rust/src/libextra/num/complex.rs
Daniel Micay 1008945528 remove obsolete foreach keyword
this has been replaced by `for`
2013-08-03 22:48:02 -04:00

364 lines
9.8 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Complex numbers.
use std::num::{Zero,One,ToStrRadix};
// FIXME #1284: handle complex NaN & infinity etc. This
// probably doesn't map to C's _Complex correctly.
// FIXME #5734:: Need generic sin/cos for .to/from_polar().
// FIXME #5735: Need generic sqrt to implement .norm().
/// A complex number in Cartesian form.
#[deriving(Eq,Clone)]
pub struct Cmplx<T> {
/// Real portion of the complex number
re: T,
/// Imaginary portion of the complex number
im: T
}
pub type Complex = Cmplx<float>;
pub type Complex32 = Cmplx<f32>;
pub type Complex64 = Cmplx<f64>;
impl<T: Clone + Num> Cmplx<T> {
/// Create a new Cmplx
#[inline]
pub fn new(re: T, im: T) -> Cmplx<T> {
Cmplx { re: re, im: im }
}
/**
Returns the square of the norm (since `T` doesn't necessarily
have a sqrt function), i.e. `re^2 + im^2`.
*/
#[inline]
pub fn norm_sqr(&self) -> T {
self.re * self.re + self.im * self.im
}
/// Returns the complex conjugate. i.e. `re - i im`
#[inline]
pub fn conj(&self) -> Cmplx<T> {
Cmplx::new(self.re.clone(), -self.im)
}
/// Multiplies `self` by the scalar `t`.
#[inline]
pub fn scale(&self, t: T) -> Cmplx<T> {
Cmplx::new(self.re * t, self.im * t)
}
/// Divides `self` by the scalar `t`.
#[inline]
pub fn unscale(&self, t: T) -> Cmplx<T> {
Cmplx::new(self.re / t, self.im / t)
}
/// Returns `1/self`
#[inline]
pub fn inv(&self) -> Cmplx<T> {
let norm_sqr = self.norm_sqr();
Cmplx::new(self.re / norm_sqr,
-self.im / norm_sqr)
}
}
impl<T: Clone + Algebraic + Num> Cmplx<T> {
/// Calculate |self|
#[inline]
pub fn norm(&self) -> T {
self.re.hypot(&self.im)
}
}
impl<T: Clone + Trigonometric + Algebraic + Num> Cmplx<T> {
/// Calculate the principal Arg of self.
#[inline]
pub fn arg(&self) -> T {
self.im.atan2(&self.re)
}
/// Convert to polar form (r, theta), such that `self = r * exp(i
/// * theta)`
#[inline]
pub fn to_polar(&self) -> (T, T) {
(self.norm(), self.arg())
}
/// Convert a polar representation into a complex number.
#[inline]
pub fn from_polar(r: &T, theta: &T) -> Cmplx<T> {
Cmplx::new(r * theta.cos(), r * theta.sin())
}
}
/* arithmetic */
// (a + i b) + (c + i d) == (a + c) + i (b + d)
impl<T: Clone + Num> Add<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
#[inline]
fn add(&self, other: &Cmplx<T>) -> Cmplx<T> {
Cmplx::new(self.re + other.re, self.im + other.im)
}
}
// (a + i b) - (c + i d) == (a - c) + i (b - d)
impl<T: Clone + Num> Sub<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
#[inline]
fn sub(&self, other: &Cmplx<T>) -> Cmplx<T> {
Cmplx::new(self.re - other.re, self.im - other.im)
}
}
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
impl<T: Clone + Num> Mul<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
#[inline]
fn mul(&self, other: &Cmplx<T>) -> Cmplx<T> {
Cmplx::new(self.re*other.re - self.im*other.im,
self.re*other.im + self.im*other.re)
}
}
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
impl<T: Clone + Num> Div<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
#[inline]
fn div(&self, other: &Cmplx<T>) -> Cmplx<T> {
let norm_sqr = other.norm_sqr();
Cmplx::new((self.re*other.re + self.im*other.im) / norm_sqr,
(self.im*other.re - self.re*other.im) / norm_sqr)
}
}
impl<T: Clone + Num> Neg<Cmplx<T>> for Cmplx<T> {
#[inline]
fn neg(&self) -> Cmplx<T> {
Cmplx::new(-self.re, -self.im)
}
}
/* constants */
impl<T: Clone + Num> Zero for Cmplx<T> {
#[inline]
fn zero() -> Cmplx<T> {
Cmplx::new(Zero::zero(), Zero::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.re.is_zero() && self.im.is_zero()
}
}
impl<T: Clone + Num> One for Cmplx<T> {
#[inline]
fn one() -> Cmplx<T> {
Cmplx::new(One::one(), Zero::zero())
}
}
/* string conversions */
impl<T: ToStr + Num + Ord> ToStr for Cmplx<T> {
fn to_str(&self) -> ~str {
if self.im < Zero::zero() {
fmt!("%s-%si", self.re.to_str(), (-self.im).to_str())
} else {
fmt!("%s+%si", self.re.to_str(), self.im.to_str())
}
}
}
impl<T: ToStrRadix + Num + Ord> ToStrRadix for Cmplx<T> {
fn to_str_radix(&self, radix: uint) -> ~str {
if self.im < Zero::zero() {
fmt!("%s-%si", self.re.to_str_radix(radix), (-self.im).to_str_radix(radix))
} else {
fmt!("%s+%si", self.re.to_str_radix(radix), self.im.to_str_radix(radix))
}
}
}
#[cfg(test)]
mod test {
#[allow(non_uppercase_statics)];
use super::*;
use std::num::{Zero,One,Real};
pub static _0_0i : Complex = Cmplx { re: 0f, im: 0f };
pub static _1_0i : Complex = Cmplx { re: 1f, im: 0f };
pub static _1_1i : Complex = Cmplx { re: 1f, im: 1f };
pub static _0_1i : Complex = Cmplx { re: 0f, im: 1f };
pub static _neg1_1i : Complex = Cmplx { re: -1f, im: 1f };
pub static _05_05i : Complex = Cmplx { re: 0.5f, im: 0.5f };
pub static all_consts : [Complex, .. 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
#[test]
fn test_consts() {
// check our constants are what Cmplx::new creates
fn test(c : Complex, r : float, i: float) {
assert_eq!(c, Cmplx::new(r,i));
}
test(_0_0i, 0f, 0f);
test(_1_0i, 1f, 0f);
test(_1_1i, 1f, 1f);
test(_neg1_1i, -1f, 1f);
test(_05_05i, 0.5f, 0.5f);
assert_eq!(_0_0i, Zero::zero());
assert_eq!(_1_0i, One::one());
}
#[test]
#[ignore(cfg(target_arch = "x86"))]
// FIXME #7158: (maybe?) currently failing on x86.
fn test_norm() {
fn test(c: Complex, ns: float) {
assert_eq!(c.norm_sqr(), ns);
assert_eq!(c.norm(), ns.sqrt())
}
test(_0_0i, 0f);
test(_1_0i, 1f);
test(_1_1i, 2f);
test(_neg1_1i, 2f);
test(_05_05i, 0.5f);
}
#[test]
fn test_scale_unscale() {
assert_eq!(_05_05i.scale(2f), _1_1i);
assert_eq!(_1_1i.unscale(2f), _05_05i);
for &c in all_consts.iter() {
assert_eq!(c.scale(2f).unscale(2f), c);
}
}
#[test]
fn test_conj() {
for &c in all_consts.iter() {
assert_eq!(c.conj(), Cmplx::new(c.re, -c.im));
assert_eq!(c.conj().conj(), c);
}
}
#[test]
fn test_inv() {
assert_eq!(_1_1i.inv(), _05_05i.conj());
assert_eq!(_1_0i.inv(), _1_0i.inv());
}
#[test]
#[should_fail]
#[ignore]
fn test_inv_zero() {
// FIXME #5736: should this really fail, or just NaN?
_0_0i.inv();
}
#[test]
fn test_arg() {
fn test(c: Complex, arg: float) {
assert!(c.arg().approx_eq(&arg))
}
test(_1_0i, 0f);
test(_1_1i, 0.25f * Real::pi());
test(_neg1_1i, 0.75f * Real::pi());
test(_05_05i, 0.25f * Real::pi());
}
#[test]
fn test_polar_conv() {
fn test(c: Complex) {
let (r, theta) = c.to_polar();
assert!((c - Cmplx::from_polar(&r, &theta)).norm() < 1e-6);
}
for &c in all_consts.iter() { test(c); }
}
mod arith {
use super::*;
use std::num::Zero;
#[test]
fn test_add() {
assert_eq!(_05_05i + _05_05i, _1_1i);
assert_eq!(_0_1i + _1_0i, _1_1i);
assert_eq!(_1_0i + _neg1_1i, _0_1i);
for &c in all_consts.iter() {
assert_eq!(_0_0i + c, c);
assert_eq!(c + _0_0i, c);
}
}
#[test]
fn test_sub() {
assert_eq!(_05_05i - _05_05i, _0_0i);
assert_eq!(_0_1i - _1_0i, _neg1_1i);
assert_eq!(_0_1i - _neg1_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c - _0_0i, c);
assert_eq!(c - c, _0_0i);
}
}
#[test]
fn test_mul() {
assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2f));
assert_eq!(_1_1i * _0_1i, _neg1_1i);
// i^2 & i^4
assert_eq!(_0_1i * _0_1i, -_1_0i);
assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c * _1_0i, c);
assert_eq!(_1_0i * c, c);
}
}
#[test]
fn test_div() {
assert_eq!(_neg1_1i / _0_1i, _1_1i);
for &c in all_consts.iter() {
if c != Zero::zero() {
assert_eq!(c / c, _1_0i);
}
}
}
#[test]
fn test_neg() {
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
assert_eq!((-_0_1i) * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(-(-c), c);
}
}
}
#[test]
fn test_to_str() {
fn test(c : Complex, s: ~str) {
assert_eq!(c.to_str(), s);
}
test(_0_0i, ~"0+0i");
test(_1_0i, ~"1+0i");
test(_0_1i, ~"0+1i");
test(_1_1i, ~"1+1i");
test(_neg1_1i, ~"-1+1i");
test(-_neg1_1i, ~"1-1i");
test(_05_05i, ~"0.5+0.5i");
}
}