// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for `f64` use cmath; use cmp; use libc::{c_double, c_int}; use libc; use num::NumCast; use num::strconv; use num; use ops; use option::Option; use to_str; use from_str; pub use cmath::c_double_targ_consts::*; pub use cmp::{min, max}; macro_rules! delegate( ( fn $name:ident( $( $arg:ident : $arg_ty:ty ),* ) -> $rv:ty = $bound_name:path ) => ( pub pure fn $name($( $arg : $arg_ty ),*) -> $rv { unsafe { $bound_name($( $arg ),*) } } ) ) delegate!(fn acos(n: c_double) -> c_double = cmath::c_double_utils::acos) delegate!(fn asin(n: c_double) -> c_double = cmath::c_double_utils::asin) delegate!(fn atan(n: c_double) -> c_double = cmath::c_double_utils::atan) delegate!(fn atan2(a: c_double, b: c_double) -> c_double = cmath::c_double_utils::atan2) delegate!(fn cbrt(n: c_double) -> c_double = cmath::c_double_utils::cbrt) delegate!(fn ceil(n: c_double) -> c_double = cmath::c_double_utils::ceil) delegate!(fn copysign(x: c_double, y: c_double) -> c_double = cmath::c_double_utils::copysign) delegate!(fn cos(n: c_double) -> c_double = cmath::c_double_utils::cos) delegate!(fn cosh(n: c_double) -> c_double = cmath::c_double_utils::cosh) delegate!(fn erf(n: c_double) -> c_double = cmath::c_double_utils::erf) delegate!(fn erfc(n: c_double) -> c_double = cmath::c_double_utils::erfc) delegate!(fn exp(n: c_double) -> c_double = cmath::c_double_utils::exp) delegate!(fn expm1(n: c_double) -> c_double = cmath::c_double_utils::expm1) delegate!(fn exp2(n: c_double) -> c_double = cmath::c_double_utils::exp2) delegate!(fn abs(n: c_double) -> c_double = cmath::c_double_utils::abs) delegate!(fn abs_sub(a: c_double, b: c_double) -> c_double = cmath::c_double_utils::abs_sub) delegate!(fn mul_add(a: c_double, b: c_double, c: c_double) -> c_double = cmath::c_double_utils::mul_add) delegate!(fn fmax(a: c_double, b: c_double) -> c_double = cmath::c_double_utils::fmax) delegate!(fn fmin(a: c_double, b: c_double) -> c_double = cmath::c_double_utils::fmin) delegate!(fn nextafter(x: c_double, y: c_double) -> c_double = cmath::c_double_utils::nextafter) delegate!(fn frexp(n: c_double, value: &mut c_int) -> c_double = cmath::c_double_utils::frexp) delegate!(fn hypot(x: c_double, y: c_double) -> c_double = cmath::c_double_utils::hypot) delegate!(fn ldexp(x: c_double, n: c_int) -> c_double = cmath::c_double_utils::ldexp) delegate!(fn lgamma(n: c_double, sign: &mut c_int) -> c_double = cmath::c_double_utils::lgamma) delegate!(fn ln(n: c_double) -> c_double = cmath::c_double_utils::ln) delegate!(fn log_radix(n: c_double) -> c_double = cmath::c_double_utils::log_radix) delegate!(fn ln1p(n: c_double) -> c_double = cmath::c_double_utils::ln1p) delegate!(fn log10(n: c_double) -> c_double = cmath::c_double_utils::log10) delegate!(fn log2(n: c_double) -> c_double = cmath::c_double_utils::log2) delegate!(fn ilog_radix(n: c_double) -> c_int = cmath::c_double_utils::ilog_radix) delegate!(fn modf(n: c_double, iptr: &mut c_double) -> c_double = cmath::c_double_utils::modf) delegate!(fn pow(n: c_double, e: c_double) -> c_double = cmath::c_double_utils::pow) delegate!(fn round(n: c_double) -> c_double = cmath::c_double_utils::round) delegate!(fn ldexp_radix(n: c_double, i: c_int) -> c_double = cmath::c_double_utils::ldexp_radix) delegate!(fn sin(n: c_double) -> c_double = cmath::c_double_utils::sin) delegate!(fn sinh(n: c_double) -> c_double = cmath::c_double_utils::sinh) delegate!(fn sqrt(n: c_double) -> c_double = cmath::c_double_utils::sqrt) delegate!(fn tan(n: c_double) -> c_double = cmath::c_double_utils::tan) delegate!(fn tanh(n: c_double) -> c_double = cmath::c_double_utils::tanh) delegate!(fn tgamma(n: c_double) -> c_double = cmath::c_double_utils::tgamma) delegate!(fn trunc(n: c_double) -> c_double = cmath::c_double_utils::trunc) delegate!(fn j0(n: c_double) -> c_double = cmath::c_double_utils::j0) delegate!(fn j1(n: c_double) -> c_double = cmath::c_double_utils::j1) delegate!(fn jn(i: c_int, n: c_double) -> c_double = cmath::c_double_utils::jn) delegate!(fn y0(n: c_double) -> c_double = cmath::c_double_utils::y0) delegate!(fn y1(n: c_double) -> c_double = cmath::c_double_utils::y1) delegate!(fn yn(i: c_int, n: c_double) -> c_double = cmath::c_double_utils::yn) // FIXME (#1433): obtain these in a different way // These are not defined inside consts:: for consistency with // the integer types pub const radix: uint = 2u; pub const mantissa_digits: uint = 53u; pub const digits: uint = 15u; pub const epsilon: f64 = 2.2204460492503131e-16_f64; pub const min_value: f64 = 2.2250738585072014e-308_f64; pub const max_value: f64 = 1.7976931348623157e+308_f64; pub const min_exp: int = -1021; pub const max_exp: int = 1024; pub const min_10_exp: int = -307; pub const max_10_exp: int = 308; pub const NaN: f64 = 0.0_f64/0.0_f64; pub const infinity: f64 = 1.0_f64/0.0_f64; pub const neg_infinity: f64 = -1.0_f64/0.0_f64; #[inline(always)] pub pure fn is_NaN(f: f64) -> bool { f != f } #[inline(always)] pub pure fn add(x: f64, y: f64) -> f64 { return x + y; } #[inline(always)] pub pure fn sub(x: f64, y: f64) -> f64 { return x - y; } #[inline(always)] pub pure fn mul(x: f64, y: f64) -> f64 { return x * y; } #[inline(always)] pub pure fn div(x: f64, y: f64) -> f64 { return x / y; } #[inline(always)] pub pure fn rem(x: f64, y: f64) -> f64 { return x % y; } #[inline(always)] pub pure fn lt(x: f64, y: f64) -> bool { return x < y; } #[inline(always)] pub pure fn le(x: f64, y: f64) -> bool { return x <= y; } #[inline(always)] pub pure fn eq(x: f64, y: f64) -> bool { return x == y; } #[inline(always)] pub pure fn ne(x: f64, y: f64) -> bool { return x != y; } #[inline(always)] pub pure fn ge(x: f64, y: f64) -> bool { return x >= y; } #[inline(always)] pub pure fn gt(x: f64, y: f64) -> bool { return x > y; } /// Returns true if `x` is a positive number, including +0.0f640 and +Infinity #[inline(always)] pub pure fn is_positive(x: f64) -> bool { return x > 0.0f64 || (1.0f64/x) == infinity; } /// Returns true if `x` is a negative number, including -0.0f640 and -Infinity #[inline(always)] pub pure fn is_negative(x: f64) -> bool { return x < 0.0f64 || (1.0f64/x) == neg_infinity; } /** * Returns true if `x` is a negative number, including -0.0f640 and -Infinity * * This is the same as `f64::is_negative`. */ #[inline(always)] pub pure fn is_nonpositive(x: f64) -> bool { return x < 0.0f64 || (1.0f64/x) == neg_infinity; } /** * Returns true if `x` is a positive number, including +0.0f640 and +Infinity * * This is the same as `f64::positive`. */ #[inline(always)] pub pure fn is_nonnegative(x: f64) -> bool { return x > 0.0f64 || (1.0f64/x) == infinity; } /// Returns true if `x` is a zero number (positive or negative zero) #[inline(always)] pub pure fn is_zero(x: f64) -> bool { return x == 0.0f64 || x == -0.0f64; } /// Returns true if `x`is an infinite number #[inline(always)] pub pure fn is_infinite(x: f64) -> bool { return x == infinity || x == neg_infinity; } /// Returns true if `x` is a finite number #[inline(always)] pub pure fn is_finite(x: f64) -> bool { return !(is_NaN(x) || is_infinite(x)); } /// Returns `x` rounded down #[inline(always)] pub pure fn floor(x: f64) -> f64 { unsafe { floorf64(x) } } // FIXME (#1999): add is_normal, is_subnormal, and fpclassify /* Module: consts */ pub mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // constants from cmath. /// Archimedes' constant pub const pi: f64 = 3.14159265358979323846264338327950288_f64; /// pi/2.0 pub const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64; /// pi/4.0 pub const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64; /// 1.0/pi pub const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64; /// 2.0/pi pub const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64; /// 2.0/sqrt(pi) pub const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64; /// sqrt(2.0) pub const sqrt2: f64 = 1.41421356237309504880168872420969808_f64; /// 1.0/sqrt(2.0) pub const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64; /// Euler's number pub const e: f64 = 2.71828182845904523536028747135266250_f64; /// log2(e) pub const log2_e: f64 = 1.44269504088896340735992468100189214_f64; /// log10(e) pub const log10_e: f64 = 0.434294481903251827651128918916605082_f64; /// ln(2.0) pub const ln_2: f64 = 0.693147180559945309417232121458176568_f64; /// ln(10.0) pub const ln_10: f64 = 2.30258509299404568401799145468436421_f64; } #[inline(always)] pub pure fn signbit(x: f64) -> int { if is_negative(x) { return 1; } else { return 0; } } #[inline(always)] pub pure fn logarithm(n: f64, b: f64) -> f64 { return log2(n) / log2(b); } #[cfg(notest)] impl cmp::Eq for f64 { #[inline(always)] pure fn eq(&self, other: &f64) -> bool { (*self) == (*other) } #[inline(always)] pure fn ne(&self, other: &f64) -> bool { (*self) != (*other) } } #[cfg(notest)] impl cmp::Ord for f64 { #[inline(always)] pure fn lt(&self, other: &f64) -> bool { (*self) < (*other) } #[inline(always)] pure fn le(&self, other: &f64) -> bool { (*self) <= (*other) } #[inline(always)] pure fn ge(&self, other: &f64) -> bool { (*self) >= (*other) } #[inline(always)] pure fn gt(&self, other: &f64) -> bool { (*self) > (*other) } } pub impl NumCast for f64 { /** * Cast `n` to an `f64` */ #[inline(always)] static pure fn from(n: N) -> f64 { n.to_f64() } #[inline(always)] pure fn to_u8(&self) -> u8 { *self as u8 } #[inline(always)] pure fn to_u16(&self) -> u16 { *self as u16 } #[inline(always)] pure fn to_u32(&self) -> u32 { *self as u32 } #[inline(always)] pure fn to_u64(&self) -> u64 { *self as u64 } #[inline(always)] pure fn to_uint(&self) -> uint { *self as uint } #[inline(always)] pure fn to_i8(&self) -> i8 { *self as i8 } #[inline(always)] pure fn to_i16(&self) -> i16 { *self as i16 } #[inline(always)] pure fn to_i32(&self) -> i32 { *self as i32 } #[inline(always)] pure fn to_i64(&self) -> i64 { *self as i64 } #[inline(always)] pure fn to_int(&self) -> int { *self as int } #[inline(always)] pure fn to_f32(&self) -> f32 { *self as f32 } #[inline(always)] pure fn to_f64(&self) -> f64 { *self } #[inline(always)] pure fn to_float(&self) -> float { *self as float } } impl num::Zero for f64 { #[inline(always)] static pure fn zero() -> f64 { 0.0 } } impl num::One for f64 { #[inline(always)] static pure fn one() -> f64 { 1.0 } } #[cfg(notest)] impl ops::Add for f64 { pure fn add(&self, other: &f64) -> f64 { *self + *other } } #[cfg(notest)] impl ops::Sub for f64 { pure fn sub(&self, other: &f64) -> f64 { *self - *other } } #[cfg(notest)] impl ops::Mul for f64 { pure fn mul(&self, other: &f64) -> f64 { *self * *other } } #[cfg(notest)] impl ops::Div for f64 { pure fn div(&self, other: &f64) -> f64 { *self / *other } } #[cfg(notest)] impl ops::Modulo for f64 { pure fn modulo(&self, other: &f64) -> f64 { *self % *other } } #[cfg(notest)] impl ops::Neg for f64 { pure fn neg(&self) -> f64 { -*self } } #[abi="rust-intrinsic"] pub extern { fn floorf64(val: f64) -> f64; } impl num::Round for f64 { #[inline(always)] pure fn round(&self, mode: num::RoundMode) -> f64 { match mode { num::RoundDown => floor(*self), num::RoundUp => ceil(*self), num::RoundToZero if is_negative(*self) => ceil(*self), num::RoundToZero => floor(*self), num::RoundFromZero if is_negative(*self) => floor(*self), num::RoundFromZero => ceil(*self) } } #[inline(always)] pure fn floor(&self) -> f64 { floor(*self) } #[inline(always)] pure fn ceil(&self) -> f64 { ceil(*self) } #[inline(always)] pure fn fract(&self) -> f64 { if is_negative(*self) { (*self) - ceil(*self) } else { (*self) - floor(*self) } } } /** * Section: String Conversions */ /** * Converts a float to a string * * # Arguments * * * num - The float value */ #[inline(always)] pub pure fn to_str(num: f64) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigAll); r } /** * Converts a float to a string in hexadecimal format * * # Arguments * * * num - The float value */ #[inline(always)] pub pure fn to_str_hex(num: f64) -> ~str { let (r, _) = strconv::to_str_common( &num, 16u, true, strconv::SignNeg, strconv::DigAll); r } /** * Converts a float to a string in a given radix * * # Arguments * * * num - The float value * * radix - The base to use * * # Failure * * Fails if called on a special value like `inf`, `-inf` or `NaN` due to * possible misinterpretation of the result at higher bases. If those values * are expected, use `to_str_radix_special()` instead. */ #[inline(always)] pub pure fn to_str_radix(num: f64, rdx: uint) -> ~str { let (r, special) = strconv::to_str_common( &num, rdx, true, strconv::SignNeg, strconv::DigAll); if special { fail!(~"number has a special value, \ try to_str_radix_special() if those are expected") } r } /** * Converts a float to a string in a given radix, and a flag indicating * whether it's a special value * * # Arguments * * * num - The float value * * radix - The base to use */ #[inline(always)] pub pure fn to_str_radix_special(num: f64, rdx: uint) -> (~str, bool) { strconv::to_str_common(&num, rdx, true, strconv::SignNeg, strconv::DigAll) } /** * Converts a float to a string with exactly the number of * provided significant digits * * # Arguments * * * num - The float value * * digits - The number of significant digits */ #[inline(always)] pub pure fn to_str_exact(num: f64, dig: uint) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigExact(dig)); r } /** * Converts a float to a string with a maximum number of * significant digits * * # Arguments * * * num - The float value * * digits - The number of significant digits */ #[inline(always)] pub pure fn to_str_digits(num: f64, dig: uint) -> ~str { let (r, _) = strconv::to_str_common( &num, 10u, true, strconv::SignNeg, strconv::DigMax(dig)); r } impl to_str::ToStr for f64 { #[inline(always)] pure fn to_str(&self) -> ~str { to_str_digits(*self, 8) } } impl num::ToStrRadix for f64 { #[inline(always)] pure fn to_str_radix(&self, rdx: uint) -> ~str { to_str_radix(*self, rdx) } } /** * Convert a string in base 10 to a float. * Accepts a optional decimal exponent. * * This function accepts strings such as * * * '3.14' * * '+3.14', equivalent to '3.14' * * '-3.14' * * '2.5E10', or equivalently, '2.5e10' * * '2.5E-10' * * '.' (understood as 0) * * '5.' * * '.5', or, equivalently, '0.5' * * '+inf', 'inf', '-inf', 'NaN' * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `num`. */ #[inline(always)] pub pure fn from_str(num: &str) -> Option { strconv::from_str_common(num, 10u, true, true, true, strconv::ExpDec, false) } /** * Convert a string in base 16 to a float. * Accepts a optional binary exponent. * * This function accepts strings such as * * * 'a4.fe' * * '+a4.fe', equivalent to 'a4.fe' * * '-a4.fe' * * '2b.aP128', or equivalently, '2b.ap128' * * '2b.aP-128' * * '.' (understood as 0) * * 'c.' * * '.c', or, equivalently, '0.c' * * '+inf', 'inf', '-inf', 'NaN' * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `[num]`. */ #[inline(always)] pub pure fn from_str_hex(num: &str) -> Option { strconv::from_str_common(num, 16u, true, true, true, strconv::ExpBin, false) } /** * Convert a string in an given base to a float. * * Due to possible conflicts, this function does **not** accept * the special values `inf`, `-inf`, `+inf` and `NaN`, **nor** * does it recognize exponents of any kind. * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * radix - The base to use. Must lie in the range [2 .. 36] * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `num`. */ #[inline(always)] pub pure fn from_str_radix(num: &str, rdx: uint) -> Option { strconv::from_str_common(num, rdx, true, true, false, strconv::ExpNone, false) } impl from_str::FromStr for f64 { #[inline(always)] static pure fn from_str(val: &str) -> Option { from_str(val) } } impl num::FromStrRadix for f64 { #[inline(always)] static pure fn from_str_radix(val: &str, rdx: uint) -> Option { from_str_radix(val, rdx) } } #[test] pub fn test_num() { let ten: f64 = num::cast(10); let two: f64 = num::cast(2); assert (ten.add(&two) == num::cast(12)); assert (ten.sub(&two) == num::cast(8)); assert (ten.mul(&two) == num::cast(20)); assert (ten.div(&two) == num::cast(5)); assert (ten.modulo(&two) == num::cast(0)); } #[test] fn test_numcast() { assert (20u == 20f64.to_uint()); assert (20u8 == 20f64.to_u8()); assert (20u16 == 20f64.to_u16()); assert (20u32 == 20f64.to_u32()); assert (20u64 == 20f64.to_u64()); assert (20i == 20f64.to_int()); assert (20i8 == 20f64.to_i8()); assert (20i16 == 20f64.to_i16()); assert (20i32 == 20f64.to_i32()); assert (20i64 == 20f64.to_i64()); assert (20f == 20f64.to_float()); assert (20f32 == 20f64.to_f32()); assert (20f64 == 20f64.to_f64()); assert (20f64 == NumCast::from(20u)); assert (20f64 == NumCast::from(20u8)); assert (20f64 == NumCast::from(20u16)); assert (20f64 == NumCast::from(20u32)); assert (20f64 == NumCast::from(20u64)); assert (20f64 == NumCast::from(20i)); assert (20f64 == NumCast::from(20i8)); assert (20f64 == NumCast::from(20i16)); assert (20f64 == NumCast::from(20i32)); assert (20f64 == NumCast::from(20i64)); assert (20f64 == NumCast::from(20f)); assert (20f64 == NumCast::from(20f32)); assert (20f64 == NumCast::from(20f64)); assert (20f64 == num::cast(20u)); assert (20f64 == num::cast(20u8)); assert (20f64 == num::cast(20u16)); assert (20f64 == num::cast(20u32)); assert (20f64 == num::cast(20u64)); assert (20f64 == num::cast(20i)); assert (20f64 == num::cast(20i8)); assert (20f64 == num::cast(20i16)); assert (20f64 == num::cast(20i32)); assert (20f64 == num::cast(20i64)); assert (20f64 == num::cast(20f)); assert (20f64 == num::cast(20f32)); assert (20f64 == num::cast(20f64)); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //