rust/src/libsyntax/ptr.rs

217 lines
5.8 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The AST pointer
//!
//! Provides `P<T>`, a frozen owned smart pointer, as a replacement for `@T` in
//! the AST.
//!
//! # Motivations and benefits
//!
//! * **Identity**: sharing AST nodes is problematic for the various analysis
//! passes (e.g. one may be able to bypass the borrow checker with a shared
//! `ExprKind::AddrOf` node taking a mutable borrow). The only reason `@T` in the
//! AST hasn't caused issues is because of inefficient folding passes which
//! would always deduplicate any such shared nodes. Even if the AST were to
//! switch to an arena, this would still hold, i.e. it couldn't use `&'a T`,
//! but rather a wrapper like `P<'a, T>`.
//!
//! * **Immutability**: `P<T>` disallows mutating its inner `T`, unlike `Box<T>`
//! (unless it contains an `Unsafe` interior, but that may be denied later).
//! This mainly prevents mistakes, but can also enforces a kind of "purity".
//!
//! * **Efficiency**: folding can reuse allocation space for `P<T>` and `Vec<T>`,
//! the latter even when the input and output types differ (as it would be the
//! case with arenas or a GADT AST using type parameters to toggle features).
//!
//! * **Maintainability**: `P<T>` provides a fixed interface - `Deref`,
//! `and_then` and `map` - which can remain fully functional even if the
//! implementation changes (using a special thread-local heap, for example).
//! Moreover, a switch to, e.g. `P<'a, T>` would be easy and mostly automated.
use std::fmt::{self, Display, Debug};
use std::iter::FromIterator;
use std::ops::Deref;
use std::{mem, ptr, slice, vec};
use serialize::{Encodable, Decodable, Encoder, Decoder};
/// An owned smart pointer.
#[derive(Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct P<T: ?Sized> {
ptr: Box<T>
}
#[allow(non_snake_case)]
/// Construct a `P<T>` from a `T` value.
pub fn P<T: 'static>(value: T) -> P<T> {
P {
ptr: Box::new(value)
}
}
impl<T: 'static> P<T> {
/// Move out of the pointer.
/// Intended for chaining transformations not covered by `map`.
pub fn and_then<U, F>(self, f: F) -> U where
F: FnOnce(T) -> U,
{
f(*self.ptr)
}
/// Equivalent to and_then(|x| x)
pub fn unwrap(self) -> T {
*self.ptr
}
/// Transform the inner value, consuming `self` and producing a new `P<T>`.
pub fn map<F>(mut self, f: F) -> P<T> where
F: FnOnce(T) -> T,
{
let p: *mut T = &mut *self.ptr;
// Leak self in case of panic.
// FIXME(eddyb) Use some sort of "free guard" that
// only deallocates, without dropping the pointee,
// in case the call the `f` below ends in a panic.
mem::forget(self);
unsafe {
ptr::write(p, f(ptr::read(p)));
// Recreate self from the raw pointer.
P {
ptr: Box::from_raw(p)
}
}
}
}
impl<T: ?Sized> Deref for P<T> {
type Target = T;
fn deref(&self) -> &T {
&self.ptr
}
}
impl<T: 'static + Clone> Clone for P<T> {
fn clone(&self) -> P<T> {
P((**self).clone())
}
}
impl<T: ?Sized + Debug> Debug for P<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Debug::fmt(&self.ptr, f)
}
}
impl<T: Display> Display for P<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Display::fmt(&**self, f)
}
}
impl<T> fmt::Pointer for P<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.ptr, f)
}
}
impl<T: 'static + Decodable> Decodable for P<T> {
fn decode<D: Decoder>(d: &mut D) -> Result<P<T>, D::Error> {
Decodable::decode(d).map(P)
}
}
impl<T: Encodable> Encodable for P<T> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<T> P<[T]> {
pub fn new() -> P<[T]> {
P { ptr: Default::default() }
}
#[inline(never)]
pub fn from_vec(v: Vec<T>) -> P<[T]> {
P { ptr: v.into_boxed_slice() }
}
#[inline(never)]
pub fn into_vec(self) -> Vec<T> {
self.ptr.into_vec()
}
}
impl<T> Default for P<[T]> {
fn default() -> P<[T]> {
P::new()
}
}
impl<T: Clone> Clone for P<[T]> {
fn clone(&self) -> P<[T]> {
P::from_vec(self.to_vec())
}
}
impl<T> From<Vec<T>> for P<[T]> {
fn from(v: Vec<T>) -> Self {
P::from_vec(v)
}
}
impl<T> Into<Vec<T>> for P<[T]> {
fn into(self) -> Vec<T> {
self.into_vec()
}
}
impl<T> FromIterator<T> for P<[T]> {
fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> P<[T]> {
P::from_vec(iter.into_iter().collect())
}
}
impl<T> IntoIterator for P<[T]> {
type Item = T;
type IntoIter = vec::IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.into_vec().into_iter()
}
}
impl<'a, T> IntoIterator for &'a P<[T]> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.ptr.into_iter()
}
}
impl<T: Encodable> Encodable for P<[T]> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
Encodable::encode(&**self, s)
}
}
impl<T: Decodable> Decodable for P<[T]> {
fn decode<D: Decoder>(d: &mut D) -> Result<P<[T]>, D::Error> {
Ok(P::from_vec(match Decodable::decode(d) {
Ok(t) => t,
Err(e) => return Err(e)
}))
}
}