// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Integer trait and functions pub trait Integer: Num + PartialOrd + Div + Rem { /// Simultaneous truncated integer division and modulus #[inline] fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } /// Floored integer division /// /// # Examples /// /// ~~~ /// # use num::Integer; /// assert!(( 8i).div_floor(& 3) == 2); /// assert!(( 8i).div_floor(&-3) == -3); /// assert!((-8i).div_floor(& 3) == -3); /// assert!((-8i).div_floor(&-3) == 2); /// /// assert!(( 1i).div_floor(& 2) == 0); /// assert!(( 1i).div_floor(&-2) == -1); /// assert!((-1i).div_floor(& 2) == -1); /// assert!((-1i).div_floor(&-2) == 0); /// ~~~ fn div_floor(&self, other: &Self) -> Self; /// Floored integer modulo, satisfying: /// /// ~~~ /// # use num::Integer; /// # let n = 1i; let d = 1i; /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// # use num::Integer; /// assert!(( 8i).mod_floor(& 3) == 2); /// assert!(( 8i).mod_floor(&-3) == -1); /// assert!((-8i).mod_floor(& 3) == 1); /// assert!((-8i).mod_floor(&-3) == -2); /// /// assert!(( 1i).mod_floor(& 2) == 1); /// assert!(( 1i).mod_floor(&-2) == -1); /// assert!((-1i).mod_floor(& 2) == 1); /// assert!((-1i).mod_floor(&-2) == -1); /// ~~~ fn mod_floor(&self, other: &Self) -> Self; /// Simultaneous floored integer division and modulus fn div_mod_floor(&self, other: &Self) -> (Self, Self) { (self.div_floor(other), self.mod_floor(other)) } /// Greatest Common Divisor (GCD) fn gcd(&self, other: &Self) -> Self; /// Lowest Common Multiple (LCM) fn lcm(&self, other: &Self) -> Self; /// Returns `true` if `other` divides evenly into `self` fn divides(&self, other: &Self) -> bool; /// Returns `true` if the number is even fn is_even(&self) -> bool; /// Returns `true` if the number is odd fn is_odd(&self) -> bool; } /// Simultaneous integer division and modulus #[inline] pub fn div_rem(x: T, y: T) -> (T, T) { x.div_rem(&y) } /// Floored integer division #[inline] pub fn div_floor(x: T, y: T) -> T { x.div_floor(&y) } /// Floored integer modulus #[inline] pub fn mod_floor(x: T, y: T) -> T { x.mod_floor(&y) } /// Simultaneous floored integer division and modulus #[inline] pub fn div_mod_floor(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The /// result is always positive. #[inline(always)] pub fn gcd(x: T, y: T) -> T { x.gcd(&y) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline(always)] pub fn lcm(x: T, y: T) -> T { x.lcm(&y) } macro_rules! impl_integer_for_int { ($T:ty, $test_mod:ident) => ( impl Integer for $T { /// Floored integer division #[inline] fn div_floor(&self, other: &$T) -> $T { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { (d, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => d - 1, (d, _) => d, } } /// Floored integer modulo #[inline] fn mod_floor(&self, other: &$T) -> $T { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match *self % *other { r if (r > 0 && *other < 0) || (r < 0 && *other > 0) => r + *other, r => r, } } /// Calculates `div_floor` and `mod_floor` simultaneously #[inline] fn div_mod_floor(&self, other: &$T) -> ($T,$T) { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) match self.div_rem(other) { (d, r) if (r > 0 && *other < 0) || (r < 0 && *other > 0) => (d - 1, r + *other), (d, r) => (d, r), } } /// Calculates the Greatest Common Divisor (GCD) of the number and /// `other`. The result is always positive. #[inline] fn gcd(&self, other: &$T) -> $T { // Use Euclid's algorithm let mut m = *self; let mut n = *other; while m != 0 { let temp = m; m = n % temp; n = temp; } n.abs() } /// Calculates the Lowest Common Multiple (LCM) of the number and /// `other`. #[inline] fn lcm(&self, other: &$T) -> $T { // should not have to recalculate abs ((*self * *other) / self.gcd(other)).abs() } /// Returns `true` if the number can be divided by `other` without /// leaving a remainder #[inline] fn divides(&self, other: &$T) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline] fn is_even(&self) -> bool { self & 1 == 0 } /// Returns `true` if the number is not divisible by `2` #[inline] fn is_odd(&self) -> bool { !self.is_even() } } #[cfg(test)] mod $test_mod { use Integer; /// Checks that the division rule holds for: /// /// - `n`: numerator (dividend) /// - `d`: denominator (divisor) /// - `qr`: quotient and remainder #[cfg(test)] fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) { assert_eq!(d * q + r, n); } #[test] fn test_div_rem() { fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) { let (n,d) = nd; let separate_div_rem = (n / d, n % d); let combined_div_rem = n.div_rem(&d); assert_eq!(separate_div_rem, qr); assert_eq!(combined_div_rem, qr); test_division_rule(nd, separate_div_rem); test_division_rule(nd, combined_div_rem); } test_nd_dr(( 8, 3), ( 2, 2)); test_nd_dr(( 8, -3), (-2, 2)); test_nd_dr((-8, 3), (-2, -2)); test_nd_dr((-8, -3), ( 2, -2)); test_nd_dr(( 1, 2), ( 0, 1)); test_nd_dr(( 1, -2), ( 0, 1)); test_nd_dr((-1, 2), ( 0, -1)); test_nd_dr((-1, -2), ( 0, -1)); } #[test] fn test_div_mod_floor() { fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) { let (n,d) = nd; let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); let combined_div_mod_floor = n.div_mod_floor(&d); assert_eq!(separate_div_mod_floor, dm); assert_eq!(combined_div_mod_floor, dm); test_division_rule(nd, separate_div_mod_floor); test_division_rule(nd, combined_div_mod_floor); } test_nd_dm(( 8, 3), ( 2, 2)); test_nd_dm(( 8, -3), (-3, -1)); test_nd_dm((-8, 3), (-3, 1)); test_nd_dm((-8, -3), ( 2, -2)); test_nd_dm(( 1, 2), ( 0, 1)); test_nd_dm(( 1, -2), (-1, -1)); test_nd_dm((-1, 2), (-1, 1)); test_nd_dm((-1, -2), ( 0, -1)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); assert_eq!((3 as $T).gcd(&-3), 3 as $T); assert_eq!((-6 as $T).gcd(&3), 3 as $T); assert_eq!((-4 as $T).gcd(&-2), 2 as $T); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((-1 as $T).lcm(&1), 1 as $T); assert_eq!((1 as $T).lcm(&-1), 1 as $T); assert_eq!((-1 as $T).lcm(&-1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); } #[test] fn test_even() { assert_eq!((-4 as $T).is_even(), true); assert_eq!((-3 as $T).is_even(), false); assert_eq!((-2 as $T).is_even(), true); assert_eq!((-1 as $T).is_even(), false); assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((-4 as $T).is_odd(), false); assert_eq!((-3 as $T).is_odd(), true); assert_eq!((-2 as $T).is_odd(), false); assert_eq!((-1 as $T).is_odd(), true); assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } } ) } impl_integer_for_int!(i8, test_integer_i8) impl_integer_for_int!(i16, test_integer_i16) impl_integer_for_int!(i32, test_integer_i32) impl_integer_for_int!(i64, test_integer_i64) impl_integer_for_int!(int, test_integer_int) macro_rules! impl_integer_for_uint { ($T:ty, $test_mod:ident) => ( impl Integer for $T { /// Unsigned integer division. Returns the same result as `div` (`/`). #[inline] fn div_floor(&self, other: &$T) -> $T { *self / *other } /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). #[inline] fn mod_floor(&self, other: &$T) -> $T { *self % *other } /// Calculates the Greatest Common Divisor (GCD) of the number and `other` #[inline] fn gcd(&self, other: &$T) -> $T { // Use Euclid's algorithm let mut m = *self; let mut n = *other; while m != 0 { let temp = m; m = n % temp; n = temp; } n } /// Calculates the Lowest Common Multiple (LCM) of the number and `other` #[inline] fn lcm(&self, other: &$T) -> $T { (*self * *other) / self.gcd(other) } /// Returns `true` if the number can be divided by `other` without leaving a remainder #[inline] fn divides(&self, other: &$T) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline] fn is_even(&self) -> bool { self & 1 == 0 } /// Returns `true` if the number is not divisible by `2` #[inline] fn is_odd(&self) -> bool { !self.is_even() } } #[cfg(test)] mod $test_mod { use Integer; #[test] fn test_div_mod_floor() { assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); assert_eq!((99 as $T).lcm(&17), 1683 as $T); } #[test] fn test_divides() { assert!((6 as $T).divides(&(6 as $T))); assert!((6 as $T).divides(&(3 as $T))); assert!((6 as $T).divides(&(1 as $T))); } #[test] fn test_even() { assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } } ) } impl_integer_for_uint!(u8, test_integer_u8) impl_integer_for_uint!(u16, test_integer_u16) impl_integer_for_uint!(u32, test_integer_u32) impl_integer_for_uint!(u64, test_integer_u64) impl_integer_for_uint!(uint, test_integer_uint)