3e97cce27d
Moved them into own module and made them not depend on an Round trait impl for integers and generic math functions that can fail on integers any more.
675 lines
20 KiB
Rust
675 lines
20 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Operations and constants for `f64`
|
|
|
|
use cmath;
|
|
use cmp;
|
|
use libc::{c_double, c_int};
|
|
use libc;
|
|
use num::NumCast;
|
|
use num::strconv;
|
|
use num;
|
|
use ops;
|
|
use option::Option;
|
|
use to_str;
|
|
use from_str;
|
|
|
|
pub use cmath::c_double_targ_consts::*;
|
|
pub use cmp::{min, max};
|
|
|
|
macro_rules! delegate(
|
|
(
|
|
fn $name:ident(
|
|
$(
|
|
$arg:ident : $arg_ty:ty
|
|
),*
|
|
) -> $rv:ty = $bound_name:path
|
|
) => (
|
|
pub pure fn $name($( $arg : $arg_ty ),*) -> $rv {
|
|
unsafe {
|
|
$bound_name($( $arg ),*)
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
delegate!(fn acos(n: c_double) -> c_double = cmath::c_double_utils::acos)
|
|
delegate!(fn asin(n: c_double) -> c_double = cmath::c_double_utils::asin)
|
|
delegate!(fn atan(n: c_double) -> c_double = cmath::c_double_utils::atan)
|
|
delegate!(fn atan2(a: c_double, b: c_double) -> c_double =
|
|
cmath::c_double_utils::atan2)
|
|
delegate!(fn cbrt(n: c_double) -> c_double = cmath::c_double_utils::cbrt)
|
|
delegate!(fn ceil(n: c_double) -> c_double = cmath::c_double_utils::ceil)
|
|
delegate!(fn copysign(x: c_double, y: c_double) -> c_double =
|
|
cmath::c_double_utils::copysign)
|
|
delegate!(fn cos(n: c_double) -> c_double = cmath::c_double_utils::cos)
|
|
delegate!(fn cosh(n: c_double) -> c_double = cmath::c_double_utils::cosh)
|
|
delegate!(fn erf(n: c_double) -> c_double = cmath::c_double_utils::erf)
|
|
delegate!(fn erfc(n: c_double) -> c_double = cmath::c_double_utils::erfc)
|
|
delegate!(fn exp(n: c_double) -> c_double = cmath::c_double_utils::exp)
|
|
delegate!(fn expm1(n: c_double) -> c_double = cmath::c_double_utils::expm1)
|
|
delegate!(fn exp2(n: c_double) -> c_double = cmath::c_double_utils::exp2)
|
|
delegate!(fn abs(n: c_double) -> c_double = cmath::c_double_utils::abs)
|
|
delegate!(fn abs_sub(a: c_double, b: c_double) -> c_double =
|
|
cmath::c_double_utils::abs_sub)
|
|
delegate!(fn mul_add(a: c_double, b: c_double, c: c_double) -> c_double =
|
|
cmath::c_double_utils::mul_add)
|
|
delegate!(fn fmax(a: c_double, b: c_double) -> c_double =
|
|
cmath::c_double_utils::fmax)
|
|
delegate!(fn fmin(a: c_double, b: c_double) -> c_double =
|
|
cmath::c_double_utils::fmin)
|
|
delegate!(fn nextafter(x: c_double, y: c_double) -> c_double =
|
|
cmath::c_double_utils::nextafter)
|
|
delegate!(fn frexp(n: c_double, value: &mut c_int) -> c_double =
|
|
cmath::c_double_utils::frexp)
|
|
delegate!(fn hypot(x: c_double, y: c_double) -> c_double =
|
|
cmath::c_double_utils::hypot)
|
|
delegate!(fn ldexp(x: c_double, n: c_int) -> c_double =
|
|
cmath::c_double_utils::ldexp)
|
|
delegate!(fn lgamma(n: c_double, sign: &mut c_int) -> c_double =
|
|
cmath::c_double_utils::lgamma)
|
|
delegate!(fn ln(n: c_double) -> c_double = cmath::c_double_utils::ln)
|
|
delegate!(fn log_radix(n: c_double) -> c_double =
|
|
cmath::c_double_utils::log_radix)
|
|
delegate!(fn ln1p(n: c_double) -> c_double = cmath::c_double_utils::ln1p)
|
|
delegate!(fn log10(n: c_double) -> c_double = cmath::c_double_utils::log10)
|
|
delegate!(fn log2(n: c_double) -> c_double = cmath::c_double_utils::log2)
|
|
delegate!(fn ilog_radix(n: c_double) -> c_int =
|
|
cmath::c_double_utils::ilog_radix)
|
|
delegate!(fn modf(n: c_double, iptr: &mut c_double) -> c_double =
|
|
cmath::c_double_utils::modf)
|
|
delegate!(fn pow(n: c_double, e: c_double) -> c_double =
|
|
cmath::c_double_utils::pow)
|
|
delegate!(fn round(n: c_double) -> c_double = cmath::c_double_utils::round)
|
|
delegate!(fn ldexp_radix(n: c_double, i: c_int) -> c_double =
|
|
cmath::c_double_utils::ldexp_radix)
|
|
delegate!(fn sin(n: c_double) -> c_double = cmath::c_double_utils::sin)
|
|
delegate!(fn sinh(n: c_double) -> c_double = cmath::c_double_utils::sinh)
|
|
delegate!(fn sqrt(n: c_double) -> c_double = cmath::c_double_utils::sqrt)
|
|
delegate!(fn tan(n: c_double) -> c_double = cmath::c_double_utils::tan)
|
|
delegate!(fn tanh(n: c_double) -> c_double = cmath::c_double_utils::tanh)
|
|
delegate!(fn tgamma(n: c_double) -> c_double = cmath::c_double_utils::tgamma)
|
|
delegate!(fn trunc(n: c_double) -> c_double = cmath::c_double_utils::trunc)
|
|
delegate!(fn j0(n: c_double) -> c_double = cmath::c_double_utils::j0)
|
|
delegate!(fn j1(n: c_double) -> c_double = cmath::c_double_utils::j1)
|
|
delegate!(fn jn(i: c_int, n: c_double) -> c_double =
|
|
cmath::c_double_utils::jn)
|
|
delegate!(fn y0(n: c_double) -> c_double = cmath::c_double_utils::y0)
|
|
delegate!(fn y1(n: c_double) -> c_double = cmath::c_double_utils::y1)
|
|
delegate!(fn yn(i: c_int, n: c_double) -> c_double =
|
|
cmath::c_double_utils::yn)
|
|
|
|
// FIXME (#1433): obtain these in a different way
|
|
|
|
// These are not defined inside consts:: for consistency with
|
|
// the integer types
|
|
|
|
pub const radix: uint = 2u;
|
|
|
|
pub const mantissa_digits: uint = 53u;
|
|
pub const digits: uint = 15u;
|
|
|
|
pub const epsilon: f64 = 2.2204460492503131e-16_f64;
|
|
|
|
pub const min_value: f64 = 2.2250738585072014e-308_f64;
|
|
pub const max_value: f64 = 1.7976931348623157e+308_f64;
|
|
|
|
pub const min_exp: int = -1021;
|
|
pub const max_exp: int = 1024;
|
|
|
|
pub const min_10_exp: int = -307;
|
|
pub const max_10_exp: int = 308;
|
|
|
|
pub const NaN: f64 = 0.0_f64/0.0_f64;
|
|
|
|
pub const infinity: f64 = 1.0_f64/0.0_f64;
|
|
|
|
pub const neg_infinity: f64 = -1.0_f64/0.0_f64;
|
|
|
|
#[inline(always)]
|
|
pub pure fn is_NaN(f: f64) -> bool { f != f }
|
|
|
|
#[inline(always)]
|
|
pub pure fn add(x: f64, y: f64) -> f64 { return x + y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn sub(x: f64, y: f64) -> f64 { return x - y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn mul(x: f64, y: f64) -> f64 { return x * y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn div(x: f64, y: f64) -> f64 { return x / y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn rem(x: f64, y: f64) -> f64 { return x % y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn lt(x: f64, y: f64) -> bool { return x < y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn le(x: f64, y: f64) -> bool { return x <= y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn eq(x: f64, y: f64) -> bool { return x == y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn ne(x: f64, y: f64) -> bool { return x != y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn ge(x: f64, y: f64) -> bool { return x >= y; }
|
|
|
|
#[inline(always)]
|
|
pub pure fn gt(x: f64, y: f64) -> bool { return x > y; }
|
|
|
|
/// Returns true if `x` is a positive number, including +0.0f640 and +Infinity
|
|
#[inline(always)]
|
|
pub pure fn is_positive(x: f64) -> bool
|
|
{ return x > 0.0f64 || (1.0f64/x) == infinity; }
|
|
|
|
/// Returns true if `x` is a negative number, including -0.0f640 and -Infinity
|
|
#[inline(always)]
|
|
pub pure fn is_negative(x: f64) -> bool
|
|
{ return x < 0.0f64 || (1.0f64/x) == neg_infinity; }
|
|
|
|
/**
|
|
* Returns true if `x` is a negative number, including -0.0f640 and -Infinity
|
|
*
|
|
* This is the same as `f64::is_negative`.
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn is_nonpositive(x: f64) -> bool {
|
|
return x < 0.0f64 || (1.0f64/x) == neg_infinity;
|
|
}
|
|
|
|
/**
|
|
* Returns true if `x` is a positive number, including +0.0f640 and +Infinity
|
|
*
|
|
* This is the same as `f64::positive`.
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn is_nonnegative(x: f64) -> bool {
|
|
return x > 0.0f64 || (1.0f64/x) == infinity;
|
|
}
|
|
|
|
/// Returns true if `x` is a zero number (positive or negative zero)
|
|
#[inline(always)]
|
|
pub pure fn is_zero(x: f64) -> bool {
|
|
return x == 0.0f64 || x == -0.0f64;
|
|
}
|
|
|
|
/// Returns true if `x`is an infinite number
|
|
#[inline(always)]
|
|
pub pure fn is_infinite(x: f64) -> bool {
|
|
return x == infinity || x == neg_infinity;
|
|
}
|
|
|
|
/// Returns true if `x` is a finite number
|
|
#[inline(always)]
|
|
pub pure fn is_finite(x: f64) -> bool {
|
|
return !(is_NaN(x) || is_infinite(x));
|
|
}
|
|
|
|
/// Returns `x` rounded down
|
|
#[inline(always)]
|
|
pub pure fn floor(x: f64) -> f64 { unsafe { floorf64(x) } }
|
|
|
|
// FIXME (#1999): add is_normal, is_subnormal, and fpclassify
|
|
|
|
/* Module: consts */
|
|
pub mod consts {
|
|
// FIXME (requires Issue #1433 to fix): replace with mathematical
|
|
// constants from cmath.
|
|
/// Archimedes' constant
|
|
pub const pi: f64 = 3.14159265358979323846264338327950288_f64;
|
|
|
|
/// pi/2.0
|
|
pub const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64;
|
|
|
|
/// pi/4.0
|
|
pub const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64;
|
|
|
|
/// 1.0/pi
|
|
pub const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64;
|
|
|
|
/// 2.0/pi
|
|
pub const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64;
|
|
|
|
/// 2.0/sqrt(pi)
|
|
pub const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64;
|
|
|
|
/// sqrt(2.0)
|
|
pub const sqrt2: f64 = 1.41421356237309504880168872420969808_f64;
|
|
|
|
/// 1.0/sqrt(2.0)
|
|
pub const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64;
|
|
|
|
/// Euler's number
|
|
pub const e: f64 = 2.71828182845904523536028747135266250_f64;
|
|
|
|
/// log2(e)
|
|
pub const log2_e: f64 = 1.44269504088896340735992468100189214_f64;
|
|
|
|
/// log10(e)
|
|
pub const log10_e: f64 = 0.434294481903251827651128918916605082_f64;
|
|
|
|
/// ln(2.0)
|
|
pub const ln_2: f64 = 0.693147180559945309417232121458176568_f64;
|
|
|
|
/// ln(10.0)
|
|
pub const ln_10: f64 = 2.30258509299404568401799145468436421_f64;
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub pure fn signbit(x: f64) -> int {
|
|
if is_negative(x) { return 1; } else { return 0; }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub pure fn logarithm(n: f64, b: f64) -> f64 {
|
|
return log2(n) / log2(b);
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl cmp::Eq for f64 {
|
|
#[inline(always)]
|
|
pure fn eq(&self, other: &f64) -> bool { (*self) == (*other) }
|
|
#[inline(always)]
|
|
pure fn ne(&self, other: &f64) -> bool { (*self) != (*other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl cmp::Ord for f64 {
|
|
#[inline(always)]
|
|
pure fn lt(&self, other: &f64) -> bool { (*self) < (*other) }
|
|
#[inline(always)]
|
|
pure fn le(&self, other: &f64) -> bool { (*self) <= (*other) }
|
|
#[inline(always)]
|
|
pure fn ge(&self, other: &f64) -> bool { (*self) >= (*other) }
|
|
#[inline(always)]
|
|
pure fn gt(&self, other: &f64) -> bool { (*self) > (*other) }
|
|
}
|
|
|
|
pub impl NumCast for f64 {
|
|
/**
|
|
* Cast `n` to an `f64`
|
|
*/
|
|
#[inline(always)]
|
|
static pure fn from<N:NumCast>(n: N) -> f64 { n.to_f64() }
|
|
|
|
#[inline(always)] pure fn to_u8(&self) -> u8 { *self as u8 }
|
|
#[inline(always)] pure fn to_u16(&self) -> u16 { *self as u16 }
|
|
#[inline(always)] pure fn to_u32(&self) -> u32 { *self as u32 }
|
|
#[inline(always)] pure fn to_u64(&self) -> u64 { *self as u64 }
|
|
#[inline(always)] pure fn to_uint(&self) -> uint { *self as uint }
|
|
|
|
#[inline(always)] pure fn to_i8(&self) -> i8 { *self as i8 }
|
|
#[inline(always)] pure fn to_i16(&self) -> i16 { *self as i16 }
|
|
#[inline(always)] pure fn to_i32(&self) -> i32 { *self as i32 }
|
|
#[inline(always)] pure fn to_i64(&self) -> i64 { *self as i64 }
|
|
#[inline(always)] pure fn to_int(&self) -> int { *self as int }
|
|
|
|
#[inline(always)] pure fn to_f32(&self) -> f32 { *self as f32 }
|
|
#[inline(always)] pure fn to_f64(&self) -> f64 { *self }
|
|
#[inline(always)] pure fn to_float(&self) -> float { *self as float }
|
|
}
|
|
|
|
impl num::Zero for f64 {
|
|
#[inline(always)]
|
|
static pure fn zero() -> f64 { 0.0 }
|
|
}
|
|
|
|
impl num::One for f64 {
|
|
#[inline(always)]
|
|
static pure fn one() -> f64 { 1.0 }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl ops::Add<f64,f64> for f64 {
|
|
pure fn add(&self, other: &f64) -> f64 { *self + *other }
|
|
}
|
|
#[cfg(notest)]
|
|
impl ops::Sub<f64,f64> for f64 {
|
|
pure fn sub(&self, other: &f64) -> f64 { *self - *other }
|
|
}
|
|
#[cfg(notest)]
|
|
impl ops::Mul<f64,f64> for f64 {
|
|
pure fn mul(&self, other: &f64) -> f64 { *self * *other }
|
|
}
|
|
#[cfg(notest)]
|
|
impl ops::Div<f64,f64> for f64 {
|
|
pure fn div(&self, other: &f64) -> f64 { *self / *other }
|
|
}
|
|
#[cfg(notest)]
|
|
impl ops::Modulo<f64,f64> for f64 {
|
|
pure fn modulo(&self, other: &f64) -> f64 { *self % *other }
|
|
}
|
|
#[cfg(notest)]
|
|
impl ops::Neg<f64> for f64 {
|
|
pure fn neg(&self) -> f64 { -*self }
|
|
}
|
|
|
|
#[abi="rust-intrinsic"]
|
|
pub extern {
|
|
fn floorf64(val: f64) -> f64;
|
|
}
|
|
|
|
impl num::Round for f64 {
|
|
#[inline(always)]
|
|
pure fn round(&self, mode: num::RoundMode) -> f64 {
|
|
match mode {
|
|
num::RoundDown => floor(*self),
|
|
num::RoundUp => ceil(*self),
|
|
num::RoundToZero if is_negative(*self) => ceil(*self),
|
|
num::RoundToZero => floor(*self),
|
|
num::RoundFromZero if is_negative(*self) => floor(*self),
|
|
num::RoundFromZero => ceil(*self)
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
pure fn floor(&self) -> f64 { floor(*self) }
|
|
#[inline(always)]
|
|
pure fn ceil(&self) -> f64 { ceil(*self) }
|
|
#[inline(always)]
|
|
pure fn fract(&self) -> f64 {
|
|
if is_negative(*self) {
|
|
(*self) - ceil(*self)
|
|
} else {
|
|
(*self) - floor(*self)
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Section: String Conversions
|
|
*/
|
|
|
|
/**
|
|
* Converts a float to a string
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - The float value
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn to_str(num: f64) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 10u, true, strconv::SignNeg, strconv::DigAll);
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Converts a float to a string in hexadecimal format
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - The float value
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn to_str_hex(num: f64) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 16u, true, strconv::SignNeg, strconv::DigAll);
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Converts a float to a string in a given radix
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - The float value
|
|
* * radix - The base to use
|
|
*
|
|
* # Failure
|
|
*
|
|
* Fails if called on a special value like `inf`, `-inf` or `NaN` due to
|
|
* possible misinterpretation of the result at higher bases. If those values
|
|
* are expected, use `to_str_radix_special()` instead.
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn to_str_radix(num: f64, rdx: uint) -> ~str {
|
|
let (r, special) = strconv::to_str_common(
|
|
&num, rdx, true, strconv::SignNeg, strconv::DigAll);
|
|
if special { fail!(~"number has a special value, \
|
|
try to_str_radix_special() if those are expected") }
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Converts a float to a string in a given radix, and a flag indicating
|
|
* whether it's a special value
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - The float value
|
|
* * radix - The base to use
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn to_str_radix_special(num: f64, rdx: uint) -> (~str, bool) {
|
|
strconv::to_str_common(&num, rdx, true,
|
|
strconv::SignNeg, strconv::DigAll)
|
|
}
|
|
|
|
/**
|
|
* Converts a float to a string with exactly the number of
|
|
* provided significant digits
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - The float value
|
|
* * digits - The number of significant digits
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn to_str_exact(num: f64, dig: uint) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 10u, true, strconv::SignNeg, strconv::DigExact(dig));
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Converts a float to a string with a maximum number of
|
|
* significant digits
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - The float value
|
|
* * digits - The number of significant digits
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn to_str_digits(num: f64, dig: uint) -> ~str {
|
|
let (r, _) = strconv::to_str_common(
|
|
&num, 10u, true, strconv::SignNeg, strconv::DigMax(dig));
|
|
r
|
|
}
|
|
|
|
impl to_str::ToStr for f64 {
|
|
#[inline(always)]
|
|
pure fn to_str(&self) -> ~str { to_str_digits(*self, 8) }
|
|
}
|
|
|
|
impl num::ToStrRadix for f64 {
|
|
#[inline(always)]
|
|
pure fn to_str_radix(&self, rdx: uint) -> ~str {
|
|
to_str_radix(*self, rdx)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert a string in base 10 to a float.
|
|
* Accepts a optional decimal exponent.
|
|
*
|
|
* This function accepts strings such as
|
|
*
|
|
* * '3.14'
|
|
* * '+3.14', equivalent to '3.14'
|
|
* * '-3.14'
|
|
* * '2.5E10', or equivalently, '2.5e10'
|
|
* * '2.5E-10'
|
|
* * '.' (understood as 0)
|
|
* * '5.'
|
|
* * '.5', or, equivalently, '0.5'
|
|
* * '+inf', 'inf', '-inf', 'NaN'
|
|
*
|
|
* Leading and trailing whitespace represent an error.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - A string
|
|
*
|
|
* # Return value
|
|
*
|
|
* `none` if the string did not represent a valid number. Otherwise,
|
|
* `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn from_str(num: &str) -> Option<f64> {
|
|
strconv::from_str_common(num, 10u, true, true, true,
|
|
strconv::ExpDec, false)
|
|
}
|
|
|
|
/**
|
|
* Convert a string in base 16 to a float.
|
|
* Accepts a optional binary exponent.
|
|
*
|
|
* This function accepts strings such as
|
|
*
|
|
* * 'a4.fe'
|
|
* * '+a4.fe', equivalent to 'a4.fe'
|
|
* * '-a4.fe'
|
|
* * '2b.aP128', or equivalently, '2b.ap128'
|
|
* * '2b.aP-128'
|
|
* * '.' (understood as 0)
|
|
* * 'c.'
|
|
* * '.c', or, equivalently, '0.c'
|
|
* * '+inf', 'inf', '-inf', 'NaN'
|
|
*
|
|
* Leading and trailing whitespace represent an error.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - A string
|
|
*
|
|
* # Return value
|
|
*
|
|
* `none` if the string did not represent a valid number. Otherwise,
|
|
* `Some(n)` where `n` is the floating-point number represented by `[num]`.
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn from_str_hex(num: &str) -> Option<f64> {
|
|
strconv::from_str_common(num, 16u, true, true, true,
|
|
strconv::ExpBin, false)
|
|
}
|
|
|
|
/**
|
|
* Convert a string in an given base to a float.
|
|
*
|
|
* Due to possible conflicts, this function does **not** accept
|
|
* the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
|
|
* does it recognize exponents of any kind.
|
|
*
|
|
* Leading and trailing whitespace represent an error.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * num - A string
|
|
* * radix - The base to use. Must lie in the range [2 .. 36]
|
|
*
|
|
* # Return value
|
|
*
|
|
* `none` if the string did not represent a valid number. Otherwise,
|
|
* `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
*/
|
|
#[inline(always)]
|
|
pub pure fn from_str_radix(num: &str, rdx: uint) -> Option<f64> {
|
|
strconv::from_str_common(num, rdx, true, true, false,
|
|
strconv::ExpNone, false)
|
|
}
|
|
|
|
impl from_str::FromStr for f64 {
|
|
#[inline(always)]
|
|
static pure fn from_str(val: &str) -> Option<f64> { from_str(val) }
|
|
}
|
|
|
|
impl num::FromStrRadix for f64 {
|
|
#[inline(always)]
|
|
static pure fn from_str_radix(val: &str, rdx: uint) -> Option<f64> {
|
|
from_str_radix(val, rdx)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_num() {
|
|
let ten: f64 = num::cast(10);
|
|
let two: f64 = num::cast(2);
|
|
|
|
assert (ten.add(&two) == num::cast(12));
|
|
assert (ten.sub(&two) == num::cast(8));
|
|
assert (ten.mul(&two) == num::cast(20));
|
|
assert (ten.div(&two) == num::cast(5));
|
|
assert (ten.modulo(&two) == num::cast(0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_numcast() {
|
|
assert (20u == 20f64.to_uint());
|
|
assert (20u8 == 20f64.to_u8());
|
|
assert (20u16 == 20f64.to_u16());
|
|
assert (20u32 == 20f64.to_u32());
|
|
assert (20u64 == 20f64.to_u64());
|
|
assert (20i == 20f64.to_int());
|
|
assert (20i8 == 20f64.to_i8());
|
|
assert (20i16 == 20f64.to_i16());
|
|
assert (20i32 == 20f64.to_i32());
|
|
assert (20i64 == 20f64.to_i64());
|
|
assert (20f == 20f64.to_float());
|
|
assert (20f32 == 20f64.to_f32());
|
|
assert (20f64 == 20f64.to_f64());
|
|
|
|
assert (20f64 == NumCast::from(20u));
|
|
assert (20f64 == NumCast::from(20u8));
|
|
assert (20f64 == NumCast::from(20u16));
|
|
assert (20f64 == NumCast::from(20u32));
|
|
assert (20f64 == NumCast::from(20u64));
|
|
assert (20f64 == NumCast::from(20i));
|
|
assert (20f64 == NumCast::from(20i8));
|
|
assert (20f64 == NumCast::from(20i16));
|
|
assert (20f64 == NumCast::from(20i32));
|
|
assert (20f64 == NumCast::from(20i64));
|
|
assert (20f64 == NumCast::from(20f));
|
|
assert (20f64 == NumCast::from(20f32));
|
|
assert (20f64 == NumCast::from(20f64));
|
|
|
|
assert (20f64 == num::cast(20u));
|
|
assert (20f64 == num::cast(20u8));
|
|
assert (20f64 == num::cast(20u16));
|
|
assert (20f64 == num::cast(20u32));
|
|
assert (20f64 == num::cast(20u64));
|
|
assert (20f64 == num::cast(20i));
|
|
assert (20f64 == num::cast(20i8));
|
|
assert (20f64 == num::cast(20i16));
|
|
assert (20f64 == num::cast(20i32));
|
|
assert (20f64 == num::cast(20i64));
|
|
assert (20f64 == num::cast(20f));
|
|
assert (20f64 == num::cast(20f32));
|
|
assert (20f64 == num::cast(20f64));
|
|
}
|
|
|
|
//
|
|
// Local Variables:
|
|
// mode: rust
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// End:
|
|
//
|