> Option { match &self.node { ExprKind::Path(None, path) => Some(TraitTyParamBound(PolyTraitRef::new(Vec::new(), path.clone(), self.span), TraitBoundModifier::None)), _ => None, } } pub(super) fn to_ty(&self) -> Option> { let node = match &self.node { ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()), ExprKind::Mac(mac) => TyKind::Mac(mac.clone()), ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?, ExprKind::AddrOf(mutbl, expr) => expr.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?, ExprKind::Repeat(expr, expr_len) => expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?, ExprKind::Array(exprs) if exprs.len() == 1 => exprs[0].to_ty().map(TyKind::Slice)?, ExprKind::Tup(exprs) => { let mut tys = Vec::new(); for expr in exprs { tys.push(expr.to_ty()?); } TyKind::Tup(tys) } ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add => if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) { TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None) } else { return None; } _ => return None, }; Some(P(Ty { node, id: self.id, span: self.span })) } pub fn precedence(&self) -> ExprPrecedence { match self.node { ExprKind::Box(_) => ExprPrecedence::Box, ExprKind::Array(_) => ExprPrecedence::Array, ExprKind::Call(..) => ExprPrecedence::Call, ExprKind::MethodCall(..) => ExprPrecedence::MethodCall, ExprKind::Tup(_) => ExprPrecedence::Tup, ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node), ExprKind::Unary(..) => ExprPrecedence::Unary, ExprKind::Lit(_) => ExprPrecedence::Lit, ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast, ExprKind::If(..) => ExprPrecedence::If, ExprKind::IfLet(..) => ExprPrecedence::IfLet, ExprKind::While(..) => ExprPrecedence::While, ExprKind::WhileLet(..) => ExprPrecedence::WhileLet, ExprKind::ForLoop(..) => ExprPrecedence::ForLoop, ExprKind::Loop(..) => ExprPrecedence::Loop, ExprKind::Match(..) => ExprPrecedence::Match, ExprKind::Closure(..) => ExprPrecedence::Closure, ExprKind::Block(..) => ExprPrecedence::Block, ExprKind::Catch(..) => ExprPrecedence::Catch, ExprKind::Assign(..) => ExprPrecedence::Assign, ExprKind::AssignOp(..) => ExprPrecedence::AssignOp, ExprKind::Field(..) => ExprPrecedence::Field, ExprKind::Index(..) => ExprPrecedence::Index, ExprKind::Range(..) => ExprPrecedence::Range, ExprKind::Path(..) => ExprPrecedence::Path, ExprKind::AddrOf(..) => ExprPrecedence::AddrOf, ExprKind::Break(..) => ExprPrecedence::Break, ExprKind::Continue(..) => ExprPrecedence::Continue, ExprKind::Ret(..) => ExprPrecedence::Ret, ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm, ExprKind::Mac(..) => ExprPrecedence::Mac, ExprKind::Struct(..) => ExprPrecedence::Struct, ExprKind::Repeat(..) => ExprPrecedence::Repeat, ExprKind::Paren(..) => ExprPrecedence::Paren, ExprKind::Try(..) => ExprPrecedence::Try, ExprKind::Yield(..) => ExprPrecedence::Yield, } } } impl fmt::Debug for Expr { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "expr({}: {})", self.id, pprust::expr_to_string(self)) } } /// Limit types of a range (inclusive or exclusive) #[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum RangeLimits { /// Inclusive at the beginning, exclusive at the end HalfOpen, /// Inclusive at the beginning and end Closed, } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ExprKind { /// A `box x` expression. Box(P), /// An array (`[a, b, c, d]`) Array(Vec>), /// A function call /// /// The first field resolves to the function itself, /// and the second field is the list of arguments. /// This also represents calling the constructor of /// tuple-like ADTs such as tuple structs and enum variants. Call(P, Vec>), /// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`) /// /// The `PathSegment` represents the method name and its generic arguments /// (within the angle brackets). /// The first element of the vector of `Expr`s is the expression that evaluates /// to the object on which the method is being called on (the receiver), /// and the remaining elements are the rest of the arguments. /// Thus, `x.foo::(a, b, c, d)` is represented as /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`. MethodCall(PathSegment, Vec>), /// A tuple (`(a, b, c ,d)`) Tup(Vec>), /// A binary operation (For example: `a + b`, `a * b`) Binary(BinOp, P, P), /// A unary operation (For example: `!x`, `*x`) Unary(UnOp, P), /// A literal (For example: `1`, `"foo"`) Lit(P), /// A cast (`foo as f64`) Cast(P, P), Type(P, P), /// An `if` block, with an optional else block /// /// `if expr { block } else { expr }` If(P, P, Option>), /// An `if let` expression with an optional else block /// /// `if let pat = expr { block } else { expr }` /// /// This is desugared to a `match` expression. IfLet(Vec>, P, P, Option>), /// A while loop, with an optional label /// /// `'label: while expr { block }` While(P, P, Option, D }` Enum(EnumDef, Generics), /// A struct definition (`struct` or `pub struct`). /// /// E.g. `struct Foo { x: A }` Struct(VariantData, Generics), /// A union definition (`union` or `pub union`). /// /// E.g. `union Foo { x: A, y: B }` Union(VariantData, Generics), /// A Trait declaration (`trait` or `pub trait`). /// /// E.g. `trait Foo { .. }`, `trait Foo { .. }` or `auto trait Foo {}` Trait(IsAuto, Unsafety, Generics, TyParamBounds, Vec), /// Trait alias /// /// E.g. `trait Foo = Bar + Quux;` TraitAlias(Generics, TyParamBounds), /// An implementation. /// /// E.g. `impl Foo { .. }` or `impl Trait for Foo { .. }` Impl(Unsafety, ImplPolarity, Defaultness, Generics, Option, // (optional) trait this impl implements P, // self Vec), /// A macro invocation. /// /// E.g. `macro_rules! foo { .. }` or `foo!(..)` Mac(Mac), /// A macro definition. MacroDef(MacroDef), } impl ItemKind { pub fn descriptive_variant(&self) -> &str { match *self { ItemKind::ExternCrate(..) => "extern crate", ItemKind::Use(..) => "use", ItemKind::Static(..) => "static item", ItemKind::Const(..) => "constant item", ItemKind::Fn(..) => "function", ItemKind::Mod(..) => "module", ItemKind::ForeignMod(..) => "foreign module", ItemKind::GlobalAsm(..) => "global asm", ItemKind::Ty(..) => "type alias", ItemKind::Enum(..) => "enum", ItemKind::Struct(..) => "struct", ItemKind::Union(..) => "union", ItemKind::Trait(..) => "trait", ItemKind::TraitAlias(..) => "trait alias", ItemKind::Mac(..) | ItemKind::MacroDef(..) | ItemKind::Impl(..) => "item" } } } #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct ForeignItem { pub ident: Ident, pub attrs: Vec, pub node: ForeignItemKind, pub id: NodeId, pub span: Span, pub vis: Visibility, } /// An item within an `extern` block #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum ForeignItemKind { /// A foreign function Fn(P, Generics), /// A foreign static item (`static ext: u8`), with optional mutability /// (the boolean is true when mutable) Static(P, bool), /// A foreign type Ty, /// A macro invocation Macro(Mac), } impl ForeignItemKind { pub fn descriptive_variant(&self) -> &str { match *self { ForeignItemKind::Fn(..) => "foreign function", ForeignItemKind::Static(..) => "foreign static item", ForeignItemKind::Ty => "foreign type", ForeignItemKind::Macro(..) => "macro in foreign module", } } } #[cfg(test)] mod tests { use serialize; use super::*; // are ASTs encodable? #[test] fn check_asts_encodable() { fn assert_encodable() {} assert_encodable::(); } }