rust/src/libsyntax/ptr.rs

217 lines
5.8 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-05-20 00:12:17 +03:00
//! The AST pointer
//!
//! Provides `P<T>`, a frozen owned smart pointer, as a replacement for `@T` in
//! the AST.
2014-05-20 00:12:17 +03:00
//!
//! # Motivations and benefits
//!
//! * **Identity**: sharing AST nodes is problematic for the various analysis
//! passes (e.g. one may be able to bypass the borrow checker with a shared
//! `ExprKind::AddrOf` node taking a mutable borrow). The only reason `@T` in the
//! AST hasn't caused issues is because of inefficient folding passes which
//! would always deduplicate any such shared nodes. Even if the AST were to
//! switch to an arena, this would still hold, i.e. it couldn't use `&'a T`,
//! but rather a wrapper like `P<'a, T>`.
2014-05-20 00:12:17 +03:00
//!
//! * **Immutability**: `P<T>` disallows mutating its inner `T`, unlike `Box<T>`
//! (unless it contains an `Unsafe` interior, but that may be denied later).
//! This mainly prevents mistakes, but can also enforces a kind of "purity".
//!
//! * **Efficiency**: folding can reuse allocation space for `P<T>` and `Vec<T>`,
//! the latter even when the input and output types differ (as it would be the
//! case with arenas or a GADT AST using type parameters to toggle features).
//!
//! * **Maintainability**: `P<T>` provides a fixed interface - `Deref`,
//! `and_then` and `map` - which can remain fully functional even if the
//! implementation changes (using a special thread-local heap, for example).
//! Moreover, a switch to, e.g. `P<'a, T>` would be easy and mostly automated.
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 15:45:07 -08:00
use std::fmt::{self, Display, Debug};
use std::iter::FromIterator;
use std::ops::Deref;
use std::{mem, ptr, slice, vec};
std: Stabilize the std::hash module This commit aims to prepare the `std::hash` module for alpha by formalizing its current interface whileholding off on adding `#[stable]` to the new APIs. The current usage with the `HashMap` and `HashSet` types is also reconciled by separating out composable parts of the design. The primary goal of this slight redesign is to separate the concepts of a hasher's state from a hashing algorithm itself. The primary change of this commit is to separate the `Hasher` trait into a `Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was actually just a factory for various states, but hashing had very little control over how these states were used. Additionally the old `Hasher` trait was actually fairly unrelated to hashing. This commit redesigns the existing `Hasher` trait to match what the notion of a `Hasher` normally implies with the following definition: trait Hasher { type Output; fn reset(&mut self); fn finish(&self) -> Output; } This `Hasher` trait emphasizes that hashing algorithms may produce outputs other than a `u64`, so the output type is made generic. Other than that, however, very little is assumed about a particular hasher. It is left up to implementors to provide specific methods or trait implementations to feed data into a hasher. The corresponding `Hash` trait becomes: trait Hash<H: Hasher> { fn hash(&self, &mut H); } The old default of `SipState` was removed from this trait as it's not something that we're willing to stabilize until the end of time, but the type parameter is always required to implement `Hasher`. Note that the type parameter `H` remains on the trait to enable multidispatch for specialization of hashing for particular hashers. Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is simply used as part `derive` and the implementations for all primitive types. With these definitions, the old `Hasher` trait is realized as a new `HashState` trait in the `collections::hash_state` module as an unstable addition for now. The current definition looks like: trait HashState { type Hasher: Hasher; fn hasher(&self) -> Hasher; } The purpose of this trait is to emphasize that the one piece of functionality for implementors is that new instances of `Hasher` can be created. This conceptually represents the two keys from which more instances of a `SipHasher` can be created, and a `HashState` is what's stored in a `HashMap`, not a `Hasher`. Implementors of custom hash algorithms should implement the `Hasher` trait, and only hash algorithms intended for use in hash maps need to implement or worry about the `HashState` trait. The entire module and `HashState` infrastructure remains `#[unstable]` due to it being recently redesigned, but some other stability decision made for the `std::hash` module are: * The `Writer` trait remains `#[experimental]` as it's intended to be replaced with an `io::Writer` (more details soon). * The top-level `hash` function is `#[unstable]` as it is intended to be generic over the hashing algorithm instead of hardwired to `SipHasher` * The inner `sip` module is now private as its one export, `SipHasher` is reexported in the `hash` module. And finally, a few changes were made to the default parameters on `HashMap`. * The `RandomSipHasher` default type parameter was renamed to `RandomState`. This renaming emphasizes that it is not a hasher, but rather just state to generate hashers. It also moves away from the name "sip" as it may not always be implemented as `SipHasher`. This type lives in the `std::collections::hash_map` module as `#[unstable]` * The associated `Hasher` type of `RandomState` is creatively called... `Hasher`! This concrete structure lives next to `RandomState` as an implemenation of the "default hashing algorithm" used for a `HashMap`. Under the hood this is currently implemented as `SipHasher`, but it draws an explicit interface for now and allows us to modify the implementation over time if necessary. There are many breaking changes outlined above, and as a result this commit is a: [breaking-change]
2014-12-09 12:37:23 -08:00
use serialize::{Encodable, Decodable, Encoder, Decoder};
/// An owned smart pointer.
#[derive(Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct P<T: ?Sized> {
ptr: Box<T>
}
#[allow(non_snake_case)]
2014-05-20 00:12:17 +03:00
/// Construct a `P<T>` from a `T` value.
pub fn P<T: 'static>(value: T) -> P<T> {
P {
ptr: Box::new(value)
}
}
impl<T: 'static> P<T> {
2014-05-20 00:12:17 +03:00
/// Move out of the pointer.
/// Intended for chaining transformations not covered by `map`.
2014-12-08 13:28:32 -05:00
pub fn and_then<U, F>(self, f: F) -> U where
F: FnOnce(T) -> U,
{
f(*self.ptr)
}
/// Equivalent to and_then(|x| x)
pub fn unwrap(self) -> T {
*self.ptr
}
2014-05-20 00:12:17 +03:00
/// Transform the inner value, consuming `self` and producing a new `P<T>`.
2014-12-08 13:28:32 -05:00
pub fn map<F>(mut self, f: F) -> P<T> where
F: FnOnce(T) -> T,
{
let p: *mut T = &mut *self.ptr;
// Leak self in case of panic.
// FIXME(eddyb) Use some sort of "free guard" that
// only deallocates, without dropping the pointee,
// in case the call the `f` below ends in a panic.
mem::forget(self);
unsafe {
ptr::write(p, f(ptr::read(p)));
// Recreate self from the raw pointer.
P {
ptr: Box::from_raw(p)
}
}
}
}
2016-04-22 23:43:14 +03:00
impl<T: ?Sized> Deref for P<T> {
2015-01-01 14:53:20 -05:00
type Target = T;
2016-04-22 23:43:14 +03:00
fn deref(&self) -> &T {
2016-02-08 23:55:55 +01:00
&self.ptr
}
}
impl<T: 'static + Clone> Clone for P<T> {
fn clone(&self) -> P<T> {
P((**self).clone())
}
}
2016-04-22 23:43:14 +03:00
impl<T: ?Sized + Debug> Debug for P<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2016-04-22 23:43:14 +03:00
Debug::fmt(&self.ptr, f)
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 15:45:07 -08:00
}
}
2016-04-22 23:43:14 +03:00
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 15:45:07 -08:00
impl<T: Display> Display for P<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Display::fmt(&**self, f)
}
}
impl<T> fmt::Pointer for P<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.ptr, f)
}
}
impl<T: 'static + Decodable> Decodable for P<T> {
fn decode<D: Decoder>(d: &mut D) -> Result<P<T>, D::Error> {
Decodable::decode(d).map(P)
}
}
impl<T: Encodable> Encodable for P<T> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<T> P<[T]> {
2015-12-19 04:20:11 +03:00
pub fn new() -> P<[T]> {
P { ptr: Default::default() }
}
#[inline(never)]
pub fn from_vec(v: Vec<T>) -> P<[T]> {
P { ptr: v.into_boxed_slice() }
}
#[inline(never)]
pub fn into_vec(self) -> Vec<T> {
self.ptr.into_vec()
}
}
impl<T> Default for P<[T]> {
fn default() -> P<[T]> {
2016-04-22 23:43:14 +03:00
P::new()
}
}
impl<T: Clone> Clone for P<[T]> {
fn clone(&self) -> P<[T]> {
P::from_vec(self.to_vec())
}
}
2015-12-19 04:20:11 +03:00
impl<T> From<Vec<T>> for P<[T]> {
fn from(v: Vec<T>) -> Self {
P::from_vec(v)
}
}
impl<T> Into<Vec<T>> for P<[T]> {
fn into(self) -> Vec<T> {
self.into_vec()
}
}
impl<T> FromIterator<T> for P<[T]> {
fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> P<[T]> {
P::from_vec(iter.into_iter().collect())
}
}
2015-12-19 04:20:11 +03:00
impl<T> IntoIterator for P<[T]> {
type Item = T;
type IntoIter = vec::IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.into_vec().into_iter()
}
}
impl<'a, T> IntoIterator for &'a P<[T]> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.ptr.into_iter()
}
}
impl<T: Encodable> Encodable for P<[T]> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
Encodable::encode(&**self, s)
}
}
impl<T: Decodable> Decodable for P<[T]> {
fn decode<D: Decoder>(d: &mut D) -> Result<P<[T]>, D::Error> {
Ok(P::from_vec(match Decodable::decode(d) {
Ok(t) => t,
Err(e) => return Err(e)
}))
}
}