412 lines
15 KiB
Rust
412 lines
15 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Integer trait and functions
|
|
|
|
pub trait Integer: Num + PartialOrd
|
|
+ Div<Self, Self>
|
|
+ Rem<Self, Self> {
|
|
/// Simultaneous truncated integer division and modulus
|
|
#[inline]
|
|
fn div_rem(&self, other: &Self) -> (Self, Self) {
|
|
(*self / *other, *self % *other)
|
|
}
|
|
|
|
/// Floored integer division
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ~~~
|
|
/// # use num::Integer;
|
|
/// assert!(( 8i).div_floor(& 3) == 2);
|
|
/// assert!(( 8i).div_floor(&-3) == -3);
|
|
/// assert!((-8i).div_floor(& 3) == -3);
|
|
/// assert!((-8i).div_floor(&-3) == 2);
|
|
///
|
|
/// assert!(( 1i).div_floor(& 2) == 0);
|
|
/// assert!(( 1i).div_floor(&-2) == -1);
|
|
/// assert!((-1i).div_floor(& 2) == -1);
|
|
/// assert!((-1i).div_floor(&-2) == 0);
|
|
/// ~~~
|
|
fn div_floor(&self, other: &Self) -> Self;
|
|
|
|
/// Floored integer modulo, satisfying:
|
|
///
|
|
/// ~~~
|
|
/// # use num::Integer;
|
|
/// # let n = 1i; let d = 1i;
|
|
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
|
|
/// ~~~
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ~~~
|
|
/// # use num::Integer;
|
|
/// assert!(( 8i).mod_floor(& 3) == 2);
|
|
/// assert!(( 8i).mod_floor(&-3) == -1);
|
|
/// assert!((-8i).mod_floor(& 3) == 1);
|
|
/// assert!((-8i).mod_floor(&-3) == -2);
|
|
///
|
|
/// assert!(( 1i).mod_floor(& 2) == 1);
|
|
/// assert!(( 1i).mod_floor(&-2) == -1);
|
|
/// assert!((-1i).mod_floor(& 2) == 1);
|
|
/// assert!((-1i).mod_floor(&-2) == -1);
|
|
/// ~~~
|
|
fn mod_floor(&self, other: &Self) -> Self;
|
|
|
|
/// Simultaneous floored integer division and modulus
|
|
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
|
|
(self.div_floor(other), self.mod_floor(other))
|
|
}
|
|
|
|
/// Greatest Common Divisor (GCD)
|
|
fn gcd(&self, other: &Self) -> Self;
|
|
|
|
/// Lowest Common Multiple (LCM)
|
|
fn lcm(&self, other: &Self) -> Self;
|
|
|
|
/// Returns `true` if `other` divides evenly into `self`
|
|
fn divides(&self, other: &Self) -> bool;
|
|
|
|
/// Returns `true` if the number is even
|
|
fn is_even(&self) -> bool;
|
|
|
|
/// Returns `true` if the number is odd
|
|
fn is_odd(&self) -> bool;
|
|
}
|
|
|
|
/// Simultaneous integer division and modulus
|
|
#[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) }
|
|
/// Floored integer division
|
|
#[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) }
|
|
/// Floored integer modulus
|
|
#[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) }
|
|
/// Simultaneous floored integer division and modulus
|
|
#[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) }
|
|
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
|
|
/// result is always positive.
|
|
#[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) }
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
|
|
#[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) }
|
|
|
|
macro_rules! impl_integer_for_int {
|
|
($T:ty, $test_mod:ident) => (
|
|
impl Integer for $T {
|
|
/// Floored integer division
|
|
#[inline]
|
|
fn div_floor(&self, other: &$T) -> $T {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match self.div_rem(other) {
|
|
(d, r) if (r > 0 && *other < 0)
|
|
|| (r < 0 && *other > 0) => d - 1,
|
|
(d, _) => d,
|
|
}
|
|
}
|
|
|
|
/// Floored integer modulo
|
|
#[inline]
|
|
fn mod_floor(&self, other: &$T) -> $T {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match *self % *other {
|
|
r if (r > 0 && *other < 0)
|
|
|| (r < 0 && *other > 0) => r + *other,
|
|
r => r,
|
|
}
|
|
}
|
|
|
|
/// Calculates `div_floor` and `mod_floor` simultaneously
|
|
#[inline]
|
|
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match self.div_rem(other) {
|
|
(d, r) if (r > 0 && *other < 0)
|
|
|| (r < 0 && *other > 0) => (d - 1, r + *other),
|
|
(d, r) => (d, r),
|
|
}
|
|
}
|
|
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and
|
|
/// `other`. The result is always positive.
|
|
#[inline]
|
|
fn gcd(&self, other: &$T) -> $T {
|
|
// Use Euclid's algorithm
|
|
let mut m = *self;
|
|
let mut n = *other;
|
|
while m != 0 {
|
|
let temp = m;
|
|
m = n % temp;
|
|
n = temp;
|
|
}
|
|
n.abs()
|
|
}
|
|
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and
|
|
/// `other`.
|
|
#[inline]
|
|
fn lcm(&self, other: &$T) -> $T {
|
|
// should not have to recalculate abs
|
|
((*self * *other) / self.gcd(other)).abs()
|
|
}
|
|
|
|
/// Returns `true` if the number can be divided by `other` without
|
|
/// leaving a remainder
|
|
#[inline]
|
|
fn divides(&self, other: &$T) -> bool { *self % *other == 0 }
|
|
|
|
/// Returns `true` if the number is divisible by `2`
|
|
#[inline]
|
|
fn is_even(&self) -> bool { self & 1 == 0 }
|
|
|
|
/// Returns `true` if the number is not divisible by `2`
|
|
#[inline]
|
|
fn is_odd(&self) -> bool { !self.is_even() }
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod $test_mod {
|
|
use Integer;
|
|
|
|
/// Checks that the division rule holds for:
|
|
///
|
|
/// - `n`: numerator (dividend)
|
|
/// - `d`: denominator (divisor)
|
|
/// - `qr`: quotient and remainder
|
|
#[cfg(test)]
|
|
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
|
|
assert_eq!(d * q + r, n);
|
|
}
|
|
|
|
#[test]
|
|
fn test_div_rem() {
|
|
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
|
|
let (n,d) = nd;
|
|
let separate_div_rem = (n / d, n % d);
|
|
let combined_div_rem = n.div_rem(&d);
|
|
|
|
assert_eq!(separate_div_rem, qr);
|
|
assert_eq!(combined_div_rem, qr);
|
|
|
|
test_division_rule(nd, separate_div_rem);
|
|
test_division_rule(nd, combined_div_rem);
|
|
}
|
|
|
|
test_nd_dr(( 8, 3), ( 2, 2));
|
|
test_nd_dr(( 8, -3), (-2, 2));
|
|
test_nd_dr((-8, 3), (-2, -2));
|
|
test_nd_dr((-8, -3), ( 2, -2));
|
|
|
|
test_nd_dr(( 1, 2), ( 0, 1));
|
|
test_nd_dr(( 1, -2), ( 0, 1));
|
|
test_nd_dr((-1, 2), ( 0, -1));
|
|
test_nd_dr((-1, -2), ( 0, -1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_div_mod_floor() {
|
|
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
|
|
let (n,d) = nd;
|
|
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
|
|
let combined_div_mod_floor = n.div_mod_floor(&d);
|
|
|
|
assert_eq!(separate_div_mod_floor, dm);
|
|
assert_eq!(combined_div_mod_floor, dm);
|
|
|
|
test_division_rule(nd, separate_div_mod_floor);
|
|
test_division_rule(nd, combined_div_mod_floor);
|
|
}
|
|
|
|
test_nd_dm(( 8, 3), ( 2, 2));
|
|
test_nd_dm(( 8, -3), (-3, -1));
|
|
test_nd_dm((-8, 3), (-3, 1));
|
|
test_nd_dm((-8, -3), ( 2, -2));
|
|
|
|
test_nd_dm(( 1, 2), ( 0, 1));
|
|
test_nd_dm(( 1, -2), (-1, -1));
|
|
test_nd_dm((-1, 2), (-1, 1));
|
|
test_nd_dm((-1, -2), ( 0, -1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_gcd() {
|
|
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
|
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
|
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
|
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
|
|
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lcm() {
|
|
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
|
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
|
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
|
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
|
|
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
|
|
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
|
|
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
|
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_even() {
|
|
assert_eq!((-4 as $T).is_even(), true);
|
|
assert_eq!((-3 as $T).is_even(), false);
|
|
assert_eq!((-2 as $T).is_even(), true);
|
|
assert_eq!((-1 as $T).is_even(), false);
|
|
assert_eq!((0 as $T).is_even(), true);
|
|
assert_eq!((1 as $T).is_even(), false);
|
|
assert_eq!((2 as $T).is_even(), true);
|
|
assert_eq!((3 as $T).is_even(), false);
|
|
assert_eq!((4 as $T).is_even(), true);
|
|
}
|
|
|
|
#[test]
|
|
fn test_odd() {
|
|
assert_eq!((-4 as $T).is_odd(), false);
|
|
assert_eq!((-3 as $T).is_odd(), true);
|
|
assert_eq!((-2 as $T).is_odd(), false);
|
|
assert_eq!((-1 as $T).is_odd(), true);
|
|
assert_eq!((0 as $T).is_odd(), false);
|
|
assert_eq!((1 as $T).is_odd(), true);
|
|
assert_eq!((2 as $T).is_odd(), false);
|
|
assert_eq!((3 as $T).is_odd(), true);
|
|
assert_eq!((4 as $T).is_odd(), false);
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
impl_integer_for_int!(i8, test_integer_i8)
|
|
impl_integer_for_int!(i16, test_integer_i16)
|
|
impl_integer_for_int!(i32, test_integer_i32)
|
|
impl_integer_for_int!(i64, test_integer_i64)
|
|
impl_integer_for_int!(int, test_integer_int)
|
|
|
|
macro_rules! impl_integer_for_uint {
|
|
($T:ty, $test_mod:ident) => (
|
|
impl Integer for $T {
|
|
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
|
#[inline]
|
|
fn div_floor(&self, other: &$T) -> $T { *self / *other }
|
|
|
|
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
|
#[inline]
|
|
fn mod_floor(&self, other: &$T) -> $T { *self % *other }
|
|
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
|
#[inline]
|
|
fn gcd(&self, other: &$T) -> $T {
|
|
// Use Euclid's algorithm
|
|
let mut m = *self;
|
|
let mut n = *other;
|
|
while m != 0 {
|
|
let temp = m;
|
|
m = n % temp;
|
|
n = temp;
|
|
}
|
|
n
|
|
}
|
|
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
|
#[inline]
|
|
fn lcm(&self, other: &$T) -> $T {
|
|
(*self * *other) / self.gcd(other)
|
|
}
|
|
|
|
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
|
#[inline]
|
|
fn divides(&self, other: &$T) -> bool { *self % *other == 0 }
|
|
|
|
/// Returns `true` if the number is divisible by `2`
|
|
#[inline]
|
|
fn is_even(&self) -> bool { self & 1 == 0 }
|
|
|
|
/// Returns `true` if the number is not divisible by `2`
|
|
#[inline]
|
|
fn is_odd(&self) -> bool { !self.is_even() }
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod $test_mod {
|
|
use Integer;
|
|
|
|
#[test]
|
|
fn test_div_mod_floor() {
|
|
assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
|
|
assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
|
|
assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
|
|
assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
|
|
assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
|
|
assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
|
|
assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
|
|
assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
|
|
assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
|
|
}
|
|
|
|
#[test]
|
|
fn test_gcd() {
|
|
assert_eq!((10 as $T).gcd(&2), 2 as $T);
|
|
assert_eq!((10 as $T).gcd(&3), 1 as $T);
|
|
assert_eq!((0 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((3 as $T).gcd(&3), 3 as $T);
|
|
assert_eq!((56 as $T).gcd(&42), 14 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lcm() {
|
|
assert_eq!((1 as $T).lcm(&0), 0 as $T);
|
|
assert_eq!((0 as $T).lcm(&1), 0 as $T);
|
|
assert_eq!((1 as $T).lcm(&1), 1 as $T);
|
|
assert_eq!((8 as $T).lcm(&9), 72 as $T);
|
|
assert_eq!((11 as $T).lcm(&5), 55 as $T);
|
|
assert_eq!((99 as $T).lcm(&17), 1683 as $T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_divides() {
|
|
assert!((6 as $T).divides(&(6 as $T)));
|
|
assert!((6 as $T).divides(&(3 as $T)));
|
|
assert!((6 as $T).divides(&(1 as $T)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_even() {
|
|
assert_eq!((0 as $T).is_even(), true);
|
|
assert_eq!((1 as $T).is_even(), false);
|
|
assert_eq!((2 as $T).is_even(), true);
|
|
assert_eq!((3 as $T).is_even(), false);
|
|
assert_eq!((4 as $T).is_even(), true);
|
|
}
|
|
|
|
#[test]
|
|
fn test_odd() {
|
|
assert_eq!((0 as $T).is_odd(), false);
|
|
assert_eq!((1 as $T).is_odd(), true);
|
|
assert_eq!((2 as $T).is_odd(), false);
|
|
assert_eq!((3 as $T).is_odd(), true);
|
|
assert_eq!((4 as $T).is_odd(), false);
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
impl_integer_for_uint!(u8, test_integer_u8)
|
|
impl_integer_for_uint!(u16, test_integer_u16)
|
|
impl_integer_for_uint!(u32, test_integer_u32)
|
|
impl_integer_for_uint!(u64, test_integer_u64)
|
|
impl_integer_for_uint!(uint, test_integer_uint)
|